Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Feb 26;77(Pt 3):314–318. doi: 10.1107/S2056989021001778

Syntheses and structures of two benzoyl amides: 2-chloro-4-eth­oxy-3,5-dimeth­oxy-N-(3-oxo­cyclo­hex-1-en-1-yl)benzamide and 2-chloro-N-(5,5-dimethyl-3-oxo­cyclo­hex-1-en-1-yl)-4-eth­oxy-3,5-di­meth­oxy­benzamide

Alan J Anderson a,*, Ray J Butcher b, Edward Ollie a
PMCID: PMC8061103  PMID: 33953958

The crystal structures of two benzoyl amides: 2-chloro-4-eth­oxy-3,5-dimeth­oxy-N-(3-oxo­cyclo­hex-1-en-1-yl)benzamide and 2-chloro-N-(5,5-dimethyl-3-oxo­cyclo­hex-1-en-1-yl)-4-eth­oxy-3,5-di­meth­oxy­benzamide have been determined.

Keywords: crystal structure, enamino­nes, bioactivity

Abstract

The first title benzoyl amide, C17H20ClNO5 (3a), crystallizes in the monoclinic space group P21/c with Z = 4 and the second, C19H24ClNO5 (3b), also crystallizes in P21/c with Z = 8 (Z′ = 2), thus there are two independent mol­ecules in the asymmetric unit. In 3a, the phenyl ring makes a dihedral angle of 50.8 (3)° with the amide moiety with the C=O group on the same side of the mol­ecule as the C—Cl group. One meth­oxy group is almost in the plane of the benzene ring, while the eth­oxy and other meth­oxy substituent are arranged on opposite sides of the ring with the eth­oxy group occupying the same side of the ring as the C=O group in the amide moiety. For one of the two mol­ecules in 3b, both the amide and 5,5-dimethyl-3-oxo­cyclo­hex-1-en-1-yl moieties are disordered over two sets of sites with occupancies of 0.551 (2)/0.449 (2) with the major difference between the two conformers being due to the conformation adopted by the cyclo­hex-2-en-1-one ring. The three mol­ecules in 3b (i.e., the undisordered mol­ecule and the two disorder components) differ in the arrangement of the subsituents on the phenyl ring and the conformation adopted by their 5,5-dimethyl-3-oxo­cyclo­hex-1-en-1-yl moieties. In the crystal of 3a, N—H⋯O hydrogen bonds link the mol­ecules into a zigzag chain propagating in the [001] direction. For 3b a combination of C—H⋯O and N—H⋯O inter­molecular inter­actions link the mol­ecules into a zigzag ribbon propagating in the [001] direction.

Chemical context  

Enamino­nes are compounds in which a nitro­gen atom is conjugated through a carbon–carbon double bond to an ester (vinyl­ogous urethane) or a ketone (vinyl­ogous amide) functional group (see Scheme). Enamino­nes may be viewed as amides into which a vinyl fragment has been inter­polated. Designations often used, such as enamino ketone or β-amino-α, β-unsaturated ketone, are misleading in that the compounds rarely exhibit the physical properties normally associated with ketones. Enamino­nes, compounds possessing the structural unit NH2—C=C—C=O, are versatile synthetic inter­mediates that combine the ambient nucleophilicity of enamines with the ambient electrophilicity of enones (Greenhill, 1976; Lue & Greenhill, 1996).

β-Enamino­nes may be used in the synthesis of many bioactive mol­ecules with a heterocyclic unit. Enamino­nes as inter­mediates are responsible for a wide range of therapeutic agents from both natural and synthetic sources including taxol, anti­convulsants, anti-inflammatories, and duocarmycin, and consequently have been the subject of numerous structural bioactivity investigations in recent times (Misra et al., 2008; Greenhill, 1977; Boger et al., 1989; Eddington et al., 2003; Stoltz et al., 2016; Jerach & Elassar, 2015; Kalita et al., 2017). In spite of the breadth of research related to the biological properties of enamino­nes, recent research also indicates that enamino­nes, particularly the cyclic 3-(phenyl­amino)-2-cyclo­hexen-1-one (PACO), contain spectroscopic signatures of intra­molecular charge transfer (ICT), making cyclic enamino­nes ideal components for mol­ecules that mimic natural photosynthetic energy and electron transfer (Lue & Greenhill, 1996). A later study conducted in 2009 concluded that PACO has a low lying strongly polar singlet excited state with significant intra­molecular charge transfer (Misra et al., 2009).

We herein describe the synthesis and structural characterization of the title benzoyl amides 2-chloro-4-eth­oxy-3,5-dimeth­oxy-N-3-oxo­cyclo­hex-1-en-1-yl)benzamide, 3a and 2-chloro-N-(5,5-dimethyl-3-oxo­cyclo­hex-1-en-1-yl)-4-eth­oxy-3,5-di­meth­oxy­benzamide, 3b developed in connection with an ongoing research inter­est.graphic file with name e-77-00314-scheme1.jpg

Structural commentary  

In view of the bioactivity of enamino­nes, the conformation adopted by a mol­ecule is crucial to its activity. Thus an analysis of this for both mol­ecules is appropriate. The benzoyl amide, C17H20ClNO5 (3a), crystallizes in the monoclinic space group P21/c with Z = 4. The compound is the result of the condensation of the enaminone 1a with the acid chloride 2. In the case of 3a (Fig. 1), the central phenyl ring makes a dihedral angle of 50.8 (3)° with the amide moiety; with the C=O group on the same side of the mol­ecule as the C—Cl group; in the 3-oxo­cyclo­hex-1-en-1-yl group the C=O moiety is on the same side with respect to the phenyl ring [the pseudo torsion angle for O4—C11⋯C14—O5 = 21.8 (1)°]. One of the meth­oxy groups (O3—C10) attached to the C1–C6 benzene ring is close to the plane of the ring [torsion angle between the ring and C5—O3—C10 = 17.72 (2)°], while the eth­oxy and the other meth­oxy substituent are arranged on opposite sides of the ring with the eth­oxy group occupying the same side of the ring as the C=O group in the amide moiety [C8—O2⋯C11—O4 = −44.0 (1) and C7—O1⋯C11—O4 = 123.6 (1)°]. The extended conformation of the eth­oxy group with respect to the ring is shown by a torsion angle of −170.8 (1)° for C4—O2—C8—C9.

Figure 1.

Figure 1

The mol­ecular structure of 3a with atom labeling and with atomic displacement parameters shown at the 30% probability level.

The benzoyl amide, C19H24ClNO5 (3b), crystallizes in the monoclinic space group P21/c with Z = 8 (Z′ = 2), thus there are two independent mol­ecules in the asymmetric unit. The compound is the result of the condensation of the enaminone 1b with the acid chloride 2. For one of the two mol­ecules, both the amide and 5,5-dimethyl-3-oxo­cyclo­hex-1-en-1-yl moieties are disordered over two inequivalent conformations with occupancies of 0.551 (2)/0.449 (2). The major difference between the two conformers is due to the conformation adopted by the cyclo­hex-2-en-1-one ring (vide infra).

The conformations of both independent mol­ecules will be discussed separately and then comparisons will be made between the conformation of 3a and the two mol­ecules of 3b in which, due to disorder, one has adopted two different conformations. For simplicity, these will be called 3ba, 3bb and 3bc (where 3bb and 3bc are the major and minor components, respectively, of the disordered mol­ecule). For 3ba (Fig. 2) the central phenyl ring makes a dihedral angle of 54.5 (3)° with the amide moiety with the C=O group on the opposite side of the mol­ecule as the C—Cl group in contrast to the situation in 3a (this is illustrated by the respective C2—C1⋯C11—O4 torsion angles of 47.2 (2) and −129.5 (2) for 3a and 3ba, respectively). In both the amide moiety and the 3-oxo­cyclo­hex-1-en-1-yl group, the C=O moiety is on the same side [the torsion angle for O4A—C11A⋯C14A—O5A = −17.5 (1)°]. For the substituents on the phenyl ring, one meth­oxy group is almost coplanar with the ring [torsion angle between the ring and C5A—O3A—C10A = 3.5 (2)°] while in contrast to the situation in 3a, both the other meth­oxy and eth­oxy substituents are on the same side of the ring [torsion angles for C7A—O1A⋯C11A—O4A and C8A—O2A⋯C11A—O4A = −32.4 (2) and −6.4 (2)°, respectively]. The conformation of the eth­oxy substituent is different than that in 3a in that it has not adopted a fully extended aspect [C4A—O2A—C8A—C9A = −148.77 (16)].

Figure 2.

Figure 2

The mol­ecular structure of 3ba with atom labeling and with atomic displacement parameters shown at the 30% probability level.

As indicated above, 3bb and 3bc are the major and minor components of the disordered 5,5-dimethyl-3-oxo­cyclo­hex-1-en-1-yl moieties with occupancies of 0.551 (2)/0.449 (2) (Fig. 3). The difference in the conformation of this group can be seen by the torsion angles for the C12—C17—C16—C15 grouping in 3a, 3ba, 3bb and 3bc of −48.67 (17), 50.11 (15), −51.7 (7) and 53.9 (10)°, respectively. From this it can be seen that for this moiety, 3a and 3bb have a similar conformation and 3ba and 3bc also have a similar conformation. For 3bb, the central phenyl ring makes a dihedral angle of 55.8 (9)° with the amide moiety with the C=O group on the opposite side of the mol­ecule as the C—Cl group [torsion angle for C2B—C1B⋯C11B—O4B = −122.81 (13)]. In both the amide moiety and the 3-oxo­cyclo­hex-1-en-1-yl group, the C=O moiety is on the same side [O4B—C11B⋯C14B—O5B = 13.7 (2)°]. For the substituents on the phenyl ring, one meth­oxy group is almost coplanar with the ring [torsion angle between ring and meth­oxy group of 2.3 (2)] while the other meth­oxy group and eth­oxy groups are on opposite sides of the ring [torsion angles for C7B—O1B⋯C11B—O4B and C8B—O2B⋯C11B—O4B = 165.4 (2) and −46.6 (2)°, respectively]. The conformation of the eth­oxy substituent is different than that in 3a in that it has not adopted an extended aspect [C4B—O2B—C8B—C9B = 67.92 (16)°].

Figure 3.

Figure 3

The mol­ecular structure of the disordered mol­ecule in 3b showing both disorder components (3bb and 3bc) with atom labeling and with atomic displacement parameters shown at the 30% probability level.

Both 3bb and 3bc retain the same (undisordered) phenyl moiety and the only differences are in the conformation of the 5,5-dimethyl-3-oxo­cyclo­hex-1-en-1-yl moiety, thus in discussing this mol­ecule we only have to consider the amide moiety and the 3-oxo­cyclo­hex-1-en-1-yl group where the C=O moiety is on the same side [O4B—C11B⋯C14C—O5C = −9.1 (2)°].

Supra­molecular features  

For 3a, N—H⋯O hydrogen bonds (Table 1) link the mol­ecules into a zigzag chain propagating in the [001] direction as shown in Fig. 4. For 3b, a combination of C—H⋯O and N—H⋯O inter­molecular inter­actions (Table 2) link the mol­ecules into a zigzag ribbon propagating in the [001] direction (Fig. 5).

Table 1. Hydrogen-bond geometry (Å, °) for 3a .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5i 0.844 (18) 2.098 (18) 2.9410 (15) 177.1 (16)
C7—H7A⋯Cl1ii 0.98 2.86 3.7022 (16) 145
C7—H7A⋯O4ii 0.98 2.48 3.293 (2) 140
C9—H9A⋯O4iii 0.98 2.53 3.470 (2) 161

Symmetry codes: (i) x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}; (ii) x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}; (iii) -x, -y+1, -z+1.

Figure 4.

Figure 4

Packing diagram for 3a viewed along the b axis showing the mol­ecules linked by N—H⋯O hydrogen bonds (shown by dashed bonds) into chains propagating in the [001] direction

Table 2. Hydrogen-bond geometry (Å, °) for 3b .

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯O5B 0.853 (16) 2.040 (18) 2.849 (8) 158.1 (15)
N1A—H1AA⋯O5C 0.853 (16) 2.081 (19) 2.909 (9) 163.5 (15)
C7A—H7AA⋯O2B i 0.98 2.44 3.3451 (17) 153
C8A—H8AB⋯Cl1A ii 0.99 2.92 3.703 (2) 137
C17A—H17A⋯O5B 0.99 2.42 3.285 (7) 146
C17A—H17A⋯O5C 0.99 2.63 3.481 (8) 144
C10B—H10F⋯O4A iii 0.98 2.46 3.4013 (15) 161
N1B—H1BA⋯O5A iv 0.77 (5) 2.31 (5) 2.985 (10) 147 (5)
N1C—H1CA⋯O5A iv 0.88 (5) 1.96 (4) 2.795 (12) 159 (4)
C17C—H17E⋯O5A iv 0.99 2.54 3.364 (3) 141

Symmetry codes: (i) -x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}; (ii) -x+2, -y+2, -z+1; (iii) -x+1, -y+2, -z+1; (iv) x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}.

Figure 5.

Figure 5

Packing diagram for 3b viewed along the a axis showing the mol­ecules linked by both C—H⋯O and C—H⋯Cl inter­actions as well as N—H⋯O hydrogen bonds (all shown by dashed bonds) into chains propagating in the [001] direction

Database survey  

A survey of the Cambridge Structural Database for similar compounds did not provide any hits. Even if the mol­ecules are broken up into two components, one based on the tris­ubstituted phenyl ring and the other on the cyclo­hexene ring no hits for the former and only one hit for the latter fragment is obtained [Cambridge Structural Database refcode MOLPUA (Meng et al., 2014)]. Even in this structure the only similar chromophore is the cyclo­hex-2-ene-1-one fragment, but with the double bond in a different position in the ring. For similar structures to this fragment but containing a cyclo­hexane ring there are DOSDOE, DOSBUK (Romney et al., 2014) and KAVDAP (Alford et al., 2016).

Synthesis and crystallization  

The methodology involves N-deprotonation of the commercially available enamino­nes 1a,b with sodium hydride followed by benzoyl­ation of 2 to give the title benzoyl amides 3a,b in 54% and 51% yield, respectively, from a method previously reported (see Scheme 1; Anderson et al., 2004). Benzoyl chloride 2 was prepared via chlorination of commercially available 4 under previously reported conditions (Zheng et al., 2011).

Preparation of 2-chloro-4-eth­oxy-3,5-di­meth­oxy­benzoyl chloride (2)

A solution of commercially available 2-chloro-4-eth­oxy-3,5-di­meth­oxy­benzoic acid, 4 (2.07 g, 7.7 mmol), and a catalytic amount of DMF in thionyl chloride (5 ml) was stirred at 353–363 K for 3 h to give the crude acid chloride 2. The mixture was concentrated under reduced pressure and used without any further purification. 1H NMR: (400 MHz, DMSO): δ 1.40–1.45 (3H, t, CH3), δ 3.03 (3H, s, CH3), δ 3.19 (3H, s, CH3), 4.21–4.28 (2H, q, CH2), 7.48 (H, s, aromatic H).

Preparation of 2-chloro-4-eth­oxy-3,5-dimeth­oxy- N -(3-oxo­cyclo­hex-1-en-1-yl)benzamide (3a)

The enaminone, 1a (0.799 g, 7.2 mmol), under an inert atmosphere, was stirred in a solution of NaH (0.391 g, 17.2 mmol) in dry THF (40 ml) maintaining the temperature below 293 K. The reaction was refluxed for 20 minutes, cooled to room temperature and stirred on an ice-bath for 5 minutes before a solution of benzoyl chloride 2 (2.09 g, 7.5 mmol) in dry THF (10 ml) was added dropwise over 5 minutes. After stirring at room temperature for a further 10 minutes, the mixture was quenched with concentrated hydro­chloric acid (∼5 ml) and diluted with di­chloro­methane (25 ml). The mixture was transferred to a separatory funnel and washed successively with water (25 ml), 10% NaHCO3 and with water again. The organic layer was dried over sodium sulfate and concentrated in vacuo. The crude residue was purified by column chromatography (silica gel, EtOAc:hexa­nes = 5:5) to give compound 3a (1.37 g, 54%) as a faint yellow solid. (m.p. = 417–418 K) R f (EtOAc:hexa­nes 7:3) 1H NMR: (400 MHz, DMSO): 1.01 (6H, s, 2 × CH3), δ 1.27–1.32 (3H, t, CH3), 2.16 (2H, m, CH2), 2.43 (2H, t, CH2), 3.83 (6H, s, 2 × CH3), δ4.01–4.07 (2H, quart, CH2), δ 6.70 (H, s, CH), 7.04 (H, s, aromatic H), 10.25 (H, s, NH) ppm; 13C NMR (DMSO) δ 198.60, 165.69, 154.02, 152.27, 149.54, 142.88, 131.24, 115.82, 110.15, 107.81, 68.80, 60.83, 56.32, 49.96, 40.85, 32.13, 27.73, 15.35 ppm.

Preparation of 2-chloro- N -(5,5-dimethyl-3-oxo­cyclo­hex-1-en-1-yl)-4-eth­oxy-3,5-δi­meth­oxy­benzamide (3b)

The same synthesis and purification method as for 3a was used to prepare 3b except that 1.00 g (7.2 mmol) of the enaminone 1b replaced 1a: this gave compound 3b (1.40 g, 51%) as a light white solid. (m.p. = 331–332 K) R f (EtOAc:hexa­nes 7:3) 1H NMR: (400 MHz, DMSO): δ 1.27–1.32 (3H, t, CH3), δ 1.8.7–1.95 (2H, quintet, CH2), 2.22–2.29 (2H, t, CH2), 3.32 (6, s, 2 × CH3, slight long-range coupling noticed), δ 4.00–4.06 (2H, quart, CH2), δ 6.71 (H, s, CH), 7.04 (H, s, aromatic H), 10.30 (H, s, NH) ppm; 13C NMR (DMSO) δ 198.62, 165.56, 156.14, 152.27, 149.55, 142.85, 131.27, 115.77, 110.76, 107.76, 68.80, 60.83, 56.32, 49.96, 40.85, 32.13, 27.73, 21.11, 15.35 ppm.

For both 3a and 3b crystals were grown from a 2:1 ethanol:water mixed solvent system.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The N-bound H atoms were located in difference maps and their positions were freely refined. A riding model was used for the H atoms attached to C with C—H distances ranging from 0.95 to 0.99 Å and U iso(H) = 1.2U eq(C) [1.5U eq(CH3)]. For 3b there are two independent mol­ecules in the asymmetric unit, in one of which the 5,5-dimethyl-3-oxo­cyclo­hex-1-en-1-yl moiety is disordered and was treated with similar metrical parameters with refined occupancies of 0.551 (2)/0.449 (2).

Table 3. Experimental details.

  3a 3b
Crystal data
Chemical formula C17H20ClNO5 C19H24ClNO5
M r 353.79 381.84
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 150 150
a, b, c (Å) 14.654 (3), 8.9148 (17), 13.045 (2) 14.6986 (13), 10.6309 (10), 25.131 (2)
β (°) 102.581 (3) 90.1851 (14)
V3) 1663.2 (5) 3926.9 (6)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.26 0.22
Crystal size (mm) 0.34 × 0.32 × 0.10 0.48 × 0.44 × 0.21
 
Data collection
Diffractometer Bruker SMART APEXII CCD Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2008) Multi-scan (SADABS; Sheldrick, 2008)
T min, T max 0.885, 0.975 0.841, 0.954
No. of measured, independent and observed [I > 2σ(I)] reflections 21434, 5291, 4023 67292, 12630, 10320
R int 0.041 0.026
(sin θ/λ)max−1) 0.726 0.727
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.111, 1.05 0.039, 0.115, 1.03
No. of reflections 5291 12630
No. of parameters 224 584
No. of restraints 0 399
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.25 0.64, −0.35

Computer programs: APEX2 and SAINT (Bruker, 2010), SHELXS97 and SHELXTL (Sheldrick, 2008), and SHELXL2018/3 (Sheldrick, 2015).

Supplementary Material

Crystal structure: contains datablock(s) 3a, 3b, global. DOI: 10.1107/S2056989021001778/hb7962sup1.cif

e-77-00314-sup1.cif (2.6MB, cif)

Structure factors: contains datablock(s) 3a. DOI: 10.1107/S2056989021001778/hb79623asup2.hkl

e-77-00314-3asup2.hkl (421.1KB, hkl)

Structure factors: contains datablock(s) 3b. DOI: 10.1107/S2056989021001778/hb79623bsup3.hkl

e-77-00314-3bsup3.hkl (1,001.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021001778/hb79623asup4.cml

Supporting information file. DOI: 10.1107/S2056989021001778/hb79623bsup5.cml

CCDC references: 2025600, 2025601

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to acknowledge the assistance of Dr Peter Zavalij at the University of Maryl­and for collecting the X-ray data.

supplementary crystallographic information

2-Chloro-4-ethoxy-3,5-dimethoxy-N-(3-oxocyclohex-1-en-1-yl)benzamide (3a) . Crystal data

C17H20ClNO5 F(000) = 744
Mr = 353.79 Dx = 1.413 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 14.654 (3) Å Cell parameters from 5173 reflections
b = 8.9148 (17) Å θ = 2.7–31.0°
c = 13.045 (2) Å µ = 0.26 mm1
β = 102.581 (3)° T = 150 K
V = 1663.2 (5) Å3 Prism, yellow
Z = 4 0.34 × 0.32 × 0.10 mm

2-Chloro-4-ethoxy-3,5-dimethoxy-N-(3-oxocyclohex-1-en-1-yl)benzamide (3a) . Data collection

Bruker SMART APEXII CCD diffractometer 5291 independent reflections
Radiation source: sealed tube 4023 reflections with I > 2σ(I)
Detector resolution: 8.333 pixels mm-1 Rint = 0.041
φ and ω scans θmax = 31.1°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) h = −21→21
Tmin = 0.885, Tmax = 0.975 k = −12→12
21434 measured reflections l = −18→18

2-Chloro-4-ethoxy-3,5-dimethoxy-N-(3-oxocyclohex-1-en-1-yl)benzamide (3a) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: mixed
wR(F2) = 0.111 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.4383P] where P = (Fo2 + 2Fc2)/3
5291 reflections (Δ/σ)max < 0.001
224 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.25 e Å3

2-Chloro-4-ethoxy-3,5-dimethoxy-N-(3-oxocyclohex-1-en-1-yl)benzamide (3a) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Compound #4

2-Chloro-4-ethoxy-3,5-dimethoxy-N-(3-oxocyclohex-1-en-1-yl)benzamide (3a) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.29234 (3) 0.32109 (4) 0.48615 (3) 0.02725 (10)
O1 0.18273 (7) 0.38773 (11) 0.64208 (7) 0.0241 (2)
O2 0.10261 (6) 0.65866 (12) 0.67309 (7) 0.0239 (2)
O3 0.10408 (7) 0.88836 (11) 0.54071 (9) 0.0302 (2)
O4 0.25869 (8) 0.47397 (12) 0.27145 (8) 0.0320 (3)
O5 0.38442 (7) 0.56929 (12) −0.02661 (7) 0.0249 (2)
N1 0.33695 (8) 0.69571 (13) 0.31234 (8) 0.0191 (2)
H1A 0.3526 (12) 0.762 (2) 0.3588 (13) 0.026 (4)*
C1 0.23398 (9) 0.60558 (15) 0.42223 (10) 0.0193 (2)
C2 0.23353 (9) 0.48844 (14) 0.49310 (10) 0.0189 (2)
C3 0.18745 (9) 0.50552 (14) 0.57581 (10) 0.0186 (2)
C4 0.14420 (9) 0.64091 (15) 0.58915 (10) 0.0194 (2)
C5 0.14667 (9) 0.76025 (15) 0.51996 (10) 0.0204 (2)
C6 0.19046 (9) 0.74103 (15) 0.43585 (10) 0.0207 (3)
H6A 0.190600 0.820783 0.387583 0.025*
C7 0.25364 (12) 0.39211 (18) 0.73685 (12) 0.0323 (3)
H7A 0.247923 0.303626 0.779583 0.048*
H7B 0.246122 0.483071 0.776384 0.048*
H7C 0.315408 0.392639 0.719441 0.048*
C8 0.00347 (10) 0.62546 (17) 0.64724 (12) 0.0260 (3)
H8A −0.006469 0.516730 0.633878 0.031*
H8B −0.027186 0.680643 0.583095 0.031*
C9 −0.03754 (11) 0.6722 (2) 0.73783 (14) 0.0410 (4)
H9A −0.104576 0.649464 0.722087 0.061*
H9B −0.028357 0.780238 0.749697 0.061*
H9C −0.006531 0.617541 0.801030 0.061*
C10 0.12623 (12) 1.02402 (17) 0.49314 (14) 0.0327 (3)
H10A 0.109255 1.110196 0.531760 0.049*
H10B 0.091199 1.028074 0.420061 0.049*
H10C 0.193419 1.026858 0.494974 0.049*
C11 0.27614 (9) 0.58307 (16) 0.32791 (10) 0.0213 (3)
C12 0.38339 (9) 0.70472 (14) 0.22986 (10) 0.0180 (2)
C13 0.36265 (9) 0.61821 (15) 0.14259 (10) 0.0204 (3)
H13A 0.315554 0.543565 0.137043 0.024*
C14 0.41092 (9) 0.63713 (15) 0.05714 (10) 0.0201 (2)
C15 0.49279 (10) 0.74267 (18) 0.07335 (11) 0.0262 (3)
H15A 0.499687 0.781566 0.004357 0.031*
H15B 0.550511 0.686924 0.104906 0.031*
C16 0.48180 (11) 0.87402 (17) 0.14418 (11) 0.0275 (3)
H16A 0.430304 0.939526 0.107746 0.033*
H16B 0.540060 0.934001 0.158934 0.033*
C17 0.46077 (10) 0.81930 (16) 0.24729 (11) 0.0234 (3)
H17A 0.518006 0.774546 0.291063 0.028*
H17B 0.442654 0.905888 0.286032 0.028*

2-Chloro-4-ethoxy-3,5-dimethoxy-N-(3-oxocyclohex-1-en-1-yl)benzamide (3a) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.03470 (19) 0.02092 (16) 0.02974 (18) 0.00364 (13) 0.01494 (14) −0.00058 (13)
O1 0.0298 (5) 0.0226 (5) 0.0213 (5) −0.0047 (4) 0.0089 (4) 0.0046 (4)
O2 0.0204 (5) 0.0342 (5) 0.0200 (5) −0.0020 (4) 0.0107 (4) −0.0029 (4)
O3 0.0330 (6) 0.0225 (5) 0.0407 (6) 0.0067 (4) 0.0200 (5) 0.0031 (4)
O4 0.0448 (6) 0.0290 (5) 0.0281 (5) −0.0144 (5) 0.0210 (5) −0.0079 (4)
O5 0.0320 (5) 0.0273 (5) 0.0173 (4) 0.0001 (4) 0.0092 (4) −0.0014 (4)
N1 0.0220 (5) 0.0222 (5) 0.0153 (5) −0.0033 (4) 0.0087 (4) −0.0023 (4)
C1 0.0192 (6) 0.0227 (6) 0.0177 (6) −0.0027 (5) 0.0076 (4) 0.0000 (5)
C2 0.0194 (6) 0.0191 (6) 0.0202 (6) −0.0008 (5) 0.0085 (4) −0.0009 (5)
C3 0.0189 (6) 0.0203 (6) 0.0176 (6) −0.0035 (5) 0.0065 (4) 0.0012 (5)
C4 0.0187 (6) 0.0239 (6) 0.0173 (6) −0.0023 (5) 0.0075 (4) −0.0007 (5)
C5 0.0181 (6) 0.0215 (6) 0.0227 (6) 0.0005 (5) 0.0071 (5) 0.0002 (5)
C6 0.0205 (6) 0.0222 (6) 0.0206 (6) 0.0003 (5) 0.0072 (5) 0.0039 (5)
C7 0.0401 (9) 0.0305 (8) 0.0242 (7) −0.0003 (6) 0.0026 (6) 0.0077 (6)
C8 0.0210 (6) 0.0297 (7) 0.0301 (7) −0.0005 (5) 0.0114 (5) −0.0007 (6)
C9 0.0256 (8) 0.0645 (12) 0.0379 (9) 0.0013 (8) 0.0178 (7) −0.0059 (8)
C10 0.0356 (8) 0.0216 (7) 0.0420 (9) 0.0061 (6) 0.0107 (7) 0.0059 (6)
C11 0.0230 (6) 0.0242 (6) 0.0190 (6) −0.0021 (5) 0.0094 (5) 0.0011 (5)
C12 0.0183 (6) 0.0206 (6) 0.0165 (5) 0.0011 (4) 0.0065 (4) 0.0028 (4)
C13 0.0217 (6) 0.0245 (6) 0.0165 (6) −0.0025 (5) 0.0072 (4) 0.0009 (5)
C14 0.0220 (6) 0.0229 (6) 0.0165 (6) 0.0032 (5) 0.0065 (4) 0.0027 (5)
C15 0.0258 (7) 0.0357 (8) 0.0202 (6) −0.0046 (6) 0.0116 (5) −0.0005 (6)
C16 0.0305 (7) 0.0290 (7) 0.0263 (7) −0.0101 (6) 0.0132 (6) −0.0001 (6)
C17 0.0240 (6) 0.0274 (7) 0.0208 (6) −0.0066 (5) 0.0096 (5) −0.0030 (5)

2-Chloro-4-ethoxy-3,5-dimethoxy-N-(3-oxocyclohex-1-en-1-yl)benzamide (3a) . Geometric parameters (Å, º)

Cl1—C2 1.7352 (13) C8—C9 1.497 (2)
O1—C3 1.3714 (15) C8—H8A 0.9900
O1—C7 1.4317 (18) C8—H8B 0.9900
O2—C4 1.3734 (14) C9—H9A 0.9800
O2—C8 1.4486 (16) C9—H9B 0.9800
O3—C5 1.3567 (16) C9—H9C 0.9800
O3—C10 1.4285 (18) C10—H10A 0.9800
O4—C11 1.2132 (17) C10—H10B 0.9800
O5—C14 1.2350 (16) C10—H10C 0.9800
N1—C11 1.3865 (17) C12—C13 1.3536 (18)
N1—C12 1.3950 (15) C12—C17 1.5061 (18)
N1—H1A 0.844 (18) C13—C14 1.4543 (17)
C1—C6 1.3949 (18) C13—H13A 0.9500
C1—C2 1.3956 (18) C14—C15 1.5029 (19)
C1—C11 1.5056 (17) C15—C16 1.522 (2)
C2—C3 1.4001 (16) C15—H15A 0.9900
C3—C4 1.3917 (18) C15—H15B 0.9900
C4—C5 1.4008 (19) C16—C17 1.5241 (19)
C5—C6 1.3969 (17) C16—H16A 0.9900
C6—H6A 0.9500 C16—H16B 0.9900
C7—H7A 0.9800 C17—H17A 0.9900
C7—H7B 0.9800 C17—H17B 0.9900
C7—H7C 0.9800
C3—O1—C7 113.37 (11) C8—C9—H9C 109.5
C4—O2—C8 112.80 (10) H9A—C9—H9C 109.5
C5—O3—C10 117.91 (11) H9B—C9—H9C 109.5
C11—N1—C12 126.28 (11) O3—C10—H10A 109.5
C11—N1—H1A 119.2 (12) O3—C10—H10B 109.5
C12—N1—H1A 114.3 (12) H10A—C10—H10B 109.5
C6—C1—C2 119.68 (11) O3—C10—H10C 109.5
C6—C1—C11 119.99 (11) H10A—C10—H10C 109.5
C2—C1—C11 120.24 (12) H10B—C10—H10C 109.5
C1—C2—C3 120.11 (12) O4—C11—N1 123.29 (11)
C1—C2—Cl1 122.32 (9) O4—C11—C1 122.22 (12)
C3—C2—Cl1 117.53 (10) N1—C11—C1 114.48 (11)
O1—C3—C4 119.88 (11) C13—C12—N1 123.91 (12)
O1—C3—C2 120.10 (11) C13—C12—C17 122.49 (11)
C4—C3—C2 119.99 (11) N1—C12—C17 113.59 (11)
O2—C4—C3 119.54 (11) C12—C13—C14 121.39 (12)
O2—C4—C5 120.30 (12) C12—C13—H13A 119.3
C3—C4—C5 120.11 (11) C14—C13—H13A 119.3
O3—C5—C6 124.74 (12) O5—C14—C13 120.63 (12)
O3—C5—C4 115.67 (11) O5—C14—C15 121.24 (11)
C6—C5—C4 119.59 (12) C13—C14—C15 118.12 (11)
C1—C6—C5 120.47 (12) C14—C15—C16 112.36 (11)
C1—C6—H6A 119.8 C14—C15—H15A 109.1
C5—C6—H6A 119.8 C16—C15—H15A 109.1
O1—C7—H7A 109.5 C14—C15—H15B 109.1
O1—C7—H7B 109.5 C16—C15—H15B 109.1
H7A—C7—H7B 109.5 H15A—C15—H15B 107.9
O1—C7—H7C 109.5 C15—C16—C17 110.98 (12)
H7A—C7—H7C 109.5 C15—C16—H16A 109.4
H7B—C7—H7C 109.5 C17—C16—H16A 109.4
O2—C8—C9 108.30 (12) C15—C16—H16B 109.4
O2—C8—H8A 110.0 C17—C16—H16B 109.4
C9—C8—H8A 110.0 H16A—C16—H16B 108.0
O2—C8—H8B 110.0 C12—C17—C16 111.97 (11)
C9—C8—H8B 110.0 C12—C17—H17A 109.2
H8A—C8—H8B 108.4 C16—C17—H17A 109.2
C8—C9—H9A 109.5 C12—C17—H17B 109.2
C8—C9—H9B 109.5 C16—C17—H17B 109.2
H9A—C9—H9B 109.5 H17A—C17—H17B 107.9
C6—C1—C2—C3 1.71 (19) C11—C1—C6—C5 176.51 (12)
C11—C1—C2—C3 −174.66 (12) O3—C5—C6—C1 178.77 (13)
C6—C1—C2—Cl1 −175.87 (10) C4—C5—C6—C1 −1.9 (2)
C11—C1—C2—Cl1 7.76 (18) C4—O2—C8—C9 −170.82 (13)
C7—O1—C3—C4 −85.34 (15) C12—N1—C11—O4 2.7 (2)
C7—O1—C3—C2 96.38 (15) C12—N1—C11—C1 −178.18 (12)
C1—C2—C3—O1 176.51 (12) C6—C1—C11—O4 −129.20 (15)
Cl1—C2—C3—O1 −5.80 (17) C2—C1—C11—O4 47.2 (2)
C1—C2—C3—C4 −1.77 (19) C6—C1—C11—N1 51.64 (17)
Cl1—C2—C3—C4 175.92 (10) C2—C1—C11—N1 −132.00 (13)
C8—O2—C4—C3 −94.55 (14) C11—N1—C12—C13 12.4 (2)
C8—O2—C4—C5 88.21 (15) C11—N1—C12—C17 −166.70 (13)
O1—C3—C4—O2 4.46 (18) N1—C12—C13—C14 177.36 (12)
C2—C3—C4—O2 −177.25 (11) C17—C12—C13—C14 −3.6 (2)
O1—C3—C4—C5 −178.29 (12) C12—C13—C14—O5 −171.94 (13)
C2—C3—C4—C5 −0.01 (19) C12—C13—C14—C15 7.3 (2)
C10—O3—C5—C6 −18.0 (2) O5—C14—C15—C16 146.86 (13)
C10—O3—C5—C4 162.68 (13) C13—C14—C15—C16 −32.36 (18)
O2—C4—C5—O3 −1.55 (19) C14—C15—C16—C17 52.88 (17)
C3—C4—C5—O3 −178.78 (12) C13—C12—C17—C16 24.94 (19)
O2—C4—C5—C6 179.06 (12) N1—C12—C17—C16 −155.90 (12)
C3—C4—C5—C6 1.8 (2) C15—C16—C17—C12 −48.67 (17)
C2—C1—C6—C5 0.1 (2)

2-Chloro-4-ethoxy-3,5-dimethoxy-N-(3-oxocyclohex-1-en-1-yl)benzamide (3a) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O5i 0.844 (18) 2.098 (18) 2.9410 (15) 177.1 (16)
C7—H7A···Cl1ii 0.98 2.86 3.7022 (16) 145
C7—H7A···O4ii 0.98 2.48 3.293 (2) 140
C9—H9A···O4iii 0.98 2.53 3.470 (2) 161

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, −y+1/2, z+1/2; (iii) −x, −y+1, −z+1.

2-Chloro-N-(5,5-dimethyl-3-oxocyclohex-1-en-1-yl)-4-ethoxy-3,5-dimethoxybenzamide (3b) . Crystal data

C19H24ClNO5 F(000) = 1616
Mr = 381.84 Dx = 1.292 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 14.6986 (13) Å Cell parameters from 23388 reflections
b = 10.6309 (10) Å θ = 2.4–31.0°
c = 25.131 (2) Å µ = 0.22 mm1
β = 90.1851 (14)° T = 150 K
V = 3926.9 (6) Å3 Prism, colourless
Z = 8 0.48 × 0.44 × 0.21 mm

2-Chloro-N-(5,5-dimethyl-3-oxocyclohex-1-en-1-yl)-4-ethoxy-3,5-dimethoxybenzamide (3b) . Data collection

Bruker SMART APEXII CCD diffractometer 12630 independent reflections
Radiation source: sealed tube 10320 reflections with I > 2σ(I)
Detector resolution: 8.333 pixels mm-1 Rint = 0.026
φ and ω scans θmax = 31.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) h = −21→21
Tmin = 0.841, Tmax = 0.954 k = −15→15
67292 measured reflections l = −36→36

2-Chloro-N-(5,5-dimethyl-3-oxocyclohex-1-en-1-yl)-4-ethoxy-3,5-dimethoxybenzamide (3b) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: mixed
wR(F2) = 0.115 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0599P)2 + 1.0458P] where P = (Fo2 + 2Fc2)/3
12630 reflections (Δ/σ)max = 0.006
584 parameters Δρmax = 0.64 e Å3
399 restraints Δρmin = −0.35 e Å3

2-Chloro-N-(5,5-dimethyl-3-oxocyclohex-1-en-1-yl)-4-ethoxy-3,5-dimethoxybenzamide (3b) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Compound #6

2-Chloro-N-(5,5-dimethyl-3-oxocyclohex-1-en-1-yl)-4-ethoxy-3,5-dimethoxybenzamide (3b) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1A 0.74167 (2) 1.06636 (3) 0.50622 (2) 0.03341 (7)
O1A 0.85300 (6) 0.92470 (9) 0.43031 (3) 0.03358 (19)
O2A 0.96808 (6) 0.73233 (10) 0.45218 (4) 0.0371 (2)
O3A 0.98422 (6) 0.64044 (10) 0.55396 (4) 0.0411 (2)
O4A 0.79762 (5) 0.97694 (9) 0.66166 (3) 0.03064 (18)
O5A 0.54514 (6) 1.01715 (10) 0.78213 (3) 0.0376 (2)
N1A 0.67015 (6) 0.94345 (9) 0.61067 (4) 0.02155 (17)
H1AA 0.6506 (11) 0.9153 (15) 0.5810 (7) 0.034 (4)*
C1A 0.81762 (7) 0.89610 (10) 0.57423 (4) 0.02277 (19)
C2A 0.81118 (7) 0.94022 (11) 0.52235 (4) 0.0245 (2)
C3A 0.86370 (7) 0.88575 (12) 0.48185 (4) 0.0272 (2)
C4A 0.92222 (7) 0.78611 (12) 0.49363 (5) 0.0293 (2)
C5A 0.92801 (7) 0.74122 (12) 0.54613 (5) 0.0293 (2)
C6A 0.87719 (7) 0.79758 (11) 0.58605 (4) 0.0263 (2)
H6AA 0.882994 0.768878 0.621695 0.032*
C7A 0.91558 (11) 1.01997 (17) 0.41412 (5) 0.0474 (4)
H7AA 0.903236 1.043380 0.377078 0.071*
H7AB 0.977879 0.987895 0.417198 0.071*
H7AC 0.908551 1.093994 0.436981 0.071*
C8A 1.06559 (9) 0.7271 (2) 0.45645 (6) 0.0624 (5)
H8AA 1.083977 0.647258 0.473668 0.075*
H8AB 1.087544 0.797509 0.478864 0.075*
C9A 1.10703 (11) 0.7356 (2) 0.40297 (7) 0.0628 (5)
H9AA 1.172751 0.721418 0.405797 0.094*
H9AB 1.095707 0.819284 0.388025 0.094*
H9AC 1.080069 0.671610 0.379685 0.094*
C10A 0.99347 (11) 0.59578 (18) 0.60744 (7) 0.0550 (4)
H10A 1.033598 0.522173 0.607983 0.082*
H10B 0.933524 0.572283 0.621209 0.082*
H10C 1.019610 0.662303 0.629735 0.082*
C11A 0.76218 (7) 0.94515 (10) 0.61997 (4) 0.02202 (19)
C12A 0.60074 (6) 0.97178 (10) 0.64589 (4) 0.02102 (18)
C13A 0.61233 (7) 0.98962 (10) 0.69867 (4) 0.02312 (19)
H13A 0.671961 0.987378 0.713341 0.028*
C14A 0.53549 (7) 1.01213 (11) 0.73334 (4) 0.0258 (2)
C15A 0.44417 (8) 1.03239 (13) 0.70805 (5) 0.0322 (2)
H15A 0.437492 1.122477 0.698850 0.039*
H15C 0.396169 1.011049 0.734077 0.039*
C16A 0.43022 (7) 0.95307 (15) 0.65763 (5) 0.0363 (3)
C17A 0.50923 (7) 0.98156 (14) 0.61962 (4) 0.0327 (3)
H17A 0.506711 0.922034 0.589352 0.039*
H17B 0.501634 1.067588 0.605191 0.039*
C18A 0.34099 (9) 0.9921 (3) 0.63114 (6) 0.0782 (8)
H18A 0.290687 0.979665 0.656099 0.117*
H18B 0.330783 0.940598 0.599323 0.117*
H18C 0.344203 1.080952 0.620991 0.117*
C19A 0.42926 (11) 0.81411 (18) 0.67166 (7) 0.0577 (5)
H19A 0.380973 0.797814 0.697561 0.087*
H19B 0.488156 0.790343 0.687029 0.087*
H19C 0.418020 0.764497 0.639432 0.087*
Cl1B 0.33068 (2) 0.36791 (3) 0.37042 (2) 0.03251 (7)
O1B 0.19443 (6) 0.32113 (8) 0.28774 (3) 0.03058 (17)
O2B 0.12498 (6) 0.49472 (9) 0.21650 (3) 0.03228 (18)
O3B 0.17637 (6) 0.73524 (8) 0.22015 (3) 0.03071 (18)
O4B 0.35516 (6) 0.74079 (10) 0.40209 (4) 0.0415 (2)
C1B 0.31411 (6) 0.60638 (10) 0.33084 (4) 0.02011 (18)
C2B 0.28768 (7) 0.48116 (10) 0.32756 (4) 0.02208 (19)
C3B 0.22268 (7) 0.44399 (10) 0.28987 (4) 0.02362 (19)
C4B 0.18562 (7) 0.53194 (11) 0.25503 (4) 0.0240 (2)
C5B 0.21397 (7) 0.65796 (10) 0.25735 (4) 0.02301 (19)
C6B 0.27647 (7) 0.69485 (10) 0.29595 (4) 0.02189 (18)
H6BA 0.293725 0.780733 0.298645 0.026*
C7B 0.23634 (11) 0.25212 (13) 0.24515 (7) 0.0436 (3)
H7BA 0.215324 0.164658 0.245936 0.065*
H7BB 0.302605 0.254294 0.249483 0.065*
H7BC 0.219649 0.290379 0.211010 0.065*
C8B 0.03306 (9) 0.47519 (14) 0.23569 (6) 0.0416 (3)
H8BA 0.034665 0.416637 0.266315 0.050*
H8BB −0.003821 0.435696 0.207205 0.050*
C9B −0.01135 (10) 0.59598 (18) 0.25249 (10) 0.0675 (6)
H9BA −0.072982 0.578521 0.265278 0.101*
H9BB −0.014447 0.653490 0.222061 0.101*
H9BC 0.024414 0.634758 0.281091 0.101*
C10B 0.20442 (9) 0.86380 (11) 0.22096 (5) 0.0310 (2)
H10D 0.173044 0.909934 0.192567 0.047*
H10E 0.270299 0.868615 0.215424 0.047*
H10F 0.189185 0.901108 0.255464 0.047*
C11B 0.37827 (7) 0.65588 (10) 0.37276 (4) 0.02269 (19)
O5B 0.5926 (5) 0.7923 (8) 0.5286 (3) 0.0383 (12) 0.551 (2)
N1B 0.4614 (6) 0.6071 (10) 0.3766 (4) 0.0274 (15) 0.551 (2)
H1BA 0.471 (3) 0.552 (4) 0.3576 (18) 0.026 (13)* 0.551 (2)
C12B 0.5307 (6) 0.6264 (11) 0.4131 (5) 0.0259 (10) 0.551 (2)
C13B 0.5224 (5) 0.7057 (8) 0.4537 (3) 0.0210 (9) 0.551 (2)
H13B 0.466093 0.746700 0.460177 0.025* 0.551 (2)
C14B 0.6004 (6) 0.7288 (8) 0.4881 (4) 0.0293 (11) 0.551 (2)
C15B 0.69268 (14) 0.6766 (2) 0.47298 (9) 0.0304 (5) 0.551 (2)
H15B 0.729500 0.665206 0.505684 0.036* 0.551 (2)
H15D 0.724367 0.738554 0.450190 0.036* 0.551 (2)
C16B 0.6870 (4) 0.5507 (7) 0.4434 (3) 0.0262 (9) 0.551 (2)
C17B 0.62225 (13) 0.5682 (2) 0.39563 (8) 0.0261 (4) 0.551 (2)
H17C 0.610886 0.485622 0.378636 0.031* 0.551 (2)
H17D 0.651346 0.623624 0.368993 0.031* 0.551 (2)
C18B 0.65099 (17) 0.4478 (2) 0.48043 (10) 0.0384 (5) 0.551 (2)
H18D 0.692949 0.437144 0.510480 0.058* 0.551 (2)
H18E 0.646148 0.368375 0.460797 0.058* 0.551 (2)
H18F 0.590875 0.471931 0.493723 0.058* 0.551 (2)
C19B 0.78134 (15) 0.5136 (3) 0.42324 (10) 0.0436 (7) 0.551 (2)
H19D 0.823551 0.507798 0.453410 0.065* 0.551 (2)
H19E 0.803155 0.577384 0.398177 0.065* 0.551 (2)
H19F 0.777791 0.431964 0.405263 0.065* 0.551 (2)
O5C 0.6059 (7) 0.7977 (10) 0.5201 (4) 0.0413 (15) 0.449 (2)
N1C 0.4643 (5) 0.5949 (11) 0.3708 (4) 0.0156 (9) 0.449 (2)
H1CA 0.476 (3) 0.549 (4) 0.3423 (18) 0.019 (12)* 0.449 (2)
C12C 0.5324 (8) 0.6138 (14) 0.4091 (6) 0.0262 (12) 0.449 (2)
C13C 0.5340 (6) 0.6981 (11) 0.4488 (4) 0.0268 (13) 0.449 (2)
H13C 0.485165 0.756476 0.450818 0.032* 0.449 (2)
C14C 0.6048 (7) 0.7067 (10) 0.4889 (5) 0.0310 (13) 0.449 (2)
C15C 0.67207 (18) 0.6008 (3) 0.49113 (11) 0.0341 (6) 0.449 (2)
H15E 0.649682 0.536354 0.516327 0.041* 0.449 (2)
H15F 0.730553 0.633284 0.505144 0.041* 0.449 (2)
C16C 0.6890 (6) 0.5385 (9) 0.4371 (4) 0.0293 (12) 0.449 (2)
C17C 0.59763 (16) 0.5023 (2) 0.41227 (10) 0.0244 (5) 0.449 (2)
H17E 0.607993 0.468961 0.376009 0.029* 0.449 (2)
H17F 0.569501 0.434700 0.433730 0.029* 0.449 (2)
C18C 0.7464 (2) 0.4183 (3) 0.44515 (14) 0.0434 (8) 0.449 (2)
H18G 0.806403 0.441080 0.459204 0.065* 0.449 (2)
H18H 0.753484 0.375020 0.410976 0.065* 0.449 (2)
H18I 0.715614 0.362431 0.470371 0.065* 0.449 (2)
C19C 0.74033 (19) 0.6285 (3) 0.39994 (12) 0.0373 (7) 0.449 (2)
H19G 0.706920 0.708007 0.397146 0.056* 0.449 (2)
H19H 0.745573 0.590307 0.364584 0.056* 0.449 (2)
H19I 0.801241 0.644531 0.414378 0.056* 0.449 (2)

2-Chloro-N-(5,5-dimethyl-3-oxocyclohex-1-en-1-yl)-4-ethoxy-3,5-dimethoxybenzamide (3b) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1A 0.03295 (13) 0.04046 (16) 0.02684 (13) 0.00661 (11) 0.00220 (10) 0.00619 (11)
O1A 0.0289 (4) 0.0525 (5) 0.0193 (4) −0.0066 (4) 0.0016 (3) −0.0010 (4)
O2A 0.0223 (4) 0.0560 (6) 0.0330 (4) −0.0005 (4) 0.0088 (3) −0.0150 (4)
O3A 0.0336 (4) 0.0458 (5) 0.0439 (5) 0.0154 (4) 0.0105 (4) 0.0032 (4)
O4A 0.0233 (3) 0.0448 (5) 0.0238 (4) −0.0036 (3) 0.0004 (3) −0.0060 (3)
O5A 0.0335 (4) 0.0616 (6) 0.0178 (4) −0.0051 (4) 0.0043 (3) 0.0003 (4)
N1A 0.0193 (4) 0.0277 (4) 0.0176 (4) −0.0009 (3) 0.0024 (3) −0.0040 (3)
C1A 0.0181 (4) 0.0292 (5) 0.0211 (4) −0.0022 (4) 0.0033 (3) −0.0018 (4)
C2A 0.0195 (4) 0.0320 (5) 0.0220 (5) −0.0011 (4) 0.0017 (3) 0.0000 (4)
C3A 0.0208 (4) 0.0409 (6) 0.0200 (5) −0.0046 (4) 0.0029 (4) −0.0032 (4)
C4A 0.0189 (4) 0.0416 (6) 0.0274 (5) −0.0031 (4) 0.0070 (4) −0.0080 (5)
C5A 0.0200 (4) 0.0353 (6) 0.0326 (6) 0.0019 (4) 0.0053 (4) −0.0016 (5)
C6A 0.0196 (4) 0.0340 (6) 0.0252 (5) 0.0002 (4) 0.0042 (4) 0.0016 (4)
C7A 0.0488 (8) 0.0673 (10) 0.0262 (6) −0.0183 (7) 0.0043 (5) 0.0060 (6)
C8A 0.0219 (6) 0.1254 (17) 0.0400 (8) 0.0095 (8) 0.0090 (5) −0.0176 (9)
C9A 0.0377 (7) 0.0939 (14) 0.0570 (10) −0.0074 (8) 0.0225 (7) −0.0248 (10)
C10A 0.0494 (8) 0.0604 (10) 0.0552 (9) 0.0266 (8) 0.0120 (7) 0.0177 (8)
C11A 0.0197 (4) 0.0250 (5) 0.0213 (4) −0.0013 (3) 0.0031 (3) −0.0002 (4)
C12A 0.0201 (4) 0.0228 (5) 0.0202 (4) 0.0008 (3) 0.0031 (3) −0.0002 (4)
C13A 0.0214 (4) 0.0287 (5) 0.0193 (4) −0.0013 (4) 0.0018 (3) 0.0004 (4)
C14A 0.0266 (5) 0.0311 (5) 0.0199 (5) −0.0002 (4) 0.0039 (4) 0.0008 (4)
C15A 0.0273 (5) 0.0462 (7) 0.0232 (5) 0.0103 (5) 0.0048 (4) −0.0002 (5)
C16A 0.0187 (4) 0.0670 (9) 0.0232 (5) 0.0029 (5) 0.0020 (4) −0.0056 (5)
C17A 0.0219 (5) 0.0560 (8) 0.0201 (5) 0.0068 (5) 0.0006 (4) −0.0016 (5)
C18A 0.0225 (6) 0.180 (2) 0.0325 (7) 0.0184 (10) −0.0011 (5) −0.0117 (11)
C19A 0.0454 (8) 0.0640 (11) 0.0639 (10) −0.0278 (7) 0.0217 (7) −0.0218 (8)
Cl1B 0.03134 (13) 0.03067 (14) 0.03546 (15) −0.00338 (10) −0.00739 (11) 0.01257 (11)
O1B 0.0322 (4) 0.0260 (4) 0.0335 (4) −0.0104 (3) −0.0015 (3) 0.0034 (3)
O2B 0.0319 (4) 0.0379 (5) 0.0270 (4) −0.0106 (3) −0.0110 (3) 0.0017 (3)
O3B 0.0340 (4) 0.0294 (4) 0.0287 (4) −0.0042 (3) −0.0122 (3) 0.0075 (3)
O4B 0.0345 (4) 0.0486 (6) 0.0412 (5) 0.0168 (4) −0.0129 (4) −0.0232 (4)
C1B 0.0169 (4) 0.0262 (5) 0.0172 (4) 0.0002 (3) 0.0008 (3) −0.0015 (4)
C2B 0.0195 (4) 0.0258 (5) 0.0209 (4) −0.0007 (3) 0.0004 (3) 0.0043 (4)
C3B 0.0222 (4) 0.0248 (5) 0.0239 (5) −0.0057 (4) 0.0008 (4) 0.0015 (4)
C4B 0.0214 (4) 0.0296 (5) 0.0209 (5) −0.0053 (4) −0.0030 (3) 0.0004 (4)
C5B 0.0223 (4) 0.0262 (5) 0.0205 (4) −0.0012 (4) −0.0023 (3) 0.0029 (4)
C6B 0.0211 (4) 0.0229 (5) 0.0217 (4) −0.0012 (3) −0.0013 (3) −0.0001 (4)
C7B 0.0510 (8) 0.0262 (6) 0.0538 (9) −0.0048 (5) 0.0071 (6) −0.0044 (6)
C8B 0.0284 (6) 0.0426 (7) 0.0536 (8) −0.0126 (5) −0.0136 (5) 0.0074 (6)
C9B 0.0263 (6) 0.0535 (10) 0.1226 (18) −0.0024 (6) −0.0072 (8) 0.0030 (11)
C10B 0.0358 (6) 0.0266 (5) 0.0306 (6) 0.0012 (4) −0.0068 (4) 0.0051 (4)
C11B 0.0206 (4) 0.0276 (5) 0.0199 (4) 0.0015 (4) −0.0020 (3) −0.0019 (4)
O5B 0.044 (3) 0.0460 (17) 0.025 (2) 0.0018 (18) −0.0094 (18) −0.0140 (14)
N1B 0.0313 (19) 0.034 (2) 0.0166 (19) 0.0050 (12) 0.0028 (10) −0.0165 (13)
C12B 0.0168 (14) 0.039 (3) 0.022 (2) 0.0082 (14) −0.0033 (13) −0.0089 (15)
C13B 0.0186 (16) 0.0277 (16) 0.0168 (14) 0.0033 (13) −0.0052 (14) −0.0116 (11)
C14B 0.0250 (14) 0.036 (2) 0.0273 (17) 0.0022 (14) −0.0035 (11) −0.0064 (16)
C15B 0.0246 (9) 0.0413 (12) 0.0254 (9) −0.0051 (8) −0.0078 (7) −0.0024 (9)
C16B 0.0154 (13) 0.0386 (19) 0.0245 (18) 0.0026 (12) −0.0049 (11) 0.0001 (14)
C17B 0.0198 (8) 0.0370 (11) 0.0216 (9) 0.0018 (7) −0.0014 (7) −0.0058 (8)
C18B 0.0415 (12) 0.0370 (12) 0.0367 (12) 0.0060 (9) 0.0004 (9) 0.0069 (9)
C19B 0.0224 (9) 0.0731 (19) 0.0351 (12) 0.0124 (10) −0.0029 (8) −0.0055 (12)
O5C 0.039 (2) 0.059 (2) 0.026 (3) −0.0141 (15) 0.0007 (16) −0.0192 (19)
N1C 0.0102 (13) 0.025 (2) 0.012 (2) 0.0063 (12) −0.0053 (14) −0.0123 (18)
C12C 0.028 (2) 0.035 (2) 0.0154 (18) 0.0042 (16) −0.0047 (15) −0.0139 (15)
C13C 0.024 (2) 0.029 (2) 0.028 (2) 0.0077 (15) 0.0039 (15) −0.0020 (16)
C14C 0.034 (2) 0.039 (3) 0.0197 (18) −0.0018 (18) −0.0065 (15) −0.009 (2)
C15C 0.0299 (12) 0.0471 (16) 0.0252 (12) 0.0027 (11) −0.0088 (9) −0.0059 (11)
C16C 0.029 (2) 0.035 (2) 0.024 (2) 0.0004 (15) −0.0035 (15) −0.0040 (16)
C17C 0.0234 (10) 0.0253 (11) 0.0246 (11) 0.0024 (9) −0.0036 (8) −0.0028 (9)
C18C 0.0343 (14) 0.0524 (18) 0.0434 (17) 0.0172 (13) −0.0090 (12) −0.0012 (14)
C19C 0.0297 (12) 0.0467 (16) 0.0356 (14) −0.0080 (11) 0.0034 (10) −0.0072 (12)

2-Chloro-N-(5,5-dimethyl-3-oxocyclohex-1-en-1-yl)-4-ethoxy-3,5-dimethoxybenzamide (3b) . Geometric parameters (Å, º)

Cl1A—C2A 1.7331 (12) C3B—C4B 1.3908 (15)
O1A—C3A 1.3684 (14) C4B—C5B 1.4042 (15)
O1A—C7A 1.4281 (17) C5B—C6B 1.3903 (14)
O2A—C4A 1.3678 (13) C6B—H6BA 0.9500
O2A—C8A 1.4381 (16) C7B—H7BA 0.9800
O3A—C5A 1.3667 (15) C7B—H7BB 0.9800
O3A—C10A 1.4313 (19) C7B—H7BC 0.9800
O4A—C11A 1.2163 (13) C8B—C9B 1.502 (2)
O5A—C14A 1.2349 (13) C8B—H8BA 0.9900
N1A—C11A 1.3722 (13) C8B—H8BB 0.9900
N1A—C12A 1.3859 (12) C9B—H9BA 0.9800
N1A—H1AA 0.853 (16) C9B—H9BB 0.9800
C1A—C2A 1.3885 (15) C9B—H9BC 0.9800
C1A—C6A 1.3964 (15) C10B—H10D 0.9800
C1A—C11A 1.5047 (14) C10B—H10E 0.9800
C2A—C3A 1.4044 (15) C10B—H10F 0.9800
C3A—C4A 1.3956 (17) C11B—N1B 1.330 (8)
C4A—C5A 1.4053 (17) C11B—N1C 1.421 (8)
C5A—C6A 1.3886 (15) O5B—C14B 1.229 (8)
C6A—H6AA 0.9500 N1B—C12B 1.384 (8)
C7A—H7AA 0.9800 N1B—H1BA 0.77 (5)
C7A—H7AB 0.9800 C12B—C13B 1.330 (7)
C7A—H7AC 0.9800 C12B—C17B 1.545 (8)
C8A—C9A 1.480 (2) C13B—C14B 1.455 (7)
C8A—H8AA 0.9900 C13B—H13B 0.9500
C8A—H8AB 0.9900 C14B—C15B 1.515 (8)
C9A—H9AA 0.9800 C15B—C16B 1.535 (7)
C9A—H9AB 0.9800 C15B—H15B 0.9900
C9A—H9AC 0.9800 C15B—H15D 0.9900
C10A—H10A 0.9800 C16B—C19B 1.530 (7)
C10A—H10B 0.9800 C16B—C18B 1.532 (8)
C10A—H10C 0.9800 C16B—C17B 1.540 (6)
C12A—C13A 1.3501 (14) C17B—H17C 0.9900
C12A—C17A 1.5001 (15) C17B—H17D 0.9900
C13A—C14A 1.4486 (14) C18B—H18D 0.9800
C13A—H13A 0.9500 C18B—H18E 0.9800
C14A—C15A 1.4989 (16) C18B—H18F 0.9800
C15A—C16A 1.5351 (18) C19B—H19D 0.9800
C15A—H15A 0.9900 C19B—H19E 0.9800
C15A—H15C 0.9900 C19B—H19F 0.9800
C16A—C19A 1.519 (2) O5C—C14C 1.244 (9)
C16A—C18A 1.5263 (19) N1C—C12C 1.401 (9)
C16A—C17A 1.5364 (16) N1C—H1CA 0.88 (5)
C17A—H17A 0.9900 C12C—C13C 1.342 (9)
C17A—H17B 0.9900 C12C—C17C 1.527 (10)
C18A—H18A 0.9800 C13C—C14C 1.450 (9)
C18A—H18B 0.9800 C13C—H13C 0.9500
C18A—H18C 0.9800 C14C—C15C 1.499 (8)
C19A—H19A 0.9800 C15C—C16C 1.532 (9)
C19A—H19B 0.9800 C15C—H15E 0.9900
C19A—H19C 0.9800 C15C—H15F 0.9900
Cl1B—C2B 1.7334 (11) C16C—C17C 1.528 (9)
O1B—C3B 1.3715 (13) C16C—C19C 1.537 (10)
O1B—C7B 1.4379 (17) C16C—C18C 1.545 (9)
O2B—C4B 1.3724 (12) C17C—H17E 0.9900
O2B—C8B 1.4510 (16) C17C—H17F 0.9900
O3B—C5B 1.3605 (13) C18C—H18G 0.9800
O3B—C10B 1.4277 (14) C18C—H18H 0.9800
O4B—C11B 1.2147 (13) C18C—H18I 0.9800
C1B—C2B 1.3891 (15) C19C—H19G 0.9800
C1B—C6B 1.3986 (14) C19C—H19H 0.9800
C1B—C11B 1.5065 (14) C19C—H19I 0.9800
C2B—C3B 1.4000 (14)
C3A—O1A—C7A 114.34 (10) O1B—C7B—H7BB 109.5
C4A—O2A—C8A 116.92 (10) H7BA—C7B—H7BB 109.5
C5A—O3A—C10A 116.80 (10) O1B—C7B—H7BC 109.5
C11A—N1A—C12A 127.99 (9) H7BA—C7B—H7BC 109.5
C11A—N1A—H1AA 118.9 (11) H7BB—C7B—H7BC 109.5
C12A—N1A—H1AA 112.8 (11) O2B—C8B—C9B 112.15 (12)
C2A—C1A—C6A 119.60 (10) O2B—C8B—H8BA 109.2
C2A—C1A—C11A 124.39 (10) C9B—C8B—H8BA 109.2
C6A—C1A—C11A 115.99 (9) O2B—C8B—H8BB 109.2
C1A—C2A—C3A 120.34 (10) C9B—C8B—H8BB 109.2
C1A—C2A—Cl1A 121.28 (8) H8BA—C8B—H8BB 107.9
C3A—C2A—Cl1A 118.34 (9) C8B—C9B—H9BA 109.5
O1A—C3A—C4A 119.96 (10) C8B—C9B—H9BB 109.5
O1A—C3A—C2A 119.96 (11) H9BA—C9B—H9BB 109.5
C4A—C3A—C2A 119.94 (10) C8B—C9B—H9BC 109.5
O2A—C4A—C3A 117.42 (11) H9BA—C9B—H9BC 109.5
O2A—C4A—C5A 122.99 (11) H9BB—C9B—H9BC 109.5
C3A—C4A—C5A 119.50 (10) O3B—C10B—H10D 109.5
O3A—C5A—C6A 124.09 (11) O3B—C10B—H10E 109.5
O3A—C5A—C4A 115.87 (10) H10D—C10B—H10E 109.5
C6A—C5A—C4A 120.03 (11) O3B—C10B—H10F 109.5
C5A—C6A—C1A 120.56 (11) H10D—C10B—H10F 109.5
C5A—C6A—H6AA 119.7 H10E—C10B—H10F 109.5
C1A—C6A—H6AA 119.7 O4B—C11B—N1B 120.3 (4)
O1A—C7A—H7AA 109.5 O4B—C11B—N1C 127.6 (4)
O1A—C7A—H7AB 109.5 O4B—C11B—C1B 120.55 (9)
H7AA—C7A—H7AB 109.5 N1B—C11B—C1B 119.1 (4)
O1A—C7A—H7AC 109.5 N1C—C11B—C1B 111.8 (4)
H7AA—C7A—H7AC 109.5 C11B—N1B—C12B 131.6 (8)
H7AB—C7A—H7AC 109.5 C11B—N1B—H1BA 115 (4)
O2A—C8A—C9A 110.05 (14) C12B—N1B—H1BA 112 (4)
O2A—C8A—H8AA 109.7 C13B—C12B—N1B 122.2 (7)
C9A—C8A—H8AA 109.7 C13B—C12B—C17B 123.6 (6)
O2A—C8A—H8AB 109.7 N1B—C12B—C17B 113.1 (6)
C9A—C8A—H8AB 109.7 C12B—C13B—C14B 119.3 (6)
H8AA—C8A—H8AB 108.2 C12B—C13B—H13B 120.4
C8A—C9A—H9AA 109.5 C14B—C13B—H13B 120.4
C8A—C9A—H9AB 109.5 O5B—C14B—C13B 120.7 (7)
H9AA—C9A—H9AB 109.5 O5B—C14B—C15B 119.7 (7)
C8A—C9A—H9AC 109.5 C13B—C14B—C15B 119.6 (6)
H9AA—C9A—H9AC 109.5 C14B—C15B—C16B 113.2 (4)
H9AB—C9A—H9AC 109.5 C14B—C15B—H15B 108.9
O3A—C10A—H10A 109.5 C16B—C15B—H15B 108.9
O3A—C10A—H10B 109.5 C14B—C15B—H15D 108.9
H10A—C10A—H10B 109.5 C16B—C15B—H15D 108.9
O3A—C10A—H10C 109.5 H15B—C15B—H15D 107.8
H10A—C10A—H10C 109.5 C19B—C16B—C18B 109.4 (4)
H10B—C10A—H10C 109.5 C19B—C16B—C15B 109.7 (4)
O4A—C11A—N1A 124.73 (9) C18B—C16B—C15B 110.3 (4)
O4A—C11A—C1A 121.52 (9) C19B—C16B—C17B 109.4 (4)
N1A—C11A—C1A 113.66 (9) C18B—C16B—C17B 110.3 (4)
C13A—C12A—N1A 124.56 (9) C15B—C16B—C17B 107.8 (4)
C13A—C12A—C17A 122.20 (9) C16B—C17B—C12B 111.3 (4)
N1A—C12A—C17A 113.25 (9) C16B—C17B—H17C 109.4
C12A—C13A—C14A 121.19 (10) C12B—C17B—H17C 109.4
C12A—C13A—H13A 119.4 C16B—C17B—H17D 109.4
C14A—C13A—H13A 119.4 C12B—C17B—H17D 109.4
O5A—C14A—C13A 121.13 (10) H17C—C17B—H17D 108.0
O5A—C14A—C15A 120.98 (10) C16B—C18B—H18D 109.5
C13A—C14A—C15A 117.88 (9) C16B—C18B—H18E 109.5
C14A—C15A—C16A 112.84 (9) H18D—C18B—H18E 109.5
C14A—C15A—H15A 109.0 C16B—C18B—H18F 109.5
C16A—C15A—H15A 109.0 H18D—C18B—H18F 109.5
C14A—C15A—H15C 109.0 H18E—C18B—H18F 109.5
C16A—C15A—H15C 109.0 C16B—C19B—H19D 109.5
H15A—C15A—H15C 107.8 C16B—C19B—H19E 109.5
C19A—C16A—C18A 110.90 (16) H19D—C19B—H19E 109.5
C19A—C16A—C15A 110.13 (12) C16B—C19B—H19F 109.5
C18A—C16A—C15A 108.85 (12) H19D—C19B—H19F 109.5
C19A—C16A—C17A 110.10 (11) H19E—C19B—H19F 109.5
C18A—C16A—C17A 108.99 (12) C12C—N1C—C11B 123.0 (9)
C15A—C16A—C17A 107.80 (11) C12C—N1C—H1CA 119 (3)
C12A—C17A—C16A 113.03 (9) C11B—N1C—H1CA 117 (3)
C12A—C17A—H17A 109.0 C13C—C12C—N1C 128.2 (9)
C16A—C17A—H17A 109.0 C13C—C12C—C17C 118.0 (8)
C12A—C17A—H17B 109.0 N1C—C12C—C17C 111.9 (7)
C16A—C17A—H17B 109.0 C12C—C13C—C14C 124.8 (8)
H17A—C17A—H17B 107.8 C12C—C13C—H13C 117.6
C16A—C18A—H18A 109.5 C14C—C13C—H13C 117.6
C16A—C18A—H18B 109.5 O5C—C14C—C13C 119.6 (9)
H18A—C18A—H18B 109.5 O5C—C14C—C15C 123.6 (8)
C16A—C18A—H18C 109.5 C13C—C14C—C15C 116.8 (7)
H18A—C18A—H18C 109.5 C14C—C15C—C16C 113.6 (5)
H18B—C18A—H18C 109.5 C14C—C15C—H15E 108.8
C16A—C19A—H19A 109.5 C16C—C15C—H15E 108.8
C16A—C19A—H19B 109.5 C14C—C15C—H15F 108.8
H19A—C19A—H19B 109.5 C16C—C15C—H15F 108.8
C16A—C19A—H19C 109.5 H15E—C15C—H15F 107.7
H19A—C19A—H19C 109.5 C17C—C16C—C15C 109.0 (6)
H19B—C19A—H19C 109.5 C17C—C16C—C19C 110.0 (6)
C3B—O1B—C7B 112.62 (9) C15C—C16C—C19C 110.6 (6)
C4B—O2B—C8B 114.21 (10) C17C—C16C—C18C 108.9 (6)
C5B—O3B—C10B 116.84 (9) C15C—C16C—C18C 109.4 (6)
C2B—C1B—C6B 119.81 (9) C19C—C16C—C18C 109.0 (6)
C2B—C1B—C11B 123.40 (9) C12C—C17C—C16C 112.2 (6)
C6B—C1B—C11B 116.68 (9) C12C—C17C—H17E 109.2
C1B—C2B—C3B 120.05 (9) C16C—C17C—H17E 109.2
C1B—C2B—Cl1B 121.83 (8) C12C—C17C—H17F 109.2
C3B—C2B—Cl1B 118.10 (8) C16C—C17C—H17F 109.2
O1B—C3B—C4B 119.85 (9) H17E—C17C—H17F 107.9
O1B—C3B—C2B 120.07 (10) C16C—C18C—H18G 109.5
C4B—C3B—C2B 120.08 (10) C16C—C18C—H18H 109.5
O2B—C4B—C3B 120.17 (10) H18G—C18C—H18H 109.5
O2B—C4B—C5B 119.75 (10) C16C—C18C—H18I 109.5
C3B—C4B—C5B 119.98 (9) H18G—C18C—H18I 109.5
O3B—C5B—C6B 125.11 (10) H18H—C18C—H18I 109.5
O3B—C5B—C4B 115.33 (9) C16C—C19C—H19G 109.5
C6B—C5B—C4B 119.56 (10) C16C—C19C—H19H 109.5
C5B—C6B—C1B 120.46 (10) H19G—C19C—H19H 109.5
C5B—C6B—H6BA 119.8 C16C—C19C—H19I 109.5
C1B—C6B—H6BA 119.8 H19G—C19C—H19I 109.5
O1B—C7B—H7BA 109.5 H19H—C19C—H19I 109.5
C6A—C1A—C2A—C3A 0.43 (16) C8B—O2B—C4B—C3B 79.16 (14)
C11A—C1A—C2A—C3A −177.91 (10) C8B—O2B—C4B—C5B −104.32 (12)
C6A—C1A—C2A—Cl1A −177.38 (8) O1B—C3B—C4B—O2B −3.90 (16)
C11A—C1A—C2A—Cl1A 4.27 (15) C2B—C3B—C4B—O2B 177.06 (9)
C7A—O1A—C3A—C4A −89.70 (15) O1B—C3B—C4B—C5B 179.58 (9)
C7A—O1A—C3A—C2A 94.67 (14) C2B—C3B—C4B—C5B 0.54 (16)
C1A—C2A—C3A—O1A 176.11 (10) C10B—O3B—C5B—C6B 0.54 (16)
Cl1A—C2A—C3A—O1A −6.00 (14) C10B—O3B—C5B—C4B −179.34 (10)
C1A—C2A—C3A—C4A 0.48 (16) O2B—C4B—C5B—O3B 0.86 (15)
Cl1A—C2A—C3A—C4A 178.36 (9) C3B—C4B—C5B—O3B 177.39 (10)
C8A—O2A—C4A—C3A 124.66 (15) O2B—C4B—C5B—C6B −179.03 (10)
C8A—O2A—C4A—C5A −58.83 (18) C3B—C4B—C5B—C6B −2.50 (16)
O1A—C3A—C4A—O2A 0.97 (16) O3B—C5B—C6B—C1B −177.06 (10)
C2A—C3A—C4A—O2A 176.61 (10) C4B—C5B—C6B—C1B 2.82 (15)
O1A—C3A—C4A—C5A −175.67 (10) C2B—C1B—C6B—C5B −1.17 (15)
C2A—C3A—C4A—C5A −0.03 (17) C11B—C1B—C6B—C5B −177.57 (9)
C10A—O3A—C5A—C6A −3.11 (19) C4B—O2B—C8B—C9B 67.92 (16)
C10A—O3A—C5A—C4A 178.00 (13) C2B—C1B—C11B—O4B −122.81 (13)
O2A—C4A—C5A—O3A 1.15 (17) C6B—C1B—C11B—O4B 53.44 (14)
C3A—C4A—C5A—O3A 177.60 (10) C2B—C1B—C11B—N1B 58.5 (6)
O2A—C4A—C5A—C6A −177.78 (10) C6B—C1B—C11B—N1B −125.2 (6)
C3A—C4A—C5A—C6A −1.34 (17) C2B—C1B—C11B—N1C 59.4 (5)
O3A—C5A—C6A—C1A −176.57 (11) C6B—C1B—C11B—N1C −124.3 (5)
C4A—C5A—C6A—C1A 2.27 (17) O4B—C11B—N1B—C12B 7.2 (16)
C2A—C1A—C6A—C5A −1.81 (16) C1B—C11B—N1B—C12B −174.2 (11)
C11A—C1A—C6A—C5A 176.67 (10) C11B—N1B—C12B—C13B 0 (2)
C4A—O2A—C8A—C9A −148.77 (16) C11B—N1B—C12B—C17B −169.0 (10)
C12A—N1A—C11A—O4A −2.59 (18) N1B—C12B—C13B—C14B −175.2 (12)
C12A—N1A—C11A—C1A 174.03 (10) C17B—C12B—C13B—C14B −7.6 (18)
C2A—C1A—C11A—O4A −129.47 (12) C12B—C13B—C14B—O5B −173.3 (12)
C6A—C1A—C11A—O4A 52.13 (15) C12B—C13B—C14B—C15B 8.2 (15)
C2A—C1A—C11A—N1A 53.79 (14) O5B—C14B—C15B—C16B 148.7 (9)
C6A—C1A—C11A—N1A −124.61 (10) C13B—C14B—C15B—C16B −32.8 (11)
C11A—N1A—C12A—C13A −9.78 (18) C14B—C15B—C16B—C19B 172.5 (5)
C11A—N1A—C12A—C17A 170.04 (11) C14B—C15B—C16B—C18B −66.9 (6)
N1A—C12A—C13A—C14A −176.55 (10) C14B—C15B—C16B—C17B 53.5 (7)
C17A—C12A—C13A—C14A 3.65 (17) C19B—C16B—C17B—C12B −170.7 (7)
C12A—C13A—C14A—O5A 173.40 (12) C18B—C16B—C17B—C12B 68.9 (7)
C12A—C13A—C14A—C15A −8.11 (17) C15B—C16B—C17B—C12B −51.5 (7)
O5A—C14A—C15A—C16A −146.37 (12) C13B—C12B—C17B—C16B 31.0 (15)
C13A—C14A—C15A—C16A 35.13 (16) N1B—C12B—C17B—C16B −160.4 (9)
C14A—C15A—C16A—C19A 65.22 (14) O4B—C11B—N1C—C12C 9.7 (15)
C14A—C15A—C16A—C18A −173.01 (13) C1B—C11B—N1C—C12C −172.7 (11)
C14A—C15A—C16A—C17A −54.92 (14) C11B—N1C—C12C—C13C −8 (3)
C13A—C12A—C17A—C16A −26.27 (17) C11B—N1C—C12C—C17C 155.4 (10)
N1A—C12A—C17A—C16A 153.90 (11) N1C—C12C—C13C—C14C 176.1 (15)
C19A—C16A—C17A—C12A −70.04 (15) C17C—C12C—C13C—C14C 13 (2)
C18A—C16A—C17A—C12A 168.10 (14) C12C—C13C—C14C—O5C 171.1 (16)
C15A—C16A—C17A—C12A 50.11 (15) C12C—C13C—C14C—C15C −11 (2)
C6B—C1B—C2B—C3B −0.81 (14) O5C—C14C—C15C—C16C −151.4 (13)
C11B—C1B—C2B—C3B 175.34 (9) C13C—C14C—C15C—C16C 30.3 (14)
C6B—C1B—C2B—Cl1B −178.96 (8) C14C—C15C—C16C—C17C −51.9 (9)
C11B—C1B—C2B—Cl1B −2.82 (14) C14C—C15C—C16C—C19C 69.1 (9)
C7B—O1B—C3B—C4B 79.27 (13) C14C—C15C—C16C—C18C −170.8 (7)
C7B—O1B—C3B—C2B −101.69 (13) C13C—C12C—C17C—C16C −35.8 (17)
C1B—C2B—C3B—O1B −177.93 (9) N1C—C12C—C17C—C16C 158.7 (11)
Cl1B—C2B—C3B—O1B 0.30 (14) C15C—C16C—C17C—C12C 53.9 (10)
C1B—C2B—C3B—C4B 1.12 (15) C19C—C16C—C17C—C12C −67.5 (9)
Cl1B—C2B—C3B—C4B 179.34 (8) C18C—C16C—C17C—C12C 173.2 (8)

2-Chloro-N-(5,5-dimethyl-3-oxocyclohex-1-en-1-yl)-4-ethoxy-3,5-dimethoxybenzamide (3b) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1AA···O5B 0.853 (16) 2.040 (18) 2.849 (8) 158.1 (15)
N1A—H1AA···O5C 0.853 (16) 2.081 (19) 2.909 (9) 163.5 (15)
C7A—H7AA···O2Bi 0.98 2.44 3.3451 (17) 153
C8A—H8AB···Cl1Aii 0.99 2.92 3.703 (2) 137
C17A—H17A···O5B 0.99 2.42 3.285 (7) 146
C17A—H17A···O5C 0.99 2.63 3.481 (8) 144
C10B—H10F···O4Aiii 0.98 2.46 3.4013 (15) 161
N1B—H1BA···O5Aiv 0.77 (5) 2.31 (5) 2.985 (10) 147 (5)
N1C—H1CA···O5Aiv 0.88 (5) 1.96 (4) 2.795 (12) 159 (4)
C17C—H17E···O5Aiv 0.99 2.54 3.364 (3) 141

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+2, −y+2, −z+1; (iii) −x+1, −y+2, −z+1; (iv) x, −y+3/2, z−1/2.

References

  1. Alford, J. S., Abascal, N. C., Shugrue, C. R., Colvin, S. M., Romney, D. K. & Miller, S. J. (2016). ACS Cent. Sci. 2, 733–739. [DOI] [PMC free article] [PubMed]
  2. Anderson, A. J., Nicholson, J. M., Bakare, O., Butcher, R. J. & Scott, K. R. (2004). J. Comb. Chem. 6, 950–954. [DOI] [PubMed]
  3. Boger, D. L., Ishizaki, T., Wysocki, J. R., Munk, S. A., Kitos, P. A. & Suntornwat, O. (1989). J. Am. Chem. Soc. 111, 6461–6463.
  4. Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Eddington, N. D., Cox, D. S., Khurana, M., Salama, N. N., Stables, J. P., Harrison, S. J., Negussie, A., Taylor, R. S., Tran, U. Q., Moore, J. A., Barrow, J. C. & Scott, K. R. (2003). Eur. J. Med. Chem. 38, 49–64. [DOI] [PubMed]
  6. Greenhill, J. V. (1976). J. Chem. Soc. Perkin Trans. 1, pp. 2207–2210.
  7. Greenhill, J. V. (1977). Chem. Soc. Rev. 6, 277–294.
  8. Jerach, B. & Elassar, A.-Z. A. (2015). Chemical Science Transactions, 4, 113–120.
  9. Kalita, U., Kaping, S., Nongkynrih, R., Boiss, I., Singha, L. I. & Vishwakarma, J. N. (2017). Monatsh. Chem. 148, 2155–2171.
  10. Lue, P. & Greenhill, J. V. (1996). Adv. Heterocycl. Chem. 67, 207–343.
  11. Meng, L.-H., Li, X.-M., Lv, C.-T., Huang, C.-G. & Wang, B. G. (2014). J. Nat. Prod. 77, 1921–1927. [DOI] [PubMed]
  12. Misra, R., Bhattacharyya, S. & Maity, D. K. (2008). Chem. Phys. Lett. 458, 54–57.
  13. Misra, R., Mandal, A., Mukhopadhyay, M., Maity, D. K. & Bhattacharyya, S. P. (2009). J. Phys. Chem. B, 113, 10779–10791. [DOI] [PubMed]
  14. Romney, D. K., Colvin, S. M. & Miller, S. J. (2014). J. Am. Chem. Soc. 136, 14019–14022. [DOI] [PMC free article] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  17. Stoltz, B. M., Dougherty, D. A., Duquette, D. & Duffy, N. (2016). US Patent US 9,518,034 B2.
  18. Zheng, F. L., Ban, S. R., Feng, X. E., Zhao, C. X., Lin, W. & Li, Q. S. (2011). Molecules, 16, 4897–4911. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 3a, 3b, global. DOI: 10.1107/S2056989021001778/hb7962sup1.cif

e-77-00314-sup1.cif (2.6MB, cif)

Structure factors: contains datablock(s) 3a. DOI: 10.1107/S2056989021001778/hb79623asup2.hkl

e-77-00314-3asup2.hkl (421.1KB, hkl)

Structure factors: contains datablock(s) 3b. DOI: 10.1107/S2056989021001778/hb79623bsup3.hkl

e-77-00314-3bsup3.hkl (1,001.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021001778/hb79623asup4.cml

Supporting information file. DOI: 10.1107/S2056989021001778/hb79623bsup5.cml

CCDC references: 2025600, 2025601

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES