Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Feb 12;77(Pt 3):247–250. doi: 10.1107/S2056989021001341

Crystal structure and Hirshfeld surface analysis of ethyl 2-[9-(2-hy­droxy­phen­yl)-3,3,6,6-tetra­methyl-1,8-dioxo-2,3,4,4a,5,6,7,8a,9,9a,10,10a-dodeca­hydro­acridin-10-yl]acetate

Omyma A A Abd Allah a, Manpreet Kaur b, Mehmet Akkurt c, Shaaban K Mohamed d,e,*, Jerry P Jasinski b, Sahar M I Elgarhy f
PMCID: PMC8061104  PMID: 33953945

The mol­ecular conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond between the hy­droxy substituent on the benzene ring and one of the carbonyl groups of the acridinedione unit.

Keywords: crystal structure; 3,3,6,6-tetra­methyl­tetra­hydro­acridine-1,8-dione; C—H⋯O hydrogen bonds; O—H⋯O hydrogen bonds; acridines

Abstract

In the title compound, C27H33NO5, a 3,3,6,6-tetra­methyl­tetra­hydro­acridine-1,8-dione ring system carries an ethyl acetate substituent on the acridine N atom and an o-hy­droxy­phenyl ring on the central methine C atom of the di­hydro­pyridine ring. The benzene ring is inclined to the acridine ring system at an angle of 80.45 (7)° and this conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond between the hy­droxy substituent on the benzene ring and one of the carbonyl groups of the acridinedione unit. The ester C=O oxygen atom is disordered over major and minor orientations in a 0.777 (9):0.223 (9) ratio and the terminal –CH3 unit of the ethyl side chain is disordered over two sets of sites in a 0.725 (5): 0.275 (5) ratio. In the crystal, C—H⋯O hydrogen bonds combine to link the mol­ecules into a three-dimensional network. van der Waals H⋯H contacts contribute the most to the Hirshfeld surface (66.9%) followed by O⋯H/H⋯O (22.1%) contacts associated with weak hydrogen bonds.

Chemical context  

Acridine derivatives occur in a number of compounds of importance in medicinal chemistry such as bucricaine, which used for surface anesthesia of the eye and given by injection for infiltration anesthesia, peripheral nerve block and spinal anesthesia (Ramesh et al., 2012). Quinacrine, also known as mepacrine, is used as a gametocytocide and acts as an anti­malarial agent (Valdés, 2011). Proflavin is also found to be active as a bacteriostatic agent (Patel et al., 2010) and nitracrine is as anti­cancer agent (Cholewinski et al., 2011). Acriflavin is used as an anti­septic for skin and mucous membranes (Ramesh et al., 2012). As part of our studies in this area, we report herein the synthesis and crystal structure of the title compound, C27H33NO5.

Structural commentary  

As shown in Fig.1, the 3,3,6,6-tetra­methyl­tetra­hydro­acridine-1,8-dione ring system carries an ethyl acetate substituent on the acridine N1 atom and an o-hy­droxy­phenyl ring on the central methine C7 atom of the C1/C6–C8/C13/N1 di­hydro­pyridine ring. The acridinedione ring system deviates significantly from planarity with an r.m.s. deviation of 0.404 Å for the thirteen C atoms and one N atom of the acridine unit. The benzene ring is inclined to the acridine ring system at a dihedral angle of 80.45 (7)°.graphic file with name e-77-00247-scheme1.jpg

The outer C1–C6 and C8–C13 cyclo­hexenone rings both adopt flattened chair conformations with the C4 and C11 atoms displaced in the same direction, by 0.308 (2) and 0.338 (2) Å, respectively, from the best-fit planes through the remaining five C atoms. In contrast, the central C13/N1/C1/C6–C8 ring can best be described as a flattened boat with N1 and C7 displaced by 0.146 (1) and 0.191 (14) Å, respectively, from the remaining four C atoms. The bond lengths and angles in the title mol­ecule agree reasonably well with those found in closely related mol­ecules (Abdelhamid et al., 2011, 2014; Khalilov et al., 2011).

