Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Feb 5;77(Pt 3):233–236. doi: 10.1107/S2056989021001067

Crystal structure of a methanol solvate of a macrocycle bearing two flexible side-arms

Felix Amrhein a, Anke Schwarzer a, Monika Mazik a,*
PMCID: PMC8061102  PMID: 33953942

In the crystal structure of di-tert-butyl N,N′-{[13,15,28,30,31,33-hexa­ethyl-3,10,18,25,32,34-hexa­aza­penta­cyclo­[25.3.1.15,8.112,16.120,23]tetra­triaconta-1(31),3,5,7,9,12 (33),13,15,18,20,22,24,27,29-tetra­deca­ene-14,29-di­yl]bis­(methyl­ene)}dicarbamate methanol disolvate, a pair of solvent mol­ecules is located in the cavity of the host mol­ecule.

Keywords: crystal structure, macrocycle, hydrogen bonding and C—H⋯π inter­actions

Abstract

Di-tert-butyl N,N′-{[13,15,28,30,31,33-hexa­ethyl-3,10,18,25,32,34-hexa­aza­penta­cyclo­[25.3.1.15,8.112,16.120,23]tetra­triaconta-1(31),3,5,7,9,12(33),13,15,18,20,22,24,27,29-tetra­deca­ene-14,29-di­yl]bis­(methyl­ene)}dicarbamate methanol disolvate, C52H72N8O4·2CH3OH, was found to crystallize in the space group P21/c with one half of the macrocycle (host) and one mol­ecule of solvent (guest) in the asymmetric unit of the cell, i.e. the host mol­ecule is located on a crystallographic symmetry center. Within the 1:2 host–guest complex, the solvent mol­ecules are accommodated in the host cavity and held in their positions by O—H⋯N and N—H⋯O bonds, thus forming ring synthons of graph set R 2 2(7). The connection of the 1:2 host-guest complexes is accomplished by C—H⋯O, C—H⋯N and C—H⋯π inter­actions, which create a three-dimensional supra­molecular network.

Chemical context  

Representatives of compounds consisting of a macrocyclic building block and two flexible side-arms have been shown to be able to act as powerful carbohydrate-binding agents (artificial carbohydrate receptors). Depending on the nature of their building blocks, various receptors with different binding properties could be developed (Lippe & Mazik, 2013, 2015; Amrhein et al., 2016.). The design of such a receptor architecture was inspired by the results of our crystallographic studies, including the analyses of the binding motifs in complexes formed between acyclic receptors and monosaccharides, reported by us some time ago (Mazik et al., 2005). At this point it should be noted that, in contrast to numerous known crystal structures of protein–carbohydrate complexes, there are only individual literature reports on the crystal structures of complexes formed between artificial receptors and sugars (for a recent report on such crystalline complexes, see Köhler et al., 2020). The syntheses of the above-mentioned receptors, combining a macrocyclic building block and flexible side-arms, involve the preparation of macrocyclic precursors containing four imine functionalities. The crystal structure of one of such macrocyclic precursors is described in this work. This macrocycle bears two identical side-arms, containing the tert-butyl­oxycarbonyl group (BOC group), and is composed of two tri­ethyl­benzene units connected by two bridges, each bearing one pyrrole moiety and two imine functionalities.

Structural commentary  

The title compound was found to crystallize as a methanol solvate of the space group P21/c with the asymmetric unit of the cell containing one half of the macrocycle and one solvent mol­ecule (the structure of the 1:2 host-guest complex is shown in Fig. 1), i.e. the host mol­ecule is located on a symmetry center. The bond lengths and angles confirm the expected structure and thus the presence of imino groups within the cyclic backbone [N2—C16 = 1.273 (2); N2—C15 = 1.478 (2); N4–C24 = 1.274 (2); N4—C23 = 1.463 (2) Å]. The substituents attached to the benzene ring adopt a fully alternating arrangement above and below the ring plane, i.e. the three ethyl groups all point in the opposite direction with regard to the pyrrole-based bridges connecting the two tri­ethyl­benzene units. The dihedral angle between the least-squares planes of the pyrrole and benzene rings is 76.0 (1)°, which corresponds with the torsion angles of 178.58 (12) and −131.22 (12)° for the atomic sequences C16—N2—C15—C3 and C24—N4—C23—C5, respectively. In the case of the side-arm bearing the BOC group the torsion angle along the atomic sequence C8—N1—C7—C1 amounts to 126.91 (14)°, whereas the torsion angles for the atom sequences C8—O1—C9—C10, C8—O1—C9—C11 and C8—O1—C9—C12 are −67.15 (15), 175.36 (12) and 57.39 (16)°.graphic file with name e-77-00233-scheme1.jpg

Figure 1.

Figure 1

Perspective view of the 1:2 host–guest complex with methanol including the atom labeling. Anisotropic displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

Within the 1:2 host–guest complex, each of the methanol mol­ecules inter­acts with the host by a O—H⋯Nimine [d(H⋯N) = 1.82 (3) Å] and an Npyrrole-H⋯O hydrogen bond [d(H⋯O) = 2.10 (2) Å] that generate a cyclic synthon with a Inline graphic(7) motif according to Etter’s definition (Etter, 1990; Bernstein et al., 1995). Thus, the hy­droxy group of each of the methanol mol­ecules participates in cooperative hydrogen bonds. The host–guest complexes are connected primarily by inter­actions involving the carbonyl oxygen atoms. Here, O2 acts as a bifurcated acceptor for the formation of C—H⋯O=C bonds [d(H⋯O) = 2.49, 2.52 Å], in which the imine atom H24 (see Figs. 2 and 3) and the pyrrole atom H18 of different mol­ecules are included. The second oxygen atom of the BOC group provides a weak C—H⋯O bond involving the tert-butyl group of the neighboring mol­ecule, which further participates in inter­molecular C—H⋯π inter­actions with the pyrrole unit of an adjacent host mol­ecule, as shown in Fig. 3 [d(H⋯Cg) = 3.00 Å]. In addition, the imine atom H16 contributes to formation of a C—H⋯π contact (see Fig. 2) with the pyrrole ring [d(H⋯Cg) = 2.88 Å]. The sum of these inter­actions creates a three-dimensional supra­molecular architecture. Numerical details are given in Table 1.

Figure 2.

Figure 2

Part of the crystal structure of the 1:2 host–guest complex showing the mode of non-covalent inter­molecular bonding. For the sake of clarity, the H atoms of the host mol­ecule not involved in hydrogen-bonding inter­actions are omitted.

Figure 3.

Figure 3

Packing diagram of the 1:2 host–guest complex. Hydrogen bonds and C—H⋯π inter­actions are represented by dashed lines and dashed double lines, respectively. For the sake of clarity, the H atoms of the host mol­ecule not involved in hydrogen-bonding inter­actions or C—H⋯π contacts are omitted.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 represents the centroid of the C17–C20/N3 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯N2 0.96 (3) 1.82 (3) 2.7521 (16) 163 (2)
N3—H3⋯O1A 0.838 (18) 2.100 (18) 2.8757 (16) 153.6 (16)
C10—H10C⋯O1i 0.98 2.63 3.6094 (19) 173
C18—H18⋯O2ii 0.95 2.49 3.3345 (17) 148
C22—H22A⋯N4iii 0.98 2.73 3.6080 (18) 149
C24—H24⋯O2iv 0.95 2.52 3.4120 (17) 157
C25—H25B⋯O2 0.99 2.48 3.3988 (17) 154
C25—H25B⋯N1 0.99 2.58 3.3049 (19) 130
C12—H12CCg2v 0.98 3.00 3.7759 (18) 137
C16—H16⋯Cg2vi 0.95 2.88 3.7173 (15) 147

Symmetry codes: (i) -x, -y+1, -z+1; (ii) x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}; (iii) -x+1, -y+1, -z; (iv) -x, -y+1, -z; (v) x-1, y, z; (vi) x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.41, update November 2019; Groom et al. 2016) for macrocyclic compounds containing two 2,4,6-tri­ethyl­benzene units and at least two pyrrole-based bridges connecting the two benzene rings gave four hits. They include multi-pyrrolic tripodal cages (ZOMPEZ; Wang et al., 2019), a macrobicyclic cage (PEPGIB; Francesconi et al., 2006), a hexa­mine macrobicycle with bound sulfate anion (ZOQCAL; Mateus et al., 2015) as well as a macrobicycle with encapsulated phosphate ion (FOMBAN; Oh et al., 2019). All four structures show an alternating orientation of the ring substituents.

Synthesis and crystallization  

1-{[(1,1-Di­methyl­eth­oxy)carbon­yl]amino­meth­yl}-3,5-bis(amino­meth­yl)-2,4,6-tri­ethyl­benzene (Wiskur et al., 2004) (172 mg, 0.50 mmol) was dissolved in dry ethanol (6 ml) and 1H-pyrrol-2,5-dicarboxaldehyde (61 mg, 0.50 mmol) was added. After the addition of a catalytic amount of acetic acid, the reaction mixture was stirred for 5 h at 318 K. The precipitated solid was filtered off, washed with small amount of dry ethanol and dried under vacuum. The product was obtained as a white solid (173 mg, 0.20 mmol, 81%). M.p. 533 K (decomp.); 1H NMR (500 MHz, CDCl3): δ = 1.17 (t, 6H, J = 7.5 Hz), 1.21 (t, 12H, J = 7.5 Hz), 1.38 (s, 18H), 2.57 (q, 8H, J = 7.5 Hz), 3.01–3.09 (m, 4H), 4.26 (d, 4H, J = 4.2 Hz), 4.36 (s, 2H), 4.72 (br, s, 8H), 6.51 (s, 4H), 8.22 (s, 4H), 9.54 (s, 2H) ppm. 13C NMR (125 MHz, CDCl3): δ = 15.01, 16.23, 22,43, 22.45, 28.39, 38.76, 57.97, 79.20, 114.11, 131.51, 132.85, 133.43, 142.74, 144.10, 151.10, 155.52 ppm; HRMS (ESI): C52H72N8O4 calculated for [M + H]+: 873.57493, found: 873.57663. Crystals suitable for single crystal X-ray diffraction were grown by slow evaporation of the solvent from the methanol solution of compound (I) at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The non-hydrogen atoms were refined anisotropically. The NH and OH hydrogens were located in a difference-Fourier map and refined freely. All other hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms: C—H = 0.95 Å for imine and pyrrol H atoms, C—H = 0.99 Å for methyl­ene groups and C—H = 0.98 Å for methyl groups with U iso(H) = 1.5U eq(C) for methyl groups and U iso(H) = 1.2U eq(C) for other hydrogen atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C52H72N8O4·2CH4O
M r 937.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.8395 (9), 20.0443 (19), 9.6347 (9)
β (°) 102.800 (3)
V3) 2606.3 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.35 × 0.31 × 0.21
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 35355, 5099, 4185
R int 0.036
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.103, 1.02
No. of reflections 5099
No. of parameters 326
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.24

Computer programs: APEX2 and SAINT (Bruker, 2007), SIR2014 (Burla et al., 2015), SHELXL2018/3 (Sheldrick, 2015), XP (Sheldrick, 2008), WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and shelXle (Hübschle et al., 2011).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989021001067/zq2258sup1.cif

e-77-00233-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021001067/zq2258Isup2.hkl

e-77-00233-Isup2.hkl (405.9KB, hkl)

CCDC reference: 2059631

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C52H72N8O4·2CH4O F(000) = 1016
Mr = 937.26 Dx = 1.194 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 13.8395 (9) Å Cell parameters from 4018 reflections
b = 20.0443 (19) Å θ = 2.6–30.1°
c = 9.6347 (9) Å µ = 0.08 mm1
β = 102.800 (3)° T = 100 K
V = 2606.3 (4) Å3 Piece, colorless
Z = 2 0.35 × 0.31 × 0.21 mm

Data collection

Bruker APEXII CCD diffractometer Rint = 0.036
φ and ω scans θmax = 26.0°, θmin = 3.1°
35355 measured reflections h = −17→16
5099 independent reflections k = −24→24
4185 reflections with I > 2σ(I) l = −11→11

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.049P)2 + 1.1359P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
5099 reflections Δρmax = 0.32 e Å3
326 parameters Δρmin = −0.24 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.05242 (7) 0.39730 (5) 0.44678 (10) 0.0227 (2)
O2 −0.09351 (7) 0.36986 (5) 0.21095 (10) 0.0239 (2)
N1 0.05622 (9) 0.34295 (6) 0.35075 (14) 0.0234 (3)
H1 0.0950 (13) 0.3465 (9) 0.437 (2) 0.033 (5)*
N2 0.52052 (8) 0.30374 (6) 0.43228 (12) 0.0185 (3)
N3 0.65652 (8) 0.34838 (6) 0.69247 (12) 0.0161 (2)
H3 0.6091 (13) 0.3752 (9) 0.6721 (18) 0.026 (4)*
N4 0.30737 (8) 0.53752 (6) 0.13277 (12) 0.0176 (2)
C1 0.19144 (10) 0.33253 (7) 0.21758 (14) 0.0171 (3)
C2 0.27938 (10) 0.29697 (7) 0.27053 (14) 0.0167 (3)
C3 0.36923 (10) 0.32070 (7) 0.24387 (14) 0.0163 (3)
C4 0.37244 (10) 0.38170 (7) 0.17394 (14) 0.0163 (3)
C5 0.28382 (10) 0.41619 (7) 0.11840 (14) 0.0163 (3)
C6 0.19328 (10) 0.39170 (7) 0.13994 (14) 0.0164 (3)
C7 0.09242 (10) 0.30690 (7) 0.24027 (15) 0.0210 (3)
H7A 0.042489 0.310462 0.149465 0.025*
H7B 0.099383 0.259096 0.266375 0.025*
C8 −0.03567 (10) 0.37006 (7) 0.32635 (15) 0.0196 (3)
C9 −0.14526 (10) 0.43525 (7) 0.44325 (15) 0.0210 (3)
C10 −0.14381 (12) 0.49841 (8) 0.35766 (17) 0.0267 (3)
H10A −0.205587 0.523136 0.352617 0.040*
H10B −0.137439 0.486846 0.261267 0.040*
H10C −0.087481 0.526152 0.403679 0.040*
C11 −0.23587 (11) 0.39246 (8) 0.38596 (18) 0.0286 (4)
H11A −0.293766 0.412140 0.413275 0.043*
H11B −0.224754 0.347377 0.425669 0.043*
H11C −0.247562 0.390231 0.281954 0.043*
C12 −0.13747 (12) 0.45120 (8) 0.59929 (16) 0.0293 (4)
H12A −0.195568 0.477016 0.609754 0.044*
H12B −0.077292 0.477311 0.635484 0.044*
H12C −0.134509 0.409572 0.653418 0.044*
C13 0.27834 (11) 0.23254 (7) 0.35348 (15) 0.0214 (3)
H13A 0.226010 0.235333 0.408604 0.026*
H13B 0.342760 0.227356 0.421925 0.026*
C14 0.25964 (12) 0.17120 (7) 0.25671 (17) 0.0271 (3)
H14A 0.261688 0.130930 0.314968 0.041*
H14B 0.310878 0.168419 0.201165 0.041*
H14C 0.194388 0.174963 0.192008 0.041*
C15 0.46409 (10) 0.28110 (7) 0.29158 (15) 0.0195 (3)
H15A 0.447814 0.233201 0.296730 0.023*
H15B 0.505554 0.286256 0.220681 0.023*
C16 0.60090 (9) 0.27313 (7) 0.48501 (15) 0.0167 (3)
H16 0.618598 0.236102 0.434316 0.020*
C17 0.66663 (9) 0.29172 (6) 0.61784 (14) 0.0166 (3)
C18 0.75267 (10) 0.25976 (7) 0.68732 (15) 0.0199 (3)
H18 0.778419 0.219307 0.658912 0.024*
C19 0.79463 (10) 0.29810 (7) 0.80710 (15) 0.0199 (3)
H19 0.853574 0.288089 0.875574 0.024*
C20 0.73443 (9) 0.35328 (7) 0.80740 (14) 0.0170 (3)
C21 0.47064 (10) 0.41122 (7) 0.15895 (16) 0.0216 (3)
H21A 0.523104 0.396530 0.240640 0.026*
H21B 0.466421 0.460458 0.163095 0.026*
C22 0.50054 (12) 0.39142 (8) 0.02052 (18) 0.0296 (4)
H22A 0.565586 0.410479 0.019496 0.044*
H22B 0.451306 0.408436 −0.061002 0.044*
H22C 0.503828 0.342693 0.014619 0.044*
C23 0.28733 (10) 0.48040 (7) 0.03607 (14) 0.0188 (3)
H23A 0.339825 0.477093 −0.018671 0.023*
H23B 0.223203 0.487046 −0.032276 0.023*
C24 0.25124 (10) 0.58827 (7) 0.10195 (14) 0.0171 (3)
H24 0.199470 0.587758 0.018667 0.021*
C25 0.09723 (10) 0.42735 (7) 0.07478 (15) 0.0199 (3)
H25A 0.110589 0.475578 0.067138 0.024*
H25B 0.050286 0.422131 0.138050 0.024*
C26 0.04981 (11) 0.39996 (8) −0.07290 (16) 0.0262 (3)
H26A −0.013369 0.422704 −0.109625 0.039*
H26B 0.038118 0.351973 −0.066133 0.039*
H26C 0.094315 0.407676 −0.137487 0.039*
O1A 0.45908 (8) 0.40005 (6) 0.59724 (13) 0.0377 (3)
H1A 0.4690 (17) 0.3687 (12) 0.527 (3) 0.067 (7)*
C1A 0.39245 (13) 0.44958 (9) 0.5307 (2) 0.0403 (4)
H1AA 0.384837 0.483417 0.600927 0.060*
H1AB 0.327948 0.429211 0.490507 0.060*
H1AC 0.418223 0.470560 0.454430 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0201 (5) 0.0302 (6) 0.0185 (5) 0.0035 (4) 0.0054 (4) 0.0017 (4)
O2 0.0177 (5) 0.0318 (6) 0.0213 (5) −0.0018 (4) 0.0021 (4) −0.0011 (4)
N1 0.0182 (6) 0.0332 (7) 0.0186 (6) 0.0026 (5) 0.0037 (5) 0.0022 (5)
N2 0.0162 (6) 0.0177 (6) 0.0209 (6) 0.0009 (5) 0.0023 (5) −0.0014 (5)
N3 0.0137 (5) 0.0144 (6) 0.0198 (6) 0.0022 (5) 0.0025 (5) 0.0023 (5)
N4 0.0176 (6) 0.0165 (6) 0.0187 (6) −0.0022 (5) 0.0041 (5) 0.0010 (5)
C1 0.0167 (6) 0.0190 (7) 0.0159 (6) −0.0021 (5) 0.0044 (5) −0.0035 (5)
C2 0.0204 (7) 0.0160 (7) 0.0134 (6) −0.0005 (5) 0.0031 (5) −0.0022 (5)
C3 0.0171 (6) 0.0168 (7) 0.0141 (6) 0.0003 (5) 0.0017 (5) −0.0042 (5)
C4 0.0153 (6) 0.0177 (7) 0.0160 (6) −0.0019 (5) 0.0035 (5) −0.0051 (5)
C5 0.0191 (7) 0.0157 (7) 0.0137 (6) −0.0007 (5) 0.0029 (5) −0.0031 (5)
C6 0.0160 (6) 0.0180 (7) 0.0147 (6) 0.0006 (5) 0.0022 (5) −0.0031 (5)
C7 0.0194 (7) 0.0211 (7) 0.0234 (7) −0.0015 (6) 0.0067 (6) 0.0011 (6)
C8 0.0181 (7) 0.0213 (7) 0.0205 (7) −0.0035 (5) 0.0067 (6) 0.0028 (6)
C9 0.0172 (7) 0.0228 (7) 0.0240 (7) 0.0024 (6) 0.0069 (6) 0.0028 (6)
C10 0.0291 (8) 0.0247 (8) 0.0264 (8) −0.0013 (6) 0.0065 (6) 0.0024 (6)
C11 0.0207 (7) 0.0263 (8) 0.0413 (9) −0.0016 (6) 0.0124 (7) −0.0009 (7)
C12 0.0296 (8) 0.0366 (9) 0.0241 (8) 0.0057 (7) 0.0107 (6) 0.0029 (7)
C13 0.0223 (7) 0.0211 (7) 0.0210 (7) 0.0006 (6) 0.0048 (6) 0.0041 (6)
C14 0.0307 (8) 0.0193 (7) 0.0310 (8) −0.0022 (6) 0.0059 (7) 0.0015 (6)
C15 0.0191 (7) 0.0186 (7) 0.0200 (7) 0.0018 (5) 0.0028 (6) −0.0026 (6)
C16 0.0160 (7) 0.0130 (6) 0.0226 (7) −0.0007 (5) 0.0075 (5) −0.0001 (5)
C17 0.0158 (6) 0.0133 (6) 0.0214 (7) 0.0003 (5) 0.0055 (5) 0.0024 (5)
C18 0.0185 (7) 0.0148 (7) 0.0268 (8) 0.0029 (5) 0.0055 (6) 0.0024 (6)
C19 0.0152 (6) 0.0193 (7) 0.0237 (7) 0.0011 (5) 0.0007 (5) 0.0056 (6)
C20 0.0144 (6) 0.0175 (7) 0.0188 (7) −0.0021 (5) 0.0033 (5) 0.0047 (5)
C21 0.0167 (7) 0.0200 (7) 0.0285 (8) −0.0033 (5) 0.0055 (6) −0.0026 (6)
C22 0.0273 (8) 0.0273 (8) 0.0401 (9) −0.0041 (6) 0.0198 (7) −0.0029 (7)
C23 0.0196 (7) 0.0191 (7) 0.0172 (7) −0.0012 (5) 0.0031 (5) −0.0004 (5)
C24 0.0150 (6) 0.0190 (7) 0.0171 (7) −0.0028 (5) 0.0032 (5) 0.0043 (5)
C25 0.0173 (7) 0.0198 (7) 0.0224 (7) 0.0019 (6) 0.0038 (5) 0.0030 (6)
C26 0.0203 (7) 0.0320 (9) 0.0241 (8) 0.0010 (6) 0.0000 (6) 0.0044 (6)
O1A 0.0296 (6) 0.0436 (7) 0.0353 (7) 0.0168 (5) −0.0027 (5) −0.0147 (6)
C1A 0.0345 (9) 0.0347 (10) 0.0494 (11) 0.0118 (8) 0.0046 (8) −0.0090 (8)

Geometric parameters (Å, º)

O1—C8 1.3481 (17) C12—H12C 0.9800
O1—C9 1.4871 (16) C13—C14 1.530 (2)
O2—C8 1.2176 (17) C13—H13A 0.9900
N1—C8 1.3548 (18) C13—H13B 0.9900
N1—C7 1.4636 (19) C14—H14A 0.9800
N1—H1 0.886 (19) C14—H14B 0.9800
N2—C16 1.2733 (17) C14—H14C 0.9800
N2—C15 1.4780 (17) C15—H15A 0.9900
N3—C20 1.3671 (17) C15—H15B 0.9900
N3—C17 1.3679 (18) C16—C17 1.4451 (19)
N3—H3 0.838 (18) C16—H16 0.9500
N4—C24 1.2744 (17) C17—C18 1.3868 (19)
N4—C23 1.4632 (17) C18—C19 1.401 (2)
C1—C2 1.4052 (19) C18—H18 0.9500
C1—C6 1.4054 (19) C19—C20 1.3851 (19)
C1—C7 1.5239 (18) C19—H19 0.9500
C2—C3 1.4071 (19) C20—C24i 1.4486 (19)
C2—C13 1.5204 (19) C21—C22 1.534 (2)
C3—C4 1.4014 (19) C21—H21A 0.9900
C3—C15 1.5158 (18) C21—H21B 0.9900
C4—C5 1.4065 (19) C22—H22A 0.9800
C4—C21 1.5182 (18) C22—H22B 0.9800
C5—C6 1.4033 (19) C22—H22C 0.9800
C5—C23 1.5183 (19) C23—H23A 0.9900
C6—C25 1.5173 (18) C23—H23B 0.9900
C7—H7A 0.9900 C24—H24 0.9500
C7—H7B 0.9900 C25—C26 1.531 (2)
C9—C10 1.513 (2) C25—H25A 0.9900
C9—C12 1.517 (2) C25—H25B 0.9900
C9—C11 1.519 (2) C26—H26A 0.9800
C10—H10A 0.9800 C26—H26B 0.9800
C10—H10B 0.9800 C26—H26C 0.9800
C10—H10C 0.9800 O1A—C1A 1.409 (2)
C11—H11A 0.9800 O1A—H1A 0.96 (3)
C11—H11B 0.9800 C1A—H1AA 0.9800
C11—H11C 0.9800 C1A—H1AB 0.9800
C12—H12A 0.9800 C1A—H1AC 0.9800
C12—H12B 0.9800
C8—O1—C9 120.00 (11) C13—C14—H14B 109.5
C8—N1—C7 122.09 (12) H14A—C14—H14B 109.5
C8—N1—H1 118.8 (11) C13—C14—H14C 109.5
C7—N1—H1 119.1 (12) H14A—C14—H14C 109.5
C16—N2—C15 117.09 (11) H14B—C14—H14C 109.5
C20—N3—C17 109.34 (11) N2—C15—C3 111.32 (11)
C20—N3—H3 125.5 (12) N2—C15—H15A 109.4
C17—N3—H3 125.2 (12) C3—C15—H15A 109.4
C24—N4—C23 117.16 (11) N2—C15—H15B 109.4
C2—C1—C6 120.32 (12) C3—C15—H15B 109.4
C2—C1—C7 120.73 (12) H15A—C15—H15B 108.0
C6—C1—C7 118.93 (12) N2—C16—C17 123.50 (12)
C1—C2—C3 119.44 (12) N2—C16—H16 118.2
C1—C2—C13 120.89 (12) C17—C16—H16 118.2
C3—C2—C13 119.66 (12) N3—C17—C18 107.86 (12)
C4—C3—C2 120.41 (12) N3—C17—C16 124.20 (12)
C4—C3—C15 119.01 (12) C18—C17—C16 127.81 (13)
C2—C3—C15 120.58 (12) C17—C18—C19 107.40 (12)
C3—C4—C5 119.60 (12) C17—C18—H18 126.3
C3—C4—C21 120.68 (12) C19—C18—H18 126.3
C5—C4—C21 119.72 (12) C20—C19—C18 107.46 (12)
C6—C5—C4 120.24 (12) C20—C19—H19 126.3
C6—C5—C23 120.46 (12) C18—C19—H19 126.3
C4—C5—C23 119.30 (12) N3—C20—C19 107.93 (12)
C5—C6—C1 119.74 (12) N3—C20—C24i 121.63 (12)
C5—C6—C25 120.21 (12) C19—C20—C24i 130.17 (12)
C1—C6—C25 120.01 (12) C4—C21—C22 113.67 (12)
N1—C7—C1 113.67 (12) C4—C21—H21A 108.8
N1—C7—H7A 108.8 C22—C21—H21A 108.8
C1—C7—H7A 108.8 C4—C21—H21B 108.8
N1—C7—H7B 108.8 C22—C21—H21B 108.8
C1—C7—H7B 108.8 H21A—C21—H21B 107.7
H7A—C7—H7B 107.7 C21—C22—H22A 109.5
O2—C8—O1 125.71 (13) C21—C22—H22B 109.5
O2—C8—N1 123.99 (13) H22A—C22—H22B 109.5
O1—C8—N1 110.30 (12) C21—C22—H22C 109.5
O1—C9—C10 108.95 (11) H22A—C22—H22C 109.5
O1—C9—C12 102.34 (11) H22B—C22—H22C 109.5
C10—C9—C12 110.92 (13) N4—C23—C5 110.74 (11)
O1—C9—C11 111.04 (11) N4—C23—H23A 109.5
C10—C9—C11 112.58 (12) C5—C23—H23A 109.5
C12—C9—C11 110.54 (12) N4—C23—H23B 109.5
C9—C10—H10A 109.5 C5—C23—H23B 109.5
C9—C10—H10B 109.5 H23A—C23—H23B 108.1
H10A—C10—H10B 109.5 N4—C24—C20i 120.67 (12)
C9—C10—H10C 109.5 N4—C24—H24 119.7
H10A—C10—H10C 109.5 C20i—C24—H24 119.7
H10B—C10—H10C 109.5 C6—C25—C26 111.82 (11)
C9—C11—H11A 109.5 C6—C25—H25A 109.3
C9—C11—H11B 109.5 C26—C25—H25A 109.3
H11A—C11—H11B 109.5 C6—C25—H25B 109.3
C9—C11—H11C 109.5 C26—C25—H25B 109.3
H11A—C11—H11C 109.5 H25A—C25—H25B 107.9
H11B—C11—H11C 109.5 C25—C26—H26A 109.5
C9—C12—H12A 109.5 C25—C26—H26B 109.5
C9—C12—H12B 109.5 H26A—C26—H26B 109.5
H12A—C12—H12B 109.5 C25—C26—H26C 109.5
C9—C12—H12C 109.5 H26A—C26—H26C 109.5
H12A—C12—H12C 109.5 H26B—C26—H26C 109.5
H12B—C12—H12C 109.5 C1A—O1A—H1A 108.8 (14)
C2—C13—C14 112.48 (12) O1A—C1A—H1AA 109.5
C2—C13—H13A 109.1 O1A—C1A—H1AB 109.5
C14—C13—H13A 109.1 H1AA—C1A—H1AB 109.5
C2—C13—H13B 109.1 O1A—C1A—H1AC 109.5
C14—C13—H13B 109.1 H1AA—C1A—H1AC 109.5
H13A—C13—H13B 107.8 H1AB—C1A—H1AC 109.5
C13—C14—H14A 109.5
C6—C1—C2—C3 −0.68 (19) C7—N1—C8—O1 176.84 (12)
C7—C1—C2—C3 177.90 (12) C8—O1—C9—C10 −67.15 (15)
C6—C1—C2—C13 −179.41 (12) C8—O1—C9—C12 175.36 (12)
C7—C1—C2—C13 −0.82 (19) C8—O1—C9—C11 57.39 (16)
C1—C2—C3—C4 4.51 (19) C1—C2—C13—C14 88.14 (16)
C13—C2—C3—C4 −176.74 (12) C3—C2—C13—C14 −90.59 (15)
C1—C2—C3—C15 −176.11 (12) C16—N2—C15—C3 178.58 (12)
C13—C2—C3—C15 2.64 (18) C4—C3—C15—N2 85.09 (15)
C2—C3—C4—C5 −6.00 (19) C2—C3—C15—N2 −94.30 (14)
C15—C3—C4—C5 174.61 (12) C15—N2—C16—C17 176.64 (12)
C2—C3—C4—C21 173.35 (12) C20—N3—C17—C18 0.28 (15)
C15—C3—C4—C21 −6.04 (18) C20—N3—C17—C16 −175.81 (12)
C3—C4—C5—C6 3.67 (19) N2—C16—C17—N3 −8.3 (2)
C21—C4—C5—C6 −175.69 (12) N2—C16—C17—C18 176.45 (14)
C3—C4—C5—C23 −176.83 (11) N3—C17—C18—C19 0.42 (15)
C21—C4—C5—C23 3.82 (18) C16—C17—C18—C19 176.32 (13)
C4—C5—C6—C1 0.12 (19) C17—C18—C19—C20 −0.95 (16)
C23—C5—C6—C1 −179.38 (12) C17—N3—C20—C19 −0.87 (15)
C4—C5—C6—C25 −177.44 (12) C17—N3—C20—C24i 173.72 (12)
C23—C5—C6—C25 3.06 (19) C18—C19—C20—N3 1.12 (15)
C2—C1—C6—C5 −1.61 (19) C18—C19—C20—C24i −172.86 (13)
C7—C1—C6—C5 179.77 (12) C3—C4—C21—C22 92.25 (16)
C2—C1—C6—C25 175.95 (12) C5—C4—C21—C22 −88.41 (16)
C7—C1—C6—C25 −2.66 (19) C24—N4—C23—C5 −131.22 (12)
C8—N1—C7—C1 126.91 (14) C6—C5—C23—N4 93.52 (14)
C2—C1—C7—N1 103.94 (15) C4—C5—C23—N4 −85.98 (15)
C6—C1—C7—N1 −77.45 (16) C23—N4—C24—C20i 179.56 (11)
C9—O1—C8—O2 −4.7 (2) C5—C6—C25—C26 91.00 (15)
C9—O1—C8—N1 174.71 (11) C1—C6—C25—C26 −86.55 (15)
C7—N1—C8—O2 −3.8 (2)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

Cg2 represents the centroid of the C17–C20/N3 ring.

D—H···A D—H H···A D···A D—H···A
O1A—H1A···N2 0.96 (3) 1.82 (3) 2.7521 (16) 163 (2)
N3—H3···O1A 0.838 (18) 2.100 (18) 2.8757 (16) 153.6 (16)
C7—H7A···O2 0.99 2.41 2.8234 (17) 104
C10—H10C···O1ii 0.98 2.63 3.6094 (19) 173
C10—H10B···O2 0.98 2.50 3.0916 (19) 119
C11—H11C···O2 0.98 2.41 2.8986 (18) 110
C18—H18···O2iii 0.95 2.49 3.3345 (17) 148
C22—H22A···N4iv 0.98 2.73 3.6080 (18) 149
C24—H24···O2v 0.95 2.52 3.4120 (17) 157
C25—H25B···O2 0.99 2.48 3.3988 (17) 154
C25—H25B···N1 0.99 2.58 3.3049 (19) 130
C12—H12C···Cg2vi 0.98 3.00 3.7759 (18) 137
C16—H16···Cg2vii 0.95 2.88 3.7173 (15) 147

Symmetry codes: (ii) −x, −y+1, −z+1; (iii) x+1, −y+1/2, z+1/2; (iv) −x+1, −y+1, −z; (v) −x, −y+1, −z; (vi) x−1, y, z; (vii) x, −y+1/2, z−1/2.

Funding Statement

This work was funded by Publication Fund of the TU Bergakademie Freiberg grant .

References

  1. Amrhein, F., Lippe, J. & Mazik, M. (2016). Org. Biomol. Chem. 14, 10648–10659. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.
  5. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Francesconi, O., Ienco, A., Moneti, G., Nativi, C. & Roelens, S. (2006). Angew. Chem. Int. Ed. 45, 6693–6696. [DOI] [PubMed]
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  10. Köhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023–7034.
  11. Lippe, J. & Mazik, M. (2013). J. Org. Chem. 78, 9013–9020. [DOI] [PubMed]
  12. Lippe, J. & Mazik, M. (2015). J. Org. Chem. 80, 1427–1439. [DOI] [PubMed]
  13. Mateus, P., Delgado, R., André, V. & Duarte, M. T. (2015). Org. Biomol. Chem. 13, 834–842. [DOI] [PubMed]
  14. Mazik, M., Cavga, H. & Jones, P. G. (2005). J. Am. Chem. Soc. 127, 9045–9052. [DOI] [PubMed]
  15. Oh, J. H., Kim, J. H., Kim, D. S., Han, H. J., Lynch, V. M., Sessler, J. L. & Kim, S. K. (2019). Org. Lett. 21, 4336–4339. [DOI] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  18. Wang, F., Sikma, E., Duan, Z., Sarma, T., Lei, C., Zhang, Z., Humphrey, S. M. & Sessler, J. L. (2019). Chem. Commun. 55, 6185–6188. [DOI] [PubMed]
  19. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  20. Wiskur, S. L., Lavigne, J. J., Metzger, A., Tobey, S. L., Lynch, V. & Anslyn, E. V. (2004). Chem. Eur. J. 10, 3792–3804. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989021001067/zq2258sup1.cif

e-77-00233-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021001067/zq2258Isup2.hkl

e-77-00233-Isup2.hkl (405.9KB, hkl)

CCDC reference: 2059631

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES