A five-coordinate copper(II) complex with bpy and 2-(hydroxymethyl)tartronate ligands forms centrosymmetric dimers via Cu⋯O contacts [2.703 (2) Å].
Keywords: crystal structure, copper(II) complex, tartronate, square pyramidal, dimerization
Abstract
A copper(II) complex, (2,2′-bipyridine-κ2 N,N′)[2-hydroxy-2-(hydroxymethyl-κO)propanedioato-κ2 O 1,O 3]copper(II), [Cu(C4H4O6)(C10H8N2)], containing the unusual anionic chelating ligand 2-(hydroxymethyl)tartronate, has been synthesized. [Cu(bpy)2(NO3)](NO3) was mixed with ascorbic acid and Dabco (1,4-diazabicyclo[2.2.2]octane) in DMF (dimethylformamide) solution in the presence of air to produce the title compound. The structure consists of square-pyramidal complexes that are joined by Cu⋯O contacts [2.703 (2) Å] into centrosymmetric dimers. The C4H4O6 2− ligand, which occupies three coordination sites at Cu, has previously been identified as an oxidation product of ascorbate ion.
Chemical context
Copper complexes have drawn recent attention owing to applications in redox reactions (Zubair et al., 2019 ▸; Maity et al., 2010 ▸; Wang et al., 2006 ▸) and oxygen transport (Sheykhi et al., 2018 ▸; Liu et al., 2016 ▸; Tadsanaprasittipol et al., 1998 ▸; Kato et al., 2016 ▸). The 2,2′-bipyridine ligand has been used in a variety of supramolecular architectures (Fei et al., 2013 ▸; John et al., 2004 ▸; Seco et al., 2000 ▸; Barquín et al., 2010 ▸; Yuan et al., 2008 ▸).
As a common reducing reagent, ascorbic acid has also been investigated in complex synthesis and redox reactions (Creutz, 1981 ▸; Niemelä, 1987 ▸; Sorouraddin et al., 2000 ▸). For example, we have recently observed that mixtures of Cu complexes and ascorbate react with O2 to produce CuII oxalate complexes (Khamespanah et al., 2021 ▸). However, to our knowledge, the particular degradation product of ascorbic acid observed here, 2-(hydroxymethyl)tartronic acid [2-(hydroxymethyl)-2-hydroxy-1,3-propanedioic acid], has been reported only a few times. It was identified by mass spectrometry as a product of oxidation of ascorbic acid (Niemelä, 1987 ▸; Löwendahl & Petersson, 1976 ▸) and two carbohydrates (Löwendahl et al., 1975a ▸,b ▸). We have now isolated compound (I), a copper(II) complex of the 2-(hydroxymethyl)tartronate anion (see Scheme), and its crystal structure is reported here.
The preparation of the title complex is shown in Fig. 1 ▸. A solution of [(bpy)2Cu(ONO2)]NO3 and Dabco (1,4-diazabicyclo[2.2.2]octane) turned from blue to dark brown on addition of ascorbic acid, suggesting reduction of CuII to CuI. The solution was then exposed to air. It turned green over a period of several days, and the title compound (I) could be crystallized (Fig. 2 ▸).
Figure 1.
Preparation of the title compound, Cu(bpy)(C4H4O6) (I), with [DabcoH2](NO3)2 (II) as byproduct.
Figure 2.
Crystal structure of (I). Ellipsoids are drawn at the 50% probability level; hydrogen atoms are displayed but not labeled. Primed and unprimed atoms are related by an inversion center, which brings the two square-pyramidal Cu(bpy)(C4H4O6) moieties into contact [Cu⋯O1′ = 2.703 (2) Å]. The inset is a schematic illustration of the dimerization.
In this procedure, Dabco also crystallizes, in its doubly protonated form as colorless [DabcoH2](NO3)2 (II). We could not isolate the title compound (I) when Dabco was omitted from the reaction mixture. We determined the structure of (II) as well (Gao et al., 2020 ▸). Although this structure was reported previously by Knope & Cahill (2007 ▸), the new structure provides improved resolution.
Structural commentary
The Cu atom in (I) adopts a square-pyramidal geometry, with coordination to two bpy N atoms and three O atoms from the 2-(hydroxymethyl)tartronate anion (C4H4O6 2–).
The two inversion-related complexes in the unit cell make a dimer via two Cu⋯O contacts: Cu1⋯O1′ = 2.703 (2) Å. This kind of dimerization (see inset in Fig. 2 ▸) is commonly observed in 4- and 5-coordinate CuII complexes. It is discussed further in the Database survey section.
Supramolecular features
The structure of (I) includes two O—H⋯O hydrogen bonds, one intramolecular and one intermolecular; see Table 1 ▸. The intermolecular hydrogen bonds form centrosymmetric hydrogen-bonded dimers with graph set
(12) (Etter et al., 1990 ▸). These dimers are linked into chains in the [100] direction, as illustrated in Fig. 3 ▸.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O2—H2O⋯O4i | 0.88 (2) | 1.85 (2) | 2.723 (3) | 169 (4) |
| O5—H5O⋯O6 | 0.93 (2) | 1.80 (3) | 2.549 (3) | 136 (3) |
Symmetry code: (i) -x+2, -y+1, -z+1.
Figure 3.
Packing structure of (I), showing the intermolecular O2—H2O⋯O4 hydrogen bonds.
Database survey
A survey of the Cambridge Structural Database (Version 5.40; Groom et al., 2016 ▸) yielded four five-coordinate CuII complexes with 2,2′-bipyridine, one alcohol, and two carboxylate ligands [CSD refcodes DAXVED (Antolini et al., 1984 ▸), SEKXAI (Devereux et al., 2006 ▸), TERTEQ (Ma et al., 2006 ▸), and VAJTIL (Zhang et al., 2010 ▸)]. The Cu atoms in these structures have a square-pyramidal geometry, with the alcohol ligand in the apical position, as in (I), with the following average angles and distances: N—Cu—N, 81.3 (10)°; Cu—N, 2.004 (13) Å; Cu—O(carboxylate), 1.949 (15) Å; and Cu—O(alcohol), 2.32 (6) Å. These are similar to values in (I): N—Cu—N, 81.35 (9)°; Cu—N, 1.985 (2), 1.990 (2) Å; Cu—O, 1.9587 (19), 1.935 (2), and 2.384 (2) Å, respectively.
Another group of structures closely related to (I) is Cu(bpy)(malonate) (malonate = 1,3-propanedioate); see Fig. 4 ▸. There are 14 such structures in the CSD, in all of which [as in (I)] the malonate C—O bonds are bent significantly out of the CuN2O2 coordination plane. Of these, seven [FIXDUM (Cui et al., 2005 ▸), SAYCUQ (Gasque et al., 1998 ▸), TIPZAT02 (Cernak, 2016 ▸), UNOJOY, UNOJUE, UNOKAL (Jaramillo-García et al., 2016 ▸), and XECFOC (Manochitra et al., 2012 ▸)] are monomeric, with R 2 = H and syn H2O ligands [Fig. 4 ▸(b)]. This arrangement is similar to that observed in the Cu(bpy)(C4H4O6) moiety of (I), except that (I) contains an apical alcohol ligand rather than H2O. Because the alcohol in (I) is part of a small chelate ring, its coordination is bent slightly away from perpendicularity to the CuO2N2 plane [N1—Cu1—O2 104.04 (9), N2—Cu1—O2 91.77 (9)°]; the average N—Cu—OH2 angle in the above seven published structures is 93 (3)°.
Figure 4.
Generalized structures of [Cu(bpy)(malonate)] complexes: (a) showing the typical bending of the malonate ligand, with syn and anti coordination sites; (b) an example with H2O in the syn position, as can occur when R 2 is small.
In four structures [PUJJUC (Ghosh et al., 2020 ▸), CIJNEQ (Dey et al., 2013 ▸), MEHYON (Guan et al., 1998a ▸,b ▸), and WAHVOR (Pasán et al., 2004 ▸)], bulky R 2 groups prevent syn coordination, and there are anti H2O ligands. In four structures [PUJJUC (Ghosh et al., 2020 ▸), CELSIW01 (Reinoso et al., 2007 ▸), CIJNEQ (Dey et al., 2013 ▸), and PESBAR (Baldomá et al., 2006 ▸)], dimers form as illustrated in Fig. 2 ▸, with Cu⋯O distances ranging from 2.315 (2) to 2.494 (3) Å. (Note: PUJJUC and CIJNEQ each contain two molecules in the asymmetric unit, one a five-coordinate monomer and the other a dimer of four-coordinate complexes.) As far as we are aware, the present complex [Cu(bpy)(C4H4O6)] (I) is the only example of a Cu(bpy)(malonate) in which a five-coordinate species dimerizes. Our structure shows a considerably larger Cu⋯O distance in its dimers than the above four published examples. This is likely because of the apical alcohol ligand in (I): a five-coordinate species is less likely to form strong Cu⋯O associations than a four-coordinate species.
Synthesis and crystallization
General procedures. Reagents were used as received, from Sigma–Aldrich. FTIR spectra were recorded on a Bruker Tensor 27 spectrometer in attenuated total reflectance mode.
Synthesis of Cu(bpy)(C4H4O6). To a mixture of [Cu(bpy)2(NO3)](NO3) (Marjani et al., 2005 ▸) (25.5 mg, 0.075 mmol, in 2 mL of DMF) and Dabco (8.4 mg, 0.075 mmol, in 1 mL of DMF), ascorbic acid (13.2 mg, 0.075 mmol, in 1 mL of DMF) was added. The mixture turned to dark brownish-red. It was stirred for two days in air, during which time it turned green, and filtered. The filtrate was used for vapor diffusion with diethyl ether. Crystals of Cu(bpy)(C4H4O6) [(I), blue] and [DabcoH2](NO3)2 [(II), colorless] formed, which were suitable for X-ray analysis.
Cu(bpy)(C4H4O6). FTIR (cm−1) 3036m, 2853w, 1704s, 1667m, 1612m, 1412m, 1391m, 1362m, 1312m, 1204s, 1149s, 1055m, 1036m, 778m, 732m, 639w.
Refinement
Crystal data, data collection, and structure refinement are summarized in Table 2 ▸. All H atoms were visible in difference-Fourier maps. Coordinates of those on O were refined with O—H distances restrained to 0.88 (2) Å. Those on C were positioned geometrically (C—H = 0.95 Å for aromatic C, 0.99 Å for CH2) and treated as riding. Displacement parameters for H were assigned as U eq(H) = 1.2U eq(C) and 1.5U eq(O).
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | [Cu(C4H4O6)(C10H8N2)] |
| M r | 367.80 |
| Crystal system, space group | Triclinic, P\overline{1} |
| Temperature (K) | 90 |
| a, b, c (Å) | 7.6516 (5), 9.9272 (6), 10.0722 (6) |
| α, β, γ (°) | 95.204 (4), 107.729 (4), 111.462 (4) |
| V (Å3) | 660.34 (7) |
| Z | 2 |
| Radiation type | Mo Kα |
| μ (mm−1) | 1.69 |
| Crystal size (mm) | 0.15 × 0.09 × 0.07 |
| Data collection | |
| Diffractometer | Bruker Kappa APEXII DUO CCD |
| Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸) |
| T min, T max | 0.838, 0.891 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 18442, 4041, 2675 |
| R int | 0.063 |
| (sin θ/λ)max (Å−1) | 0.715 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.049, 0.105, 1.02 |
| No. of reflections | 4041 |
| No. of parameters | 214 |
| No. of restraints | 2 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.74, −0.56 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021001286/pk2655sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021001286/pk2655Isup2.hkl
CCDC reference: 1966752
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| [Cu(C4H4O6)(C10H8N2)] | Z = 2 |
| Mr = 367.80 | F(000) = 374 |
| Triclinic, P1 | Dx = 1.850 Mg m−3 |
| a = 7.6516 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 9.9272 (6) Å | Cell parameters from 3354 reflections |
| c = 10.0722 (6) Å | θ = 2.2–29.3° |
| α = 95.204 (4)° | µ = 1.69 mm−1 |
| β = 107.729 (4)° | T = 90 K |
| γ = 111.462 (4)° | Fragment, light blue |
| V = 660.34 (7) Å3 | 0.15 × 0.09 × 0.07 mm |
Data collection
| Bruker Kappa APEXII DUO CCD diffractometer | 4041 independent reflections |
| Radiation source: fine-focus sealed tube | 2675 reflections with I > 2σ(I) |
| TRIUMPH curved graphite monochromator | Rint = 0.063 |
| φ and ω scans | θmax = 30.6°, θmin = 2.2° |
| Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −10→10 |
| Tmin = 0.838, Tmax = 0.891 | k = −14→14 |
| 18442 measured reflections | l = −14→14 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: mixed |
| wR(F2) = 0.105 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.02 | w = 1/[σ2(Fo2) + (0.0436P)2 + 0.3982P] where P = (Fo2 + 2Fc2)/3 |
| 4041 reflections | (Δ/σ)max < 0.001 |
| 214 parameters | Δρmax = 0.74 e Å−3 |
| 2 restraints | Δρmin = −0.56 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cu1 | 0.60628 (6) | 0.63056 (4) | 0.41304 (4) | 0.01841 (12) | |
| O1 | 0.7261 (3) | 0.5158 (2) | 0.52799 (19) | 0.0200 (5) | |
| O2 | 0.9188 (3) | 0.7153 (3) | 0.3763 (2) | 0.0247 (5) | |
| H2O | 0.931 (6) | 0.635 (3) | 0.346 (4) | 0.037* | |
| O3 | 0.7221 (3) | 0.7944 (2) | 0.5778 (2) | 0.0241 (5) | |
| O4 | 0.9916 (3) | 0.5149 (2) | 0.6990 (2) | 0.0239 (5) | |
| O5 | 1.2089 (3) | 0.8062 (3) | 0.7594 (2) | 0.0296 (5) | |
| H5O | 1.178 (6) | 0.869 (4) | 0.813 (3) | 0.044* | |
| O6 | 0.9741 (4) | 0.9263 (3) | 0.7840 (2) | 0.0337 (6) | |
| N1 | 0.4537 (4) | 0.7282 (3) | 0.2933 (2) | 0.0170 (5) | |
| N2 | 0.4699 (4) | 0.4750 (3) | 0.2317 (2) | 0.0166 (5) | |
| C1 | 0.4522 (5) | 0.8585 (3) | 0.3373 (3) | 0.0201 (6) | |
| H1 | 0.5308 | 0.9116 | 0.4337 | 0.024* | |
| C2 | 0.3410 (5) | 0.9188 (3) | 0.2483 (3) | 0.0217 (7) | |
| H2 | 0.3409 | 1.0109 | 0.2833 | 0.026* | |
| C3 | 0.2293 (4) | 0.8435 (3) | 0.1071 (3) | 0.0195 (6) | |
| H3 | 0.1527 | 0.8836 | 0.0433 | 0.023* | |
| C4 | 0.2309 (4) | 0.7080 (3) | 0.0597 (3) | 0.0180 (6) | |
| H4 | 0.1567 | 0.6548 | −0.0372 | 0.022* | |
| C5 | 0.3422 (4) | 0.6519 (3) | 0.1558 (3) | 0.0142 (6) | |
| C6 | 0.3512 (4) | 0.5078 (3) | 0.1208 (3) | 0.0142 (6) | |
| C7 | 0.2500 (4) | 0.4119 (3) | −0.0127 (3) | 0.0155 (6) | |
| H7 | 0.1676 | 0.4365 | −0.0892 | 0.019* | |
| C8 | 0.2703 (4) | 0.2792 (3) | −0.0335 (3) | 0.0180 (6) | |
| H8 | 0.2000 | 0.2107 | −0.1239 | 0.022* | |
| C9 | 0.3938 (5) | 0.2480 (3) | 0.0789 (3) | 0.0191 (6) | |
| H9 | 0.4109 | 0.1583 | 0.0665 | 0.023* | |
| C10 | 0.4924 (4) | 0.3482 (3) | 0.2098 (3) | 0.0180 (6) | |
| H10 | 0.5788 | 0.3267 | 0.2866 | 0.022* | |
| C11 | 0.9051 (5) | 0.5800 (3) | 0.6238 (3) | 0.0217 (7) | |
| C12 | 1.0222 (5) | 0.7493 (4) | 0.6426 (3) | 0.0247 (7) | |
| C13 | 0.8962 (5) | 0.8297 (4) | 0.6718 (3) | 0.0258 (7) | |
| C14 | 1.0784 (5) | 0.7878 (4) | 0.5103 (3) | 0.0284 (7) | |
| H14A | 1.1263 | 0.8965 | 0.5195 | 0.034* | |
| H14B | 1.1917 | 0.7614 | 0.5117 | 0.034* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cu1 | 0.0245 (2) | 0.0195 (2) | 0.00897 (15) | 0.01379 (17) | −0.00134 (13) | −0.00131 (13) |
| O1 | 0.0255 (12) | 0.0221 (12) | 0.0104 (9) | 0.0137 (10) | −0.0002 (8) | 0.0018 (8) |
| O2 | 0.0272 (12) | 0.0276 (13) | 0.0172 (10) | 0.0135 (11) | 0.0035 (9) | 0.0032 (9) |
| O3 | 0.0257 (12) | 0.0268 (13) | 0.0147 (10) | 0.0143 (11) | −0.0012 (9) | −0.0040 (9) |
| O4 | 0.0247 (12) | 0.0272 (12) | 0.0202 (10) | 0.0155 (10) | 0.0031 (9) | 0.0053 (9) |
| O5 | 0.0283 (13) | 0.0337 (14) | 0.0213 (11) | 0.0169 (11) | −0.0006 (9) | −0.0024 (10) |
| O6 | 0.0366 (14) | 0.0325 (14) | 0.0221 (11) | 0.0185 (12) | −0.0035 (10) | −0.0070 (10) |
| N1 | 0.0182 (13) | 0.0181 (13) | 0.0128 (10) | 0.0084 (11) | 0.0030 (9) | 0.0005 (10) |
| N2 | 0.0212 (13) | 0.0163 (13) | 0.0129 (11) | 0.0104 (11) | 0.0045 (10) | 0.0013 (10) |
| C1 | 0.0244 (17) | 0.0168 (15) | 0.0183 (13) | 0.0108 (13) | 0.0051 (12) | −0.0005 (12) |
| C2 | 0.0279 (18) | 0.0163 (16) | 0.0237 (15) | 0.0138 (14) | 0.0079 (13) | 0.0037 (12) |
| C3 | 0.0195 (16) | 0.0195 (16) | 0.0223 (14) | 0.0123 (13) | 0.0052 (12) | 0.0071 (12) |
| C4 | 0.0149 (15) | 0.0242 (17) | 0.0143 (13) | 0.0095 (13) | 0.0034 (11) | 0.0031 (12) |
| C5 | 0.0136 (14) | 0.0142 (14) | 0.0145 (12) | 0.0063 (12) | 0.0046 (10) | 0.0005 (11) |
| C6 | 0.0125 (14) | 0.0167 (15) | 0.0113 (12) | 0.0060 (12) | 0.0022 (10) | 0.0019 (11) |
| C7 | 0.0116 (14) | 0.0165 (15) | 0.0140 (12) | 0.0038 (12) | 0.0020 (10) | 0.0005 (11) |
| C8 | 0.0173 (15) | 0.0170 (15) | 0.0142 (12) | 0.0039 (12) | 0.0040 (11) | −0.0016 (11) |
| C9 | 0.0241 (16) | 0.0142 (15) | 0.0214 (14) | 0.0101 (13) | 0.0092 (12) | 0.0022 (12) |
| C10 | 0.0202 (16) | 0.0201 (16) | 0.0155 (13) | 0.0108 (13) | 0.0056 (11) | 0.0044 (12) |
| C11 | 0.0310 (18) | 0.0229 (17) | 0.0115 (12) | 0.0158 (15) | 0.0035 (12) | 0.0006 (12) |
| C12 | 0.0257 (17) | 0.0276 (18) | 0.0162 (13) | 0.0123 (15) | 0.0010 (12) | 0.0019 (13) |
| C13 | 0.0288 (18) | 0.0260 (18) | 0.0209 (15) | 0.0149 (15) | 0.0036 (13) | 0.0015 (14) |
| C14 | 0.0271 (18) | 0.0294 (19) | 0.0235 (15) | 0.0108 (16) | 0.0049 (13) | 0.0008 (14) |
Geometric parameters (Å, º)
| Cu1—O3 | 1.935 (2) | C2—H2 | 0.9500 |
| Cu1—O1 | 1.9587 (19) | C3—C4 | 1.391 (4) |
| Cu1—N1 | 1.985 (2) | C3—H3 | 0.9500 |
| Cu1—N2 | 1.990 (2) | C4—C5 | 1.383 (4) |
| Cu1—O2 | 2.384 (2) | C4—H4 | 0.9500 |
| O1—C11 | 1.288 (3) | C5—C6 | 1.474 (4) |
| O2—C14 | 1.417 (4) | C6—C7 | 1.381 (4) |
| O2—H2O | 0.880 (18) | C7—C8 | 1.387 (4) |
| O3—C13 | 1.275 (4) | C7—H7 | 0.9500 |
| O4—C11 | 1.236 (3) | C8—C9 | 1.377 (4) |
| O5—C12 | 1.417 (4) | C8—H8 | 0.9500 |
| O5—H5O | 0.929 (18) | C9—C10 | 1.380 (4) |
| O6—C13 | 1.236 (4) | C9—H9 | 0.9500 |
| N1—C1 | 1.334 (4) | C10—H10 | 0.9500 |
| N1—C5 | 1.355 (3) | C11—C12 | 1.549 (5) |
| N2—C10 | 1.339 (4) | C12—C13 | 1.532 (4) |
| N2—C6 | 1.358 (3) | C12—C14 | 1.558 (4) |
| C1—C2 | 1.375 (4) | C14—H14A | 0.9900 |
| C1—H1 | 0.9500 | C14—H14B | 0.9900 |
| C2—C3 | 1.383 (4) | ||
| O3—Cu1—O1 | 91.06 (8) | N1—C5—C6 | 114.2 (2) |
| O3—Cu1—N1 | 91.97 (9) | C4—C5—C6 | 124.4 (2) |
| O1—Cu1—N1 | 173.29 (10) | N2—C6—C7 | 121.5 (3) |
| O3—Cu1—N2 | 173.32 (9) | N2—C6—C5 | 114.4 (2) |
| O1—Cu1—N2 | 95.56 (9) | C7—C6—C5 | 124.1 (2) |
| N1—Cu1—N2 | 81.35 (9) | C6—C7—C8 | 119.1 (3) |
| O3—Cu1—O2 | 90.05 (9) | C6—C7—H7 | 120.4 |
| O1—Cu1—O2 | 81.94 (8) | C8—C7—H7 | 120.4 |
| N1—Cu1—O2 | 104.04 (9) | C9—C8—C7 | 119.0 (3) |
| N2—Cu1—O2 | 91.77 (9) | C9—C8—H8 | 120.5 |
| C11—O1—Cu1 | 120.61 (19) | C7—C8—H8 | 120.5 |
| C14—O2—Cu1 | 108.93 (18) | C8—C9—C10 | 119.5 (3) |
| C14—O2—H2O | 106 (2) | C8—C9—H9 | 120.3 |
| Cu1—O2—H2O | 106 (2) | C10—C9—H9 | 120.3 |
| C13—O3—Cu1 | 121.7 (2) | N2—C10—C9 | 121.9 (3) |
| C12—O5—H5O | 96 (2) | N2—C10—H10 | 119.1 |
| C1—N1—C5 | 119.1 (2) | C9—C10—H10 | 119.1 |
| C1—N1—Cu1 | 125.71 (19) | O4—C11—O1 | 124.3 (3) |
| C5—N1—Cu1 | 115.18 (19) | O4—C11—C12 | 117.9 (3) |
| C10—N2—C6 | 119.0 (2) | O1—C11—C12 | 117.8 (2) |
| C10—N2—Cu1 | 126.08 (19) | O5—C12—C13 | 108.3 (2) |
| C6—N2—Cu1 | 114.81 (18) | O5—C12—C11 | 111.3 (2) |
| N1—C1—C2 | 122.5 (3) | C13—C12—C11 | 109.2 (3) |
| N1—C1—H1 | 118.8 | O5—C12—C14 | 105.0 (3) |
| C2—C1—H1 | 118.8 | C13—C12—C14 | 110.5 (3) |
| C1—C2—C3 | 119.0 (3) | C11—C12—C14 | 112.4 (2) |
| C1—C2—H2 | 120.5 | O6—C13—O3 | 125.2 (3) |
| C3—C2—H2 | 120.5 | O6—C13—C12 | 117.0 (3) |
| C2—C3—C4 | 119.0 (3) | O3—C13—C12 | 117.8 (3) |
| C2—C3—H3 | 120.5 | O2—C14—C12 | 114.7 (3) |
| C4—C3—H3 | 120.5 | O2—C14—H14A | 108.6 |
| C5—C4—C3 | 119.0 (3) | C12—C14—H14A | 108.6 |
| C5—C4—H4 | 120.5 | O2—C14—H14B | 108.6 |
| C3—C4—H4 | 120.5 | C12—C14—H14B | 108.6 |
| N1—C5—C4 | 121.4 (3) | H14A—C14—H14B | 107.6 |
| C5—N1—C1—C2 | 0.1 (5) | C6—N2—C10—C9 | −2.0 (4) |
| Cu1—N1—C1—C2 | −179.4 (2) | Cu1—N2—C10—C9 | −178.8 (2) |
| N1—C1—C2—C3 | −1.3 (5) | C8—C9—C10—N2 | 0.8 (5) |
| C1—C2—C3—C4 | 0.8 (5) | Cu1—O1—C11—O4 | −179.0 (2) |
| C2—C3—C4—C5 | 0.8 (4) | Cu1—O1—C11—C12 | −1.0 (4) |
| C1—N1—C5—C4 | 1.5 (4) | O4—C11—C12—O5 | −6.9 (4) |
| Cu1—N1—C5—C4 | −178.9 (2) | O1—C11—C12—O5 | 175.0 (2) |
| C1—N1—C5—C6 | −178.4 (3) | O4—C11—C12—C13 | −126.3 (3) |
| Cu1—N1—C5—C6 | 1.2 (3) | O1—C11—C12—C13 | 55.6 (3) |
| C3—C4—C5—N1 | −2.0 (4) | O4—C11—C12—C14 | 110.7 (3) |
| C3—C4—C5—C6 | 177.9 (3) | O1—C11—C12—C14 | −67.4 (4) |
| C10—N2—C6—C7 | 1.6 (4) | Cu1—O3—C13—O6 | −175.1 (3) |
| Cu1—N2—C6—C7 | 178.7 (2) | Cu1—O3—C13—C12 | 6.5 (4) |
| C10—N2—C6—C5 | −178.2 (3) | O5—C12—C13—O6 | 1.0 (4) |
| Cu1—N2—C6—C5 | −1.1 (3) | C11—C12—C13—O6 | 122.3 (3) |
| N1—C5—C6—N2 | −0.1 (4) | C14—C12—C13—O6 | −113.5 (3) |
| C4—C5—C6—N2 | −179.9 (3) | O5—C12—C13—O3 | 179.6 (3) |
| N1—C5—C6—C7 | −179.9 (3) | C11—C12—C13—O3 | −59.1 (4) |
| C4—C5—C6—C7 | 0.3 (5) | C14—C12—C13—O3 | 65.1 (4) |
| N2—C6—C7—C8 | 0.0 (4) | Cu1—O2—C14—C12 | 19.3 (3) |
| C5—C6—C7—C8 | 179.8 (3) | O5—C12—C14—O2 | 167.8 (3) |
| C6—C7—C8—C9 | −1.2 (4) | C13—C12—C14—O2 | −75.7 (3) |
| C7—C8—C9—C10 | 0.8 (4) | C11—C12—C14—O2 | 46.6 (4) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O2—H2O···O4i | 0.88 (2) | 1.85 (2) | 2.723 (3) | 169 (4) |
| O5—H5O···O6 | 0.93 (2) | 1.80 (3) | 2.549 (3) | 136 (3) |
Symmetry code: (i) −x+2, −y+1, −z+1.
Funding Statement
This work was funded by West Professorship, Louisiana State University grant . Louisiana Board of Regents grant .
References
- Antolini, L., Menabue, L., Pellacani, G. C., Saladini, M., Sola, M., Battaglia, L. P. & Corradi, A. B. (1984). J. Chem. Soc. Dalton Trans. pp. 2319–2323.
- Baldomá, R., Monfort, M., Ribas, J., Solans, X. & Maestro, M. A. (2006). Inorg. Chem. 45, 8144–8155. [DOI] [PubMed]
- Barquín, M., Cocera, N., González Garmendia, M. J., Larrínaga, L., Pinilla, E., Seco, J. M. & Torres, M. R. (2010). Inorg. Chim. Acta, 363, 127–133.
- Bruker (2016). SAINT and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cernak, J. (2016). CSD Communication (CCDC 832930). CCDC, Cambridge, England. htps://doi.org/10.5517/ccdc.csd.ccwyqq7.
- Creutz, C. (1981). Inorg. Chem. 20, 4449–4452.
- Cui, G.-H., Li, J.-R., Hu, T.-L. & Bu, X.-H. (2005). J. Mol. Struct. 738, 183–187.
- Devereux, M., McCann, M., O’Shea, D., O’Connor, M., Kiely, E., McKee, V., Naughton, D., Fisher, A., Kellett, A., Walsh, M., Egan, D. & Deegan, C. (2006). Bioinorg. Chem. Appl. 080283. [DOI] [PMC free article] [PubMed]
- Dey, B., Saha, R. & Mukherjee, P. (2013). Chem. Commun. 49, 7064–7066. [DOI] [PubMed]
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
- Fei, B.-L., Li, W., Xu, W.-S., Li, Y.-G., Long, J.-Y., Liu, Q.-B., Shao, K.-Z., Su, Z.-M. & Sun, W.-Y. (2013). J. Photochem. Photobiol. B, 125, 32–41. [DOI] [PubMed]
- Gao, S., Fronczek, F. R. & Maverick, A. W. (2020). CSD Communication (CCDC 1993697). CCDC, Cambridge, England. htps://doi.org/10.5517/ccdc.csd.cc24xlth.
- Gasque, L., Moreno-Esparza, R., Mollins, E., Briansó-Penalva, J. L., Ruiz-Ramírez, L. & Medina-Dickinson, G. (1998). Acta Cryst. C54, 1848–1850.
- Ghosh, D., Dhibar, S., Dey, A., Manna, P., Mahata, P. & Dey, B. (2020). ChemistrySelect 5, 75–82.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Guan, W., Sun, J.-Y., Zhang, X.-D. & Liu, Q.-T. (1998a). Gaodeng Xuexiao Huaxue Xuebao, 19, 5–8.
- Guan, W., Sun, J.-Y., Zhang, X.-D. & Liu, Q.-T. (1998b). Chem. Abstr. 85467.
- Jaramillo-García, J., Téllez-López, A., Martínez-Domínguez, R., Morales-Luckie, R. A., Martínez-Otero, D., Sánchez-Mendieta, V. & Escudero, R. (2016). J. Coord. Chem. 69, 1525–1540.
- John, R. P., Sreekanth, A., Rajakannan, V., Ajith, T. A. & Kurup, M. R. P. (2004). Polyhedron, 23, 2549–2559.
- Kato, M., Oyaizu, N., Shimazu, K. & Yagi, I. (2016). J. Phys. Chem. C, 120, 15814–15822.
- Khamespanah, F., Marx, M., Crochet, D. B., Pokharel, U. R., Fronczek, F. R., Maverick, A. W. & Beller, M. (2021). Submitted for publication. [DOI] [PMC free article] [PubMed]
- Knope, K. E. & Cahill, C. L. (2007). Acta Cryst. E63, o2955.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Liu, S. Q., Zhou, S. S., Chen, Z. G., Liu, C. B., Chen, F. & Wu, Z. Y. (2016). Catal. Commun. 73, 7–11.
- Löwendahl, L. & Petersson, G. (1976). Anal. Biochem. 72, 623–628. [DOI] [PubMed]
- Löwendahl, L., Petersson, G. & Samuelson, O. (1975a). Acta Chem. Scand. 29B, 526–527.
- Löwendahl, L., Petersson, G. & Samuelson, O. (1975b). Acta Chem. Scand. 29B, 975–980.
- Ma, X.-Y., Dong, X.-D., Li, Y.-P. & Zhang, Z.-G. (2006). Acta Cryst. E62, m3467–m3469.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
- Maity, B., Roy, M., Banik, B., Majumdar, R., Dighe, R. R. & Chakravarty, A. R. (2010). Organometallics, 29, 3632–3641.
- Manochitra, P., Manikandan, N., Murugavel, S., Sreeshailam, R. & Sambasiva Rao, P. (2012). Acta Cryst. E68, m884–m885. [DOI] [PMC free article] [PubMed]
- Marjani, K., Davies, S. C., Durrant, M. C., Hughes, D. L., Khodamorad, N. & Samodi, A. (2005). Acta Cryst. E61, m11–m14.
- Niemelä, K. (1987). J. Chromatogr. A, 399, 235–243.
- Pasán, J., Sanchiz, J., Ruiz-Pérez, C., Lloret, F. & Julve, M. (2004). Eur. J. Inorg. Chem. pp. 4081–4090.
- Reinoso, S., Vitoria, P., San Felices, L., Montero, A., Lezama, L. & Gutiérrez-Zorrilla, J. M. (2007). Inorg. Chem. 46, 1237–1249. [DOI] [PubMed]
- Seco, J. M., Amador, U. & Garmendia, M. J. G. (2000). Inorg. Chim. Acta, 303, 256–264.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Sheykhi, H., Hossaini Sadr, M. & Soltani, B. (2018). Rev. Roum. Chim. 63, 309–313.
- Sorouraddin, H. M., Hibara, A., Proskurnin, M. A. & Kitamori, T. (2000). Anal. Sci. 16, 1033–1037.
- Tadsanaprasittipol, A., Kraatz, H. B. & Enright, G. D. (1998). Inorg. Chim. Acta, 278, 143–149.
- Wang, X. Q., Rodriguez, J. A., Hanson, J. C., Gamarra, D., Martínez-Arias, A. & Fernández-García, M. (2006). J. Phys. Chem. B, 110, 428–434. [DOI] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Yuan, L., Qin, C., Wang, X., Wang, E. & Chang, S. (2008). Eur. J. Inorg. Chem. pp. 4936–4942.
- Zhang, Y.-N., Wang, Y.-Y., Hou, L., Liu, P., Liu, J.-Q. & Shi, Q.-Z. (2010). CrystEngComm, 12, 3840–3851.
- Zubair, S., Asghar, F., Badshah, A., Lal, B., Hussain, R. A., Tabassum, S. & Tahir, M. N. (2019). J. Organomet. Chem. 879, 60–68.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021001286/pk2655sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021001286/pk2655Isup2.hkl
CCDC reference: 1966752
Additional supporting information: crystallographic information; 3D view; checkCIF report