The mol­ecular conformation of the title compound is stabilized by an intra­molecular O5—H5⋯O1 hydrogen bond between the hy­droxy substituent on the benzene ring and one of the carbonyl groups of the acridinedione unit (Table 1; Fig. 1). Atom O3 is disordered over major and minor orientations in a 0.777 (9):0.223 (9) ratio and the terminal C17 methyl group is disordered over two sets of sites in a 0.725 (5):0.275 (5) ratio.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1 0.84 1.81 2.6319 (17) 166
C2—H2A⋯O2i 0.99 2.52 3.1663 (19) 123
C2—H2B⋯O5i 0.99 2.53 3.457 (2) 157
C12—H12B⋯O1ii 0.99 2.52 3.2708 (17) 133
C14—H14A⋯O1ii 0.99 2.53 3.3299 (18) 138
C14—H14B⋯O2i 0.99 2.66 3.473 (2) 140
C27—H27B⋯O3iii 0.98 2.51 3.452 (3) 161

Symmetry codes: (i) x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}; (ii) x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}; (iii) -x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}.

Figure 1.

Figure 1

The title mol­ecule with displacement ellipsoids drawn at the 30% probability level. Only the major disorder components for O3 and C17 are shown.

Supra­molecular features  

In the crystal, a number of C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network (Table 1; Fig. 2); all the oxygen atoms in the mol­ecule except O4 accept at least one of these bonds.

Figure 2.

Figure 2

The mol­ecular packing, viewed down the a-axis direction, showing hydrogen bonds as dashed lines.

Hirshfeld surface analysis  

The CrystalExplorer software (Wolff et al., 2012) was used to produce the d norm-mapped Hirshfeld surfaces and the electrostatic potential for the title compound. The contact distances, d i and d e, from the Hirshfeld surface to the nearest atom, inside and outside, respectively, enable the analysis of the inter­molecular inter­actions through the mapping of d norm. An illustration of the inter-mol­ecular contacts in the crystal is given by two-dimensional fingerprint plots.

The bright-red spots on the Hirshfeld surface mapped over d norm (Fig. 3), with labels H27B, H12B, H14A, H14B, H2A and H2B on the surface represent donors for potential C—H⋯O hydrogen bonds (see Table 1); the corresponding acceptors on the surface appear as bright-red spots at atoms O1, O2 and O5. Short H⋯H contacts are given in Table 2.

Figure 3.

Figure 3

A view of the three-dimensional Hirshfeld surface for the title compound, plotted over d norm in the range −0.14 to 1.68 a.u.

Table 2. Short H⋯H inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
H21⋯H27A 2.26 −{1\over 2} + x, {1\over 2} − y, −{1\over 2} + z
H22⋯H27A 2.46 {1\over 2} − x, −{1\over 2} + y, {3\over 2} − z
H22⋯H4B 2.43 −1 + x, y, z

The overall two-dimensional fingerprint plot is illustrated in Fig. 4 a, and those delineated into H⋯H, O⋯H/H⋯O and C⋯H/H⋯C in Fig. 4 bd, respectively. The greatest contribution to the overall Hirshfeld surface, i.e. 66.9%, is due to H⋯H contacts (Fig. 4 b). The relative contributions of the other inter­actions in descending order are: O⋯H/H⋯O (22.1%), C⋯H/H⋯C (9.2%), O⋯O (1.3%), N⋯H/H⋯N (0.2%) and N⋯C/C⋯N (0.2%). This illustrates that the C—H⋯O inter­actions contribute significantly to the crystal packing.

Figure 4.

Figure 4

A view of the two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O and (d) C⋯H/H⋯C inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Database survey  

Compounds similar to the title compound with a octa­hydro­acridin moiety are [9-(2-hy­droxy­phen­yl)-1,8-dioxo-2,3,4,5,6,7,8,9-octa­hydro­acridin-10(1H)-yl]acetic acid [Cam­bridge Structural Database (Groom et al., 2016)] refcode DABSAD; Akkurt et al., 2015), ethyl [9-(5-bromo-2-hy­droxyphen­yl)-3,3,6,6-tetra­methyl-1,8-dioxo-2,3,4,5,6,7,8,9-octa­hydro­acridin-10(1H)-yl]acetate (VANBUK; Mohamed et al., 2017), 9-(3-bromo-5-chloro-2-hy­droxy­phen­yl)-10-(2-hy­droxy­eth­yl)-3,6-diphenyl-3,4,6,7,9,10-hexa­hydro­acridine-1,8(2H,5H)-dione (SILBIB; Abdelhamid et al., 2018) and 10-benzyl-9-(3,4-di­meth­oxy­phen­yl)-3,3,6,6-tetra­methyl-3,4,6,7,9,10-hexa­hydro­acridine-1,8(2H,5H)-dione (PUSJEU; Sureshbabu et al., 2015).

The DABSAD compound crystallizes with two mol­ecules in the asymmetric unit. In each mol­ecule, the central 1,4-di­hydro­pyridine ring adopts a shallow sofa conformation (with the C atom bearing the phenol ring as the flap), whereas the pendant cyclo­hexene rings both have twisted-boat conform­ations. Each mol­ecule features an intra­molecular O—H⋯O hydrogen bond, which closes an S(8) ring. In the crystal, the mol­ecules are linked by O—H⋯O, C—H⋯O and C—H⋯π inter­actions, forming a three-dimensional network. In VANBUK, the central 1,4-di­hydro­pyridine ring adopts a shallow sofa conformation (with the C atom bearing the bromo­phenol ring as the flap), whereas the pendant cyclo­hexene rings both have twisted-boat conformations. The mol­ecule features an intra­molecular O—H⋯O hydrogen bond, which closes an S(8) ring. In the crystal, mol­ecules are linked by C—H⋯O inter­actions, forming C(12) chains propagating along the c-axis direction. In the crystal of SILBIB, O—H⋯O, C—H⋯O and C—H⋯π(ring) hydrogen bonds combine with an Br—O and unusual C—Br⋯π(ring) halogen bonds to generate a three dimensional network with mol­ecules stacked along the a-axis direction. In the acridinedione moiety of PUSJEU, the central di­hydro­pyridine ring adopts a flattened-boat conformation, with the N atom and the methine C atom displaced from the mean plane of the other four atoms by 0.0513 (14) and 0.1828 (18) Å, respectively. The two cyclo­hexenone rings adopt envelope conformations, with the tetra­subsituted C atoms as the flap atoms. In the crystal, mol­ecules are linked via a pair of C—H⋯O hydrogen bonds, forming inversion dimers, which are, in turn, linked by C—H⋯O hydrogen bonds, forming slabs lying parallel to (001).

Synthesis and crystallization  

To a mixture of dimedone (1.12 g, 0.008 mol), ethyl glycinate hydro­chloride (0.56 g, 0.004 mol) and salicaldehyde (0.43 ml, 0.004 mol) in ethanol (20 ml), triethyl amine (1.12 ml, 0.008 mol) was added. The reaction mixture was heated under reflux for 5 h at 353–358 K then left to cool. The separated solid was filtered off, dried and recrystallized from ethanol solution as yellow plates of the title compound, yield 68%, m.p. 497 K.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were placed in idealized locations and and refined using a riding model with C—H = 0.9–1.00 Å U iso(H) = 1.2U eq (C) and O—H = 0.84 Å, U iso(H) = 1.5U eq (O). Atom O3 of the oxo group and terminal methyl group (C17) of the ethyl acetate substituent are disordered over two sites in 0.777 (9):0.223 (9) (for O3 and O3A) and 0.725 (5):0.275 (5) (for C17 and C17A) ratios, respectively.

Table 3. Experimental details.

Crystal data
Chemical formula C27H33NO5
M r 451.54
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 9.5289 (2), 18.6653 (5), 13.8046 (3)
β (°) 96.410 (2)
V3) 2439.93 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.68
Crystal size (mm) 0.48 × 0.22 × 0.08
 
Data collection
Diffractometer Rigaku Oxford Diffraction EOS
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.861, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9527, 4648, 3949
R int 0.029
(sin θ/λ)max−1) 0.614
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.126, 1.04
No. of reflections 4648
No. of parameters 313
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.23

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015b), SHELXL (Sheldrick, 2015a) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989021001341/hb7967sup1.cif

e-77-00247-sup1.cif (309.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021001341/hb7967Isup2.hkl

e-77-00247-Isup2.hkl (370.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021001341/hb7967Isup3.cml

CCDC reference: 2061379

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C27H33NO5 F(000) = 968
Mr = 451.54 Dx = 1.229 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
a = 9.5289 (2) Å Cell parameters from 3784 reflections
b = 18.6653 (5) Å θ = 4.0–71.4°
c = 13.8046 (3) Å µ = 0.68 mm1
β = 96.410 (2)° T = 173 K
V = 2439.93 (10) Å3 Plate, yellow
Z = 4 0.48 × 0.22 × 0.08 mm

Data collection

Rigaku Oxford Diffraction EOS diffractometer 4648 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source 3949 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
Detector resolution: 16.0416 pixels mm-1 θmax = 71.2°, θmin = 4.0°
ω scans h = −11→11
Absorption correction: multi-scan (CrysalisPro; Rigaku OD, 2015) k = −22→14
Tmin = 0.861, Tmax = 1.000 l = −16→16
9527 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.6477P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
4648 reflections Δρmax = 0.27 e Å3
313 parameters Δρmin = −0.23 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.65518 (12) 0.22713 (7) 0.50403 (8) 0.0373 (3)
O2 0.21715 (14) 0.36821 (7) 0.51857 (8) 0.0426 (3)
O3 0.3445 (5) 0.11473 (19) 0.83632 (16) 0.0636 (11) 0.777 (9)
O3A 0.2813 (17) 0.1388 (6) 0.8394 (7) 0.0636 (11) 0.223 (9)
O4 0.35606 (14) 0.14006 (6) 0.99586 (9) 0.0406 (3)
O5 0.41985 (13) 0.19489 (7) 0.39430 (8) 0.0389 (3)
H5 0.4887 0.2122 0.4300 0.058*
N1 0.44568 (13) 0.24991 (6) 0.79603 (8) 0.0236 (2)
C1 0.54686 (14) 0.22154 (7) 0.74277 (10) 0.0228 (3)
C2 0.66871 (16) 0.18305 (8) 0.79873 (11) 0.0292 (3)
H2A 0.6309 0.1464 0.8407 0.035*
H2B 0.7234 0.2179 0.8419 0.035*
C3 0.76892 (16) 0.14645 (9) 0.73461 (12) 0.0328 (3)
C4 0.79512 (16) 0.19849 (9) 0.65285 (12) 0.0356 (4)
H4A 0.8424 0.2421 0.6814 0.043*
H4B 0.8587 0.1758 0.6098 0.043*
C5 0.65908 (16) 0.21917 (8) 0.59366 (11) 0.0286 (3)
C6 0.53718 (15) 0.23162 (8) 0.64433 (10) 0.0245 (3)
C7 0.40195 (15) 0.25806 (8) 0.58758 (10) 0.0244 (3)
H7 0.4283 0.2880 0.5323 0.029*
C8 0.32755 (14) 0.30588 (7) 0.65354 (10) 0.0237 (3)
C9 0.22950 (16) 0.35939 (8) 0.60657 (11) 0.0291 (3)
C10 0.14223 (16) 0.40152 (9) 0.67124 (12) 0.0323 (3)
H10A 0.0581 0.3731 0.6833 0.039*
H10B 0.1091 0.4463 0.6376 0.039*
C11 0.22671 (16) 0.42010 (8) 0.76873 (11) 0.0280 (3)
C12 0.27846 (15) 0.34965 (8) 0.81805 (10) 0.0263 (3)
H12A 0.3461 0.3608 0.8758 0.032*
H12B 0.1970 0.3245 0.8411 0.032*
C13 0.34886 (14) 0.30040 (7) 0.75185 (10) 0.0222 (3)
C14 0.43949 (15) 0.22835 (8) 0.89738 (10) 0.0256 (3)
H14A 0.3858 0.2646 0.9304 0.031*
H14B 0.5365 0.2265 0.9315 0.031*
C15 0.37019 (19) 0.15605 (9) 0.90423 (12) 0.0368 (4)
C16 0.2856 (3) 0.07304 (12) 1.01388 (17) 0.0641 (7)
H16A 0.3553 0.0335 1.0218 0.077* 0.725 (5)
H16B 0.2146 0.0615 0.9581 0.077* 0.725 (5)
H16C 0.2872 0.0420 0.9559 0.077* 0.275 (5)
H16D 0.3405 0.0485 1.0693 0.077* 0.275 (5)
C17 0.2157 (4) 0.08124 (19) 1.1040 (3) 0.0665 (9) 0.725 (5)
H17A 0.2875 0.0880 1.1598 0.100* 0.725 (5)
H17B 0.1604 0.0381 1.1141 0.100* 0.725 (5)
H17C 0.1530 0.1230 1.0976 0.100* 0.725 (5)
C17A 0.1551 (11) 0.0790 (5) 1.0331 (8) 0.0665 (9) 0.275 (5)
H17D 0.1499 0.1142 1.0853 0.100* 0.275 (5)
H17E 0.1217 0.0324 1.0541 0.100* 0.275 (5)
H17F 0.0956 0.0947 0.9745 0.100* 0.275 (5)
C18 0.30828 (15) 0.19663 (8) 0.54418 (10) 0.0258 (3)
C19 0.32270 (16) 0.16932 (9) 0.45105 (11) 0.0307 (3)
C20 0.23375 (19) 0.11504 (10) 0.41156 (13) 0.0405 (4)
H20 0.2428 0.0976 0.3479 0.049*
C21 0.13242 (18) 0.08647 (9) 0.46441 (14) 0.0410 (4)
H21 0.0723 0.0493 0.4371 0.049*
C22 0.11833 (17) 0.11164 (9) 0.55659 (13) 0.0356 (4)
H22 0.0494 0.0916 0.5933 0.043*
C23 0.20564 (16) 0.16652 (8) 0.59556 (11) 0.0295 (3)
H23 0.1949 0.1839 0.6590 0.035*
C24 0.7045 (2) 0.07682 (10) 0.69143 (15) 0.0469 (4)
H24A 0.6894 0.0436 0.7443 0.070*
H24B 0.7688 0.0550 0.6493 0.070*
H24C 0.6139 0.0872 0.6531 0.070*
C25 0.9082 (2) 0.12973 (11) 0.79789 (14) 0.0468 (4)
H25A 0.9533 0.1746 0.8214 0.070*
H25B 0.9713 0.1036 0.7590 0.070*
H25C 0.8887 0.1003 0.8537 0.070*
C26 0.13320 (19) 0.45952 (9) 0.83469 (13) 0.0405 (4)
H26A 0.0495 0.4305 0.8424 0.061*
H26B 0.1038 0.5057 0.8052 0.061*
H26C 0.1864 0.4677 0.8987 0.061*
C27 0.35163 (17) 0.46822 (8) 0.75087 (12) 0.0340 (3)
H27A 0.4061 0.4799 0.8133 0.051*
H27B 0.3163 0.5125 0.7187 0.051*
H27C 0.4123 0.4431 0.7092 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0375 (6) 0.0503 (7) 0.0266 (6) −0.0016 (5) 0.0144 (4) −0.0032 (5)
O2 0.0548 (7) 0.0469 (7) 0.0249 (6) 0.0155 (6) −0.0006 (5) 0.0006 (5)
O3 0.114 (3) 0.0437 (16) 0.0360 (8) −0.0364 (17) 0.0192 (12) −0.0122 (10)
O3A 0.114 (3) 0.0437 (16) 0.0360 (8) −0.0364 (17) 0.0192 (12) −0.0122 (10)
O4 0.0571 (7) 0.0352 (6) 0.0317 (6) −0.0098 (5) 0.0158 (5) 0.0055 (5)
O5 0.0448 (6) 0.0485 (7) 0.0245 (5) 0.0025 (5) 0.0080 (5) −0.0075 (5)
N1 0.0288 (6) 0.0242 (6) 0.0189 (5) 0.0020 (5) 0.0069 (4) −0.0005 (4)
C1 0.0248 (6) 0.0203 (6) 0.0241 (7) −0.0020 (5) 0.0064 (5) −0.0023 (5)
C2 0.0305 (7) 0.0316 (7) 0.0257 (7) 0.0041 (6) 0.0035 (6) −0.0014 (6)
C3 0.0324 (8) 0.0323 (8) 0.0344 (8) 0.0071 (6) 0.0065 (6) −0.0027 (6)
C4 0.0290 (8) 0.0417 (9) 0.0382 (9) 0.0041 (6) 0.0125 (6) −0.0014 (7)
C5 0.0309 (7) 0.0280 (7) 0.0287 (7) −0.0025 (6) 0.0109 (6) −0.0038 (6)
C6 0.0269 (7) 0.0244 (7) 0.0233 (7) −0.0005 (5) 0.0073 (5) −0.0025 (5)
C7 0.0303 (7) 0.0246 (7) 0.0190 (6) 0.0010 (6) 0.0065 (5) −0.0012 (5)
C8 0.0260 (6) 0.0226 (7) 0.0233 (7) −0.0010 (5) 0.0059 (5) −0.0021 (5)
C9 0.0312 (7) 0.0294 (7) 0.0261 (7) 0.0006 (6) 0.0010 (6) −0.0025 (6)
C10 0.0304 (7) 0.0318 (8) 0.0345 (8) 0.0063 (6) 0.0028 (6) −0.0016 (6)
C11 0.0327 (7) 0.0243 (7) 0.0277 (7) 0.0043 (6) 0.0072 (6) −0.0017 (6)
C12 0.0323 (7) 0.0241 (7) 0.0236 (7) 0.0020 (6) 0.0088 (5) −0.0016 (5)
C13 0.0245 (6) 0.0195 (6) 0.0232 (7) −0.0018 (5) 0.0064 (5) −0.0010 (5)
C14 0.0325 (7) 0.0267 (7) 0.0187 (6) 0.0019 (6) 0.0068 (5) 0.0003 (5)
C15 0.0492 (9) 0.0353 (8) 0.0269 (8) −0.0090 (7) 0.0085 (6) 0.0001 (6)
C16 0.0987 (18) 0.0460 (12) 0.0520 (12) −0.0294 (12) 0.0280 (12) 0.0052 (9)
C17 0.082 (2) 0.0543 (16) 0.070 (2) −0.0088 (15) 0.0384 (17) 0.0188 (17)
C17A 0.082 (2) 0.0543 (16) 0.070 (2) −0.0088 (15) 0.0384 (17) 0.0188 (17)
C18 0.0286 (7) 0.0242 (7) 0.0239 (7) 0.0051 (5) −0.0003 (5) −0.0014 (5)
C19 0.0338 (8) 0.0323 (8) 0.0256 (7) 0.0080 (6) 0.0015 (6) −0.0029 (6)
C20 0.0479 (9) 0.0391 (9) 0.0326 (8) 0.0063 (7) −0.0039 (7) −0.0137 (7)
C21 0.0388 (9) 0.0307 (8) 0.0503 (10) 0.0005 (7) −0.0097 (7) −0.0093 (7)
C22 0.0344 (8) 0.0281 (8) 0.0434 (9) 0.0008 (6) −0.0001 (7) 0.0019 (7)
C23 0.0328 (7) 0.0274 (7) 0.0280 (7) 0.0026 (6) 0.0021 (6) −0.0002 (6)
C24 0.0588 (11) 0.0312 (9) 0.0514 (11) 0.0062 (8) 0.0094 (8) −0.0059 (8)
C25 0.0405 (10) 0.0533 (11) 0.0463 (10) 0.0185 (8) 0.0037 (8) −0.0019 (8)
C26 0.0469 (10) 0.0344 (8) 0.0418 (9) 0.0118 (7) 0.0124 (7) −0.0053 (7)
C27 0.0409 (8) 0.0247 (7) 0.0363 (8) −0.0019 (6) 0.0034 (6) 0.0005 (6)

Geometric parameters (Å, º)

O1—C5 1.2426 (19) C12—C13 1.5057 (18)
O2—C9 1.2185 (19) C14—H14A 0.9900
O3—C15 1.217 (3) C14—H14B 0.9900
O3A—C15 1.205 (11) C14—C15 1.510 (2)
O4—C15 1.321 (2) C16—H16A 0.9900
O4—C16 1.454 (2) C16—H16B 0.9900
O5—H5 0.8400 C16—H16C 0.9900
O5—C19 1.364 (2) C16—H16D 0.9900
N1—C1 1.3816 (18) C16—C17 1.483 (4)
N1—C13 1.4091 (18) C16—C17A 1.305 (9)
N1—C14 1.4633 (17) C17—H17A 0.9800
C1—C2 1.504 (2) C17—H17B 0.9800
C1—C6 1.365 (2) C17—H17C 0.9800
C2—H2A 0.9900 C17A—H17D 0.9800
C2—H2B 0.9900 C17A—H17E 0.9800
C2—C3 1.533 (2) C17A—H17F 0.9800
C3—C4 1.531 (2) C18—C19 1.404 (2)
C3—C24 1.530 (2) C18—C23 1.389 (2)
C3—C25 1.537 (2) C19—C20 1.392 (2)
C4—H4A 0.9900 C20—H20 0.9500
C4—H4B 0.9900 C20—C21 1.381 (3)
C4—C5 1.504 (2) C21—H21 0.9500
C5—C6 1.4401 (19) C21—C22 1.377 (3)
C6—C7 1.514 (2) C22—H22 0.9500
C7—H7 1.0000 C22—C23 1.390 (2)
C7—C8 1.5074 (18) C23—H23 0.9500
C7—C18 1.5334 (19) C24—H24A 0.9800
C8—C9 1.468 (2) C24—H24B 0.9800
C8—C13 1.354 (2) C24—H24C 0.9800
C9—C10 1.507 (2) C25—H25A 0.9800
C10—H10A 0.9900 C25—H25B 0.9800
C10—H10B 0.9900 C25—H25C 0.9800
C10—C11 1.529 (2) C26—H26A 0.9800
C11—C12 1.537 (2) C26—H26B 0.9800
C11—C26 1.532 (2) C26—H26C 0.9800
C11—C27 1.533 (2) C27—H27A 0.9800
C12—H12A 0.9900 C27—H27B 0.9800
C12—H12B 0.9900 C27—H27C 0.9800
C15—O4—C16 117.16 (15) O3—C15—O4 124.13 (18)
C19—O5—H5 109.5 O3—C15—C14 124.71 (17)
C1—N1—C13 119.22 (11) O3A—C15—O4 120.8 (5)
C1—N1—C14 120.56 (12) O3A—C15—C14 117.9 (5)
C13—N1—C14 120.23 (11) O4—C15—C14 110.73 (13)
N1—C1—C2 117.03 (12) O4—C16—H16A 110.0
C6—C1—N1 120.23 (13) O4—C16—H16B 110.0
C6—C1—C2 122.68 (13) O4—C16—H16C 108.4
C1—C2—H2A 108.7 O4—C16—H16D 108.4
C1—C2—H2B 108.7 O4—C16—C17 108.3 (2)
C1—C2—C3 114.28 (12) H16A—C16—H16B 108.4
H2A—C2—H2B 107.6 H16C—C16—H16D 107.5
C3—C2—H2A 108.7 C17—C16—H16A 110.0
C3—C2—H2B 108.7 C17—C16—H16B 110.0
C2—C3—C25 108.42 (13) C17A—C16—O4 115.5 (4)
C4—C3—C2 107.84 (13) C17A—C16—H16C 108.4
C4—C3—C25 110.27 (14) C17A—C16—H16D 108.4
C24—C3—C2 110.77 (14) C16—C17—H17A 109.5
C24—C3—C4 110.08 (14) C16—C17—H17B 109.5
C24—C3—C25 109.43 (15) C16—C17—H17C 109.5
C3—C4—H4A 109.4 H17A—C17—H17B 109.5
C3—C4—H4B 109.4 H17A—C17—H17C 109.5
H4A—C4—H4B 108.0 H17B—C17—H17C 109.5
C5—C4—C3 111.22 (13) C16—C17A—H17D 109.5
C5—C4—H4A 109.4 C16—C17A—H17E 109.5
C5—C4—H4B 109.4 C16—C17A—H17F 109.5
O1—C5—C4 119.99 (13) H17D—C17A—H17E 109.5
O1—C5—C6 121.89 (14) H17D—C17A—H17F 109.5
C6—C5—C4 118.08 (13) H17E—C17A—H17F 109.5
C1—C6—C5 119.53 (13) C19—C18—C7 121.14 (13)
C1—C6—C7 121.28 (12) C23—C18—C7 121.01 (13)
C5—C6—C7 119.16 (12) C23—C18—C19 117.85 (14)
C6—C7—H7 107.8 O5—C19—C18 122.76 (14)
C6—C7—C18 112.53 (11) O5—C19—C20 116.89 (14)
C8—C7—C6 108.12 (11) C20—C19—C18 120.34 (15)
C8—C7—H7 107.8 C19—C20—H20 119.8
C8—C7—C18 112.73 (11) C21—C20—C19 120.35 (15)
C18—C7—H7 107.8 C21—C20—H20 119.8
C9—C8—C7 117.07 (12) C20—C21—H21 119.9
C13—C8—C7 122.19 (13) C22—C21—C20 120.17 (15)
C13—C8—C9 120.73 (13) C22—C21—H21 119.9
O2—C9—C8 121.20 (14) C21—C22—H22 120.2
O2—C9—C10 121.44 (14) C21—C22—C23 119.56 (16)
C8—C9—C10 117.34 (13) C23—C22—H22 120.2
C9—C10—H10A 109.3 C18—C23—C22 121.71 (14)
C9—C10—H10B 109.3 C18—C23—H23 119.1
C9—C10—C11 111.62 (12) C22—C23—H23 119.1
H10A—C10—H10B 108.0 C3—C24—H24A 109.5
C11—C10—H10A 109.3 C3—C24—H24B 109.5
C11—C10—H10B 109.3 C3—C24—H24C 109.5
C10—C11—C12 107.90 (12) H24A—C24—H24B 109.5
C10—C11—C26 110.38 (13) H24A—C24—H24C 109.5
C10—C11—C27 109.47 (13) H24B—C24—H24C 109.5
C26—C11—C12 109.08 (12) C3—C25—H25A 109.5
C26—C11—C27 109.14 (13) C3—C25—H25B 109.5
C27—C11—C12 110.87 (12) C3—C25—H25C 109.5
C11—C12—H12A 108.9 H25A—C25—H25B 109.5
C11—C12—H12B 108.9 H25A—C25—H25C 109.5
H12A—C12—H12B 107.7 H25B—C25—H25C 109.5
C13—C12—C11 113.34 (12) C11—C26—H26A 109.5
C13—C12—H12A 108.9 C11—C26—H26B 109.5
C13—C12—H12B 108.9 C11—C26—H26C 109.5
N1—C13—C12 117.39 (12) H26A—C26—H26B 109.5
C8—C13—N1 120.15 (12) H26A—C26—H26C 109.5
C8—C13—C12 122.36 (13) H26B—C26—H26C 109.5
N1—C14—H14A 109.3 C11—C27—H27A 109.5
N1—C14—H14B 109.3 C11—C27—H27B 109.5
N1—C14—C15 111.74 (12) C11—C27—H27C 109.5
H14A—C14—H14B 107.9 H27A—C27—H27B 109.5
C15—C14—H14A 109.3 H27A—C27—H27C 109.5
C15—C14—H14B 109.3 H27B—C27—H27C 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H5···O1 0.84 1.81 2.6319 (17) 166
C2—H2A···O2i 0.99 2.52 3.1663 (19) 123
C2—H2B···O5i 0.99 2.53 3.457 (2) 157
C12—H12B···O1ii 0.99 2.52 3.2708 (17) 133
C14—H14A···O1ii 0.99 2.53 3.3299 (18) 138
C14—H14B···O2i 0.99 2.66 3.473 (2) 140
C27—H27B···O3iii 0.98 2.51 3.452 (3) 161

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z+1/2; (iii) −x+1/2, y+1/2, −z+3/2.

Funding Statement

This work was funded by National Science Foundation grant CHE-1039027.

References

  1. Abdelhamid, A. A., Hawaiz, F. E., Mohamed, A. F., Mohamed, S. K. & Simpson, J. (2018). Acta Cryst. E74, 1218–1221. [DOI] [PMC free article] [PubMed]
  2. Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. [DOI] [PMC free article] [PubMed]
  3. Abdelhamid, A. A., Mohamed, S. K. & Simpson, J. (2014). Acta Cryst. E70, 44–47. [DOI] [PMC free article] [PubMed]
  4. Akkurt, M., Jasinski, J. P., Mohamed, S. K., Allah, O. A. A., Tamam, A. H. A. & Albayati, M. R. (2015). Acta Cryst. E71, o963–o964. [DOI] [PMC free article] [PubMed]
  5. Cholewiński, G., Dzierzbicka, K. & Kołodziejczyk, A. M. (2011). Pharmacol. Rep. 63, 305–336. [DOI] [PubMed]
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146. [DOI] [PMC free article] [PubMed]
  9. Mohamed, S. K., Dege, N., Akkurt, M., Allah, O. A. A. & Albayati, M. R. (2017). IUCrData, 2, x170573.
  10. Patel, M. M. M. D., Mali, M. D. & Patel, S. K. (2010). Bioorg. Med. Chem. Lett. 20, 6324–6326. [DOI] [PubMed]
  11. Ramesh, K., Mandeep, K. & Meena, K. (2012). Acta Pol. Pharm. Drug Res. 69, 3–9.
  12. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  13. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
  14. Sureshbabu, N. & Sughanya, V. (2015). Acta Cryst. E71, o688–o689. [DOI] [PMC free article] [PubMed]
  15. Valdés, A. Fernández-Calienes (2011). Open Med. Chem. J. 5, 11–20. [DOI] [PMC free article] [PubMed]
  16. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989021001341/hb7967sup1.cif

e-77-00247-sup1.cif (309.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021001341/hb7967Isup2.hkl

e-77-00247-Isup2.hkl (370.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021001341/hb7967Isup3.cml

CCDC reference: 2061379

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES