Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Feb 12;77(Pt 3):242–246. doi: 10.1107/S2056989021001353

Crystal structures of two hydrazide derivatives of mefenamic acid, 3-(2,3-di­methyl­anilino)-N′-[(E)-(furan-2-yl)methyl­idene]benzohydrazide and N′-[(E)-benzyl­idene]-2-(2,3-di­methyl­anilino)benzo­hydrazide

Shaaban K Mohamed a,b, Joel T Mague c, Mehmet Akkurt d, Mustafa R Albayati e, Sahar M I Elgarhy f, Elham A Al-Taifi g,*
PMCID: PMC8061108  PMID: 33953944

The mol­ecular and crystal structures of (I), C20H19N3O2, and (II), C22H21N3O, are similar because they differ only in the substituent at the hydrazide N atom where a phenyl­methyl­ene moiety for (II) is present instead of a furan­methyl­ene moiety for (I).

Keywords: crystal structure, hydrogen bond, benzohydrazide, C—H⋯π(ring), mefenamic, NSAIDs

Abstract

The conformation about the central benzene ring in the mol­ecule of (I), C20H19N3O2, is partially determined by an intra­molecular N—H⋯O hydrogen bond. In the crystal, chains parallel to the c axis are generated by inter­molecular N—H⋯O hydrogen bonds with the chains assembled into a three-dimensional network structure by inter­molecular C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions. The mol­ecule of (II), C22H21N3O, differs from (I) only in the substituent at the hydrazide N atom where a phenyl­methyl­ene moiety for (II) is present instead of a furan­methyl­ene moiety for (I). Hence, mol­ecules of (I) and (II) show similarities in their mol­ecular and crystal structures. The conformation of the central portion of the mol­ecule of (II) is also therefore partially determined by an intra­molecular N—H⋯O hydrogen bond and inter­molecular N—H⋯O hydrogen bonds form chains parallel to the c axis. Likewise, the chains are connected into a three-dimensional network by C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions.

Chemical context  

Hydrazones possess a wide variety of biological activities such as anti­convulsant (Kumar et al., 2010), anti-depressant (Mohareb et al., 2010), analgesic, anti-inflammatory (Hernandez et al., 2012), anti­microbial (Maguene et al., 2011), anti­cancer (Al-Said et al., 2011) or anti­parasitic (Siddiqui et al., 2012) properties. A better tolerated and potent non-steroidal anti-inflammatory drug (NSAID) with fewer side effect characteristic is mefenamic acid. This drug belongs to the most commonly prescribed medications worldwide for treatment of painful inflammatory conditions such as rheumatic arthritis, traumatic injuries, pain and fever (Abbas, 2017). It is also used to treat mild to moderate pain, including menstrual pain and the associated migraines (Pringsheim et al., 2008). With this background in mind, we report here the synthesis and crystal structural determination of two hydrazide derivatives of mefenamic acid, (I) and (II).graphic file with name e-77-00242-scheme1.jpg

Structural commentary  

In the mol­ecule of (I) (Fig. 1), the dihedral angles between the central C9–C14 benzene ring and the C1–C6 and C17–C20/O2 rings are, respectively, 51.90 (6) and 43.32 (8)°. The conformation about the central portion of the mol­ecule is partially determined by the intra­molecular N1—H1⋯O1 hydrogen bond (Table 1).

Figure 1.

Figure 1

The mol­ecule of (I) with atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level. The intra­molecular N—H⋯O hydrogen bond is shown as a dashed line.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg1 and Cg2 are the centroids of the C17–C20/O2 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.910 (19) 1.977 (18) 2.7045 (14) 135.8 (15)
N2—H2⋯O1i 0.883 (18) 2.014 (18) 2.8458 (13) 156.4 (15)
C4—H4⋯Cg1ii 0.955 (17) 2.941 (17) 3.7248 (15) 140.1 (17)
C6—H6⋯O1iii 0.976 (18) 2.556 (18) 3.3434 (16) 137.7 (14)
C11—H11⋯Cg2iv 0.996 (16) 2.765 (16) 3.6231 (14) 144.8 (12)

Symmetry codes: (i) x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}; (ii) -x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}; (iii) -x+1, -y+1, -z+1; (iv) x, y, z+1.

Mol­ecule (II) (Fig. 2) differs from mol­ecule (I) only by the substituent at N3, i.e. a phenyl­methyl­ene moiety for (II) instead of a furan­methyl­ene moiety for (I). Hence, the structural characteristics for most parts of the two mol­ecules are very similar, as exemplified by the dihedral angles between the central C9–C14 benzene ring and the C1–C6 and C17–C22 benzene rings of 57.38 (6) and 43.48 (6)°, respectively, observed in mol­ecule (II). Likewise, in the crystal of (II), the conformation of the central portion of the mol­ecule is also partially determined by the intra­molecular N1—H1⋯O1 hydrogen bond (Table 2; Fig. 2).

Figure 2.

Figure 2

The mol­ecule of (II) with atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level. The intra­molecular N—H⋯O hydrogen bond is shown by a dashed line.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

Cg1 and Cg3 are the centroids of the C1–C6 and C17–C22 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.908 (18) 1.946 (18) 2.6920 (13) 138.2 (15)
N2—H2⋯O1i 0.913 (16) 1.974 (17) 2.8564 (13) 162.0 (14)
C4—H4⋯Cg3ii 1.001 (17) 2.796 (17) 3.6141 (15) 139.4 (13)
C6—H6⋯O1iii 0.980 (18) 2.583 (19) 3.4815 (16) 152.5 (13)
C20—H20⋯Cg1iv 1.000 (18) 2.838 (17) 3.6644 (15) 140.5 (13)

Symmetry codes: (i) x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}; (ii) -x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}; (iii) -x+1, -y+1, -z+1; (iv) x-1, -y-{\script{1\over 2}}, z-{\script{3\over 2}}.

Supra­molecular features  

In the crystal structure of (I), chains of mol­ecules extending parallel to the c-axis direction are generated by N2—H2⋯O2 hydrogen bonds (Table 1; Fig. 3). These chains are linked into a three-dimensional network structure by a combination of C6—H6⋯O1 hydrogen bonds and C4—H4⋯Cg1 and C11—H11⋯Cg2 inter­actions (Table 1; Fig. 4).

Figure 3.

Figure 3

A portion of one N—H⋯O hydrogen-bonded chain viewed along the b axis of (I) with hydrogen bonds shown as dashed lines.

Figure 4.

Figure 4

Packing view of (I) along the c axis with inter­molecular C—H⋯O hydrogen bonds shown as dashed lines.

In the crystal structure of (II), inter­molecular N2—H2⋯O1 hydrogen bonds form chains parallel the c-axis direction (Table 2; Fig. 5), which are connected through C6—H6⋯O1 hydrogen bonds and C4—H4⋯Cg3 and C20—H20⋯Cg1 inter­actions to form a three-dimensional network (Table 2; Fig. 6).

Figure 5.

Figure 5

A portion of the N—H⋯O hydrogen-bonded chain viewed along the b axis of (II) with hydrogen bonds shown as dashed lines..

Figure 6.

Figure 6

Packing view of (II) along the c axis with inter­molecular C—H⋯O hydrogen bonds shown as dashed lines.

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.42, November 2020; Groom et al., 2016) gave six hits for structures with a 2-(2,3-di­methyl­anilino)-N′-methyl­idene­benzohydrazide skeleton: N′-[(4-chloro­phen­yl)methyl­idene]-2-[(2,3-di­methyl­phen­yl)amino]­benzohydrazide (VEDBAK; Jasinski et al., 2017), N′-[1-(4-chloro­phen­yl)ethyl­idene]-2-[(2,3-di­methyl­phen­yl)amino]­benzohydrazide (LEBSET; Mohamed et al., 2017), 2-[(2,3-di­methyl­phen­yl)amino]-N′-(2-hy­droxy­benzyl­idene)benzohydrazide (DABREG; Mohamed et al., 2015), 2-[(2,3-di­methyl­phen­yl)amino]-N′-(2-thienyl­methyl­ene)benzohydrazide (LEGHAI; Fun et al., 2012a ), 2-[(2,3-di­methyl­phen­yl)amino]­benzohydrazide (LEGHIQ; Fun et al., 2012b ) and (E)-2-[(2,3-di­methyl­phen­yl)amino]-N′-(2-methyl-5-(prop-1-en-2-yl)cyclo­hex-2-en-1-yl­idene)benzo­hydra­zide (YAXJUE; Bhat et al., 2012).

In the structure of VEDBAK, the dihedral angle between the planes of the chloro­phenyl and di­methyl­phenyl rings is 66.50 (9)°. These rings make dihedral angles of 47.79 (8) and 69.24 (9)°, respectively, with the central benzene ring. In the crystal structure of VEDBAK, mol­ecules are linked into a three-dimensional supra­molecular network by N—H⋯O, C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions.

In the crystal structure of LEBSET, mol­ecules are linked into a three-dimensional supra­molecular network by N—H⋯N, N—H⋯O, C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions.

The asymmetric unit of DABREG consists of two mol­ecules (A and B) having differing conformations that mainly concern the dihedral angles between the hy­droxy­phenyl and di­methyl­phenyl rings relative to the central phenyl­ene ring, with values of 30.16 (6) and 58.60 (6)° in mol­ecule A and of 13.42 (7) and 60.31 (7)° in mol­ecule B. With the exception of the di­methyl­phenyl substituent, the conformations of the rest of each mol­ecule are largely determined by intra­molecular O—H⋯N and N—H⋯O hydrogen bonds. In the crystal structure, N—H⋯O hydrogen bonds link the mol­ecules into chains extending parallel to the a axis where the types of mol­ecules alternate in an ⋯ABAB⋯ fashion.

In LEGHAI, the central benzene ring makes dihedral angles of 45.36 (9) and 55.33 (9)° with the thio­phene ring and the dimethyl-substituted benzene ring, respectively. The dihedral angle between the thio­phene ring and dimethyl-substituted benzene ring is 83.60 (9)°. The thio­phene ring and the benzene ring are twisted from the mean plane of the C(=O)—N—N=C bridge [maximum deviation = 0.0860 (13) Å], with dihedral angles of 23.86 (9) and 24.77 (8)°, respectively. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal structure of LEGHAI, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds to the same acceptor atom, forming sheets lying parallel to the bc plane. The crystal packing also features C—H⋯π inter­actions.

In LEGHIQ, the dihedral angle between the benzene rings is 58.05 (9)°. The non-H atoms of the hydrazide group lie in a common plane (r.m.s. deviation = 0.0006 Å) and are close to co-planar with their attached benzene ring [dihedral angle = 8.02 (9)°]. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif in the mol­ecule, and a short intra­molecular contact (H⋯H = 1.88 Å) is also observed. In the crystal structure of LEGHIQ, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds into inversion dimers. The crystal packing also features C—H⋯π inter­actions.

The asymmetric unit of the compound YAXJUE comprises two mol­ecules. The dihedral angles between the benzene rings in the two mol­ecules are 59.7 (2) and 61.27 (18)°. The cyclo­hexene rings adopt sofa and half-chair conformations. In the crystal structure of YAXJUE, mol­ecules are connected via N—H⋯O and weak C—H⋯O hydrogen bonds, forming chains along the a-axis direction. In each mol­ecule, there is an intra­molecular N—H⋯O hydrogen bond.

Synthesis and crystallization  

Synthesis of (I): A mixture of 1 mmol of 2-furaldehyde (96 mg) and 1 mmol of 2-[(2,3-di­methyl­phen­yl)amino]­benzohydrazide (255 mg) in 20 ml of ethanol was refluxed and monitored by TLC until completion. The reaction mixture was cooled to room temperature when the solid product was obtained. The crude product was filtered off, dried and recrystallized from ethanol to afford crystals suitable for X-ray diffraction. M.p. 479–483 K.

Synthesis of (II): In a solution of 20 ml of ethanol, a mixture of 106 mg (1 mmol) of benzaldehyde (106 mg) and 255 mg (1 mmol) of 2-[(2,3-di­methyl­phen­yl)amino]­benzohydrazide was refluxed for 4 h. The solid product was obtained after the reaction mixture was cooled to room temperature. The crude product was filtered off, dried and recrystallized from ethanol to afford crystals suitable for X-ray diffraction. M.p. 466–469 K.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. For (I) and (II), all H atoms were located in a difference-Fourier map and were refined freely.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C20H19N3O2 C22H21N3O
M r 333.38 343.42
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 150 150
a, b, c (Å) 13.8467 (3), 15.8409 (3), 8.0225 (2) 14.3493 (8), 15.7501 (9), 8.3737 (5)
β (°) 104.814 (1) 106.285 (2)
V3) 1701.20 (7) 1816.55 (18)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 0.69 0.62
Crystal size (mm) 0.19 × 0.11 × 0.07 0.19 × 0.13 × 0.08
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.88, 0.95 0.86, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 13222, 3372, 2939 13875, 3665, 3140
R int 0.031 0.031
(sin θ/λ)max−1) 0.625 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.095, 1.05 0.037, 0.092, 1.04
No. of reflections 3372 3665
No. of parameters 303 320
H-atom treatment All H-atom parameters refined All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.23, −0.19 0.17, −0.16

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2016/6 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989021001353/wm5599sup1.cif

e-77-00242-sup1.cif (834.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021001353/wm5599Isup2.hkl

e-77-00242-Isup2.hkl (269.3KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989021001353/wm5599IIsup3.hkl

e-77-00242-IIsup3.hkl (292.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021001353/wm5599Isup4.cml

Supporting information file. DOI: 10.1107/S2056989021001353/wm5599IIsup5.cml

CCDC references: 2061393, 2061392

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

3-(2,3-Dimethylanilino)-N'-[(E)-(furan-2-yl)methylidene]benzohydrazide (I) . Crystal data

C20H19N3O2 F(000) = 704
Mr = 333.38 Dx = 1.302 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
a = 13.8467 (3) Å Cell parameters from 9755 reflections
b = 15.8409 (3) Å θ = 3.3–74.5°
c = 8.0225 (2) Å µ = 0.69 mm1
β = 104.814 (1)° T = 150 K
V = 1701.20 (7) Å3 Column, colourless
Z = 4 0.19 × 0.11 × 0.07 mm

3-(2,3-Dimethylanilino)-N'-[(E)-(furan-2-yl)methylidene]benzohydrazide (I) . Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 3372 independent reflections
Radiation source: INCOATEC IµS micro–focus source 2939 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.031
Detector resolution: 10.4167 pixels mm-1 θmax = 74.5°, θmin = 3.3°
ω scans h = −14→16
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −18→19
Tmin = 0.88, Tmax = 0.95 l = −9→9
13222 measured reflections

3-(2,3-Dimethylanilino)-N'-[(E)-(furan-2-yl)methylidene]benzohydrazide (I) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 All H-atom parameters refined
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.3981P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
3372 reflections Δρmax = 0.23 e Å3
303 parameters Δρmin = −0.19 e Å3
0 restraints Extinction correction: SHELXL 2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0049 (4)

3-(2,3-Dimethylanilino)-N'-[(E)-(furan-2-yl)methylidene]benzohydrazide (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

3-(2,3-Dimethylanilino)-N'-[(E)-(furan-2-yl)methylidene]benzohydrazide (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.43892 (6) 0.33178 (5) 0.45837 (10) 0.0275 (2)
O2 0.10644 (7) 0.20592 (6) 0.31256 (12) 0.0371 (2)
N1 0.62923 (8) 0.38535 (8) 0.58252 (15) 0.0353 (3)
H1 0.5810 (13) 0.3629 (11) 0.495 (2) 0.051 (5)*
N2 0.37222 (7) 0.26862 (7) 0.65665 (13) 0.0262 (2)
H2 0.3836 (12) 0.2485 (11) 0.763 (2) 0.043 (4)*
N3 0.29029 (7) 0.24278 (6) 0.52997 (12) 0.0260 (2)
C1 0.70907 (9) 0.42610 (8) 0.53437 (15) 0.0279 (3)
C2 0.76645 (9) 0.37935 (8) 0.44626 (15) 0.0276 (3)
C3 0.84199 (9) 0.42133 (9) 0.39033 (15) 0.0313 (3)
C4 0.85989 (10) 0.50619 (9) 0.42738 (17) 0.0361 (3)
H4 0.9119 (12) 0.5334 (11) 0.389 (2) 0.047 (5)*
C5 0.80281 (11) 0.55168 (9) 0.51433 (19) 0.0378 (3)
H5 0.8130 (13) 0.6122 (12) 0.533 (2) 0.052 (5)*
C6 0.72631 (10) 0.51191 (9) 0.56546 (18) 0.0342 (3)
H6 0.6815 (13) 0.5435 (11) 0.618 (2) 0.052 (5)*
C7 0.74397 (12) 0.28753 (9) 0.40596 (19) 0.0381 (3)
H7A 0.6963 (16) 0.2816 (13) 0.295 (3) 0.073 (6)*
H7B 0.8049 (17) 0.2542 (14) 0.398 (3) 0.078 (6)*
H7C 0.7169 (13) 0.2599 (12) 0.493 (2) 0.055 (5)*
C8 0.90166 (13) 0.37716 (12) 0.2834 (2) 0.0470 (4)
H8A 0.8587 (14) 0.3622 (12) 0.170 (3) 0.056 (5)*
H8B 0.957 (2) 0.4145 (17) 0.265 (3) 0.105 (8)*
H8C 0.9298 (16) 0.3242 (15) 0.331 (3) 0.075 (6)*
C9 0.60374 (9) 0.39480 (8) 0.73618 (15) 0.0275 (3)
C10 0.66889 (10) 0.43330 (8) 0.88024 (16) 0.0326 (3)
H10 0.7324 (13) 0.4574 (11) 0.866 (2) 0.045 (4)*
C11 0.64394 (10) 0.44053 (9) 1.03499 (16) 0.0350 (3)
H11 0.6916 (11) 0.4702 (10) 1.131 (2) 0.037 (4)*
C12 0.55432 (10) 0.40856 (9) 1.05579 (16) 0.0343 (3)
H12 0.5341 (11) 0.4161 (10) 1.165 (2) 0.037 (4)*
C13 0.48990 (10) 0.36959 (8) 0.91722 (16) 0.0293 (3)
H13 0.4250 (12) 0.3490 (10) 0.9272 (19) 0.038 (4)*
C14 0.51281 (9) 0.36090 (7) 0.75761 (15) 0.0251 (3)
C15 0.44003 (8) 0.32000 (7) 0.61193 (14) 0.0238 (2)
C16 0.23183 (9) 0.19224 (8) 0.58218 (15) 0.0280 (3)
H16 0.2460 (11) 0.1729 (10) 0.701 (2) 0.038 (4)*
C17 0.13770 (9) 0.16726 (8) 0.46938 (16) 0.0297 (3)
C18 0.06614 (11) 0.11334 (10) 0.4926 (2) 0.0410 (3)
H18 0.0716 (14) 0.0788 (12) 0.597 (2) 0.059 (5)*
C19 −0.01455 (11) 0.11896 (10) 0.3418 (2) 0.0440 (4)
H19 −0.0782 (15) 0.0886 (12) 0.319 (2) 0.061 (5)*
C20 0.01305 (10) 0.17477 (10) 0.2391 (2) 0.0425 (4)
H20 −0.0217 (15) 0.1968 (13) 0.124 (3) 0.063 (5)*

3-(2,3-Dimethylanilino)-N'-[(E)-(furan-2-yl)methylidene]benzohydrazide (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0276 (4) 0.0337 (5) 0.0215 (4) −0.0028 (3) 0.0067 (3) −0.0006 (3)
O2 0.0308 (5) 0.0430 (5) 0.0328 (5) −0.0046 (4) −0.0004 (4) 0.0003 (4)
N1 0.0289 (6) 0.0477 (7) 0.0315 (6) −0.0131 (5) 0.0118 (4) −0.0092 (5)
N2 0.0236 (5) 0.0337 (5) 0.0197 (5) −0.0034 (4) 0.0026 (4) 0.0016 (4)
N3 0.0225 (5) 0.0315 (5) 0.0229 (5) −0.0018 (4) 0.0040 (4) −0.0016 (4)
C1 0.0224 (6) 0.0326 (6) 0.0280 (6) −0.0021 (5) 0.0051 (4) 0.0011 (5)
C2 0.0266 (6) 0.0307 (6) 0.0239 (6) −0.0007 (5) 0.0037 (4) 0.0010 (5)
C3 0.0236 (6) 0.0426 (7) 0.0269 (6) −0.0005 (5) 0.0050 (5) 0.0022 (5)
C4 0.0288 (7) 0.0433 (8) 0.0352 (7) −0.0101 (6) 0.0065 (5) 0.0057 (6)
C5 0.0387 (8) 0.0292 (7) 0.0428 (8) −0.0044 (5) 0.0056 (6) 0.0025 (6)
C6 0.0295 (7) 0.0321 (7) 0.0402 (7) 0.0025 (5) 0.0078 (5) −0.0009 (5)
C7 0.0498 (9) 0.0314 (7) 0.0344 (7) −0.0032 (6) 0.0130 (6) −0.0027 (5)
C8 0.0392 (9) 0.0645 (11) 0.0414 (9) −0.0004 (7) 0.0176 (7) −0.0055 (7)
C9 0.0250 (6) 0.0297 (6) 0.0271 (6) 0.0004 (5) 0.0052 (4) 0.0000 (5)
C10 0.0260 (6) 0.0356 (7) 0.0327 (7) −0.0025 (5) 0.0011 (5) −0.0009 (5)
C11 0.0358 (7) 0.0358 (7) 0.0275 (6) −0.0008 (5) −0.0028 (5) −0.0015 (5)
C12 0.0411 (7) 0.0370 (7) 0.0235 (6) −0.0008 (6) 0.0060 (5) −0.0024 (5)
C13 0.0301 (7) 0.0313 (6) 0.0268 (6) −0.0012 (5) 0.0079 (5) 0.0003 (5)
C14 0.0232 (6) 0.0275 (6) 0.0233 (6) 0.0009 (4) 0.0033 (4) 0.0001 (4)
C15 0.0217 (6) 0.0260 (6) 0.0236 (6) 0.0023 (4) 0.0055 (4) 0.0000 (4)
C16 0.0264 (6) 0.0335 (6) 0.0249 (6) −0.0010 (5) 0.0081 (5) −0.0001 (5)
C17 0.0272 (6) 0.0341 (6) 0.0286 (6) −0.0013 (5) 0.0088 (5) −0.0029 (5)
C18 0.0342 (7) 0.0482 (8) 0.0433 (8) −0.0102 (6) 0.0150 (6) −0.0046 (6)
C19 0.0250 (7) 0.0502 (9) 0.0563 (9) −0.0075 (6) 0.0097 (6) −0.0170 (7)
C20 0.0285 (7) 0.0471 (8) 0.0451 (8) −0.0014 (6) −0.0033 (6) −0.0108 (7)

3-(2,3-Dimethylanilino)-N'-[(E)-(furan-2-yl)methylidene]benzohydrazide (I) . Geometric parameters (Å, º)

O1—C15 1.2422 (14) C7—H7C 0.978 (19)
O2—C17 1.3663 (16) C8—H8A 0.98 (2)
O2—C20 1.3687 (16) C8—H8B 1.01 (3)
N1—C9 1.3744 (16) C8—H8C 0.96 (2)
N1—C1 1.4165 (16) C9—C10 1.4102 (17)
N1—H1 0.910 (19) C9—C14 1.4191 (17)
N2—C15 1.3582 (15) C10—C11 1.3759 (19)
N2—N3 1.3777 (13) C10—H10 0.993 (17)
N2—H2 0.883 (18) C11—C12 1.389 (2)
N3—C16 1.2826 (16) C11—H11 0.996 (16)
C1—C6 1.3915 (18) C12—C13 1.3804 (18)
C1—C2 1.4023 (17) C12—H12 0.989 (16)
C2—C3 1.4063 (17) C13—C14 1.4024 (17)
C2—C7 1.5053 (18) C13—H13 0.978 (16)
C3—C4 1.385 (2) C14—C15 1.4829 (15)
C3—C8 1.507 (2) C16—C17 1.4392 (17)
C4—C5 1.383 (2) C16—H16 0.973 (16)
C4—H4 0.955 (17) C17—C18 1.3566 (19)
C5—C6 1.3818 (19) C18—C19 1.424 (2)
C5—H5 0.975 (19) C18—H18 0.990 (19)
C6—H6 0.976 (18) C19—C20 1.330 (2)
C7—H7A 0.97 (2) C19—H19 0.98 (2)
C7—H7B 1.01 (2) C20—H20 0.99 (2)
C17—O2—C20 106.08 (11) H8B—C8—H8C 108.9 (19)
C9—N1—C1 126.32 (11) N1—C9—C10 121.67 (11)
C9—N1—H1 115.6 (11) N1—C9—C14 120.45 (11)
C1—N1—H1 115.8 (11) C10—C9—C14 117.77 (11)
C15—N2—N3 118.53 (10) C11—C10—C9 121.32 (12)
C15—N2—H2 120.4 (11) C11—C10—H10 120.6 (10)
N3—N2—H2 120.9 (11) C9—C10—H10 118.0 (10)
C16—N3—N2 114.45 (10) C10—C11—C12 121.07 (12)
C6—C1—C2 120.85 (11) C10—C11—H11 118.0 (9)
C6—C1—N1 120.43 (11) C12—C11—H11 120.9 (9)
C2—C1—N1 118.62 (11) C13—C12—C11 118.64 (12)
C1—C2—C3 118.33 (11) C13—C12—H12 119.6 (9)
C1—C2—C7 120.39 (11) C11—C12—H12 121.7 (9)
C3—C2—C7 121.21 (12) C12—C13—C14 121.92 (12)
C4—C3—C2 119.82 (12) C12—C13—H13 120.1 (9)
C4—C3—C8 118.60 (13) C14—C13—H13 118.0 (9)
C2—C3—C8 121.53 (13) C13—C14—C9 119.23 (11)
C5—C4—C3 121.32 (12) C13—C14—C15 119.71 (11)
C5—C4—H4 120.2 (10) C9—C14—C15 121.00 (10)
C3—C4—H4 118.5 (10) O1—C15—N2 121.19 (10)
C6—C5—C4 119.50 (13) O1—C15—C14 123.33 (10)
C6—C5—H5 119.7 (10) N2—C15—C14 115.47 (10)
C4—C5—H5 120.7 (10) N3—C16—C17 120.80 (11)
C5—C6—C1 120.11 (13) N3—C16—H16 122.0 (9)
C5—C6—H6 121.1 (11) C17—C16—H16 117.0 (9)
C1—C6—H6 118.7 (11) C18—C17—O2 109.77 (12)
C2—C7—H7A 110.2 (13) C18—C17—C16 131.50 (13)
C2—C7—H7B 112.8 (13) O2—C17—C16 118.59 (11)
H7A—C7—H7B 106.1 (17) C17—C18—C19 106.60 (14)
C2—C7—H7C 112.1 (11) C17—C18—H18 124.4 (11)
H7A—C7—H7C 108.4 (16) C19—C18—H18 129.0 (11)
H7B—C7—H7C 106.9 (17) C20—C19—C18 106.30 (13)
C3—C8—H8A 110.5 (11) C20—C19—H19 126.7 (11)
C3—C8—H8B 111.0 (15) C18—C19—H19 127.0 (11)
H8A—C8—H8B 108.1 (18) C19—C20—O2 111.25 (13)
C3—C8—H8C 113.8 (13) C19—C20—H20 131.6 (12)
H8A—C8—H8C 104.2 (17) O2—C20—H20 117.1 (12)
C15—N2—N3—C16 177.81 (11) C11—C12—C13—C14 0.5 (2)
C9—N1—C1—C6 −44.52 (19) C12—C13—C14—C9 −1.49 (19)
C9—N1—C1—C2 139.08 (13) C12—C13—C14—C15 −178.79 (12)
C6—C1—C2—C3 0.10 (18) N1—C9—C14—C13 178.37 (11)
N1—C1—C2—C3 176.49 (11) C10—C9—C14—C13 2.26 (17)
C6—C1—C2—C7 −177.09 (12) N1—C9—C14—C15 −4.36 (18)
N1—C1—C2—C7 −0.70 (18) C10—C9—C14—C15 179.53 (11)
C1—C2—C3—C4 1.90 (18) N3—N2—C15—O1 −12.62 (17)
C7—C2—C3—C4 179.07 (12) N3—N2—C15—C14 166.53 (10)
C1—C2—C3—C8 −175.36 (12) C13—C14—C15—O1 157.42 (11)
C7—C2—C3—C8 1.81 (19) C9—C14—C15—O1 −19.84 (18)
C2—C3—C4—C5 −1.98 (19) C13—C14—C15—N2 −21.70 (16)
C8—C3—C4—C5 175.36 (13) C9—C14—C15—N2 161.04 (11)
C3—C4—C5—C6 0.0 (2) N2—N3—C16—C17 173.06 (11)
C4—C5—C6—C1 2.0 (2) C20—O2—C17—C18 0.28 (15)
C2—C1—C6—C5 −2.09 (19) C20—O2—C17—C16 −175.78 (12)
N1—C1—C6—C5 −178.41 (12) N3—C16—C17—C18 177.42 (14)
C1—N1—C9—C10 −14.2 (2) N3—C16—C17—O2 −7.54 (18)
C1—N1—C9—C14 169.88 (12) O2—C17—C18—C19 −0.22 (16)
N1—C9—C10—C11 −178.26 (12) C16—C17—C18—C19 175.15 (13)
C14—C9—C10—C11 −2.20 (19) C17—C18—C19—C20 0.08 (17)
C9—C10—C11—C12 1.3 (2) C18—C19—C20—O2 0.10 (18)
C10—C11—C12—C13 −0.4 (2) C17—O2—C20—C19 −0.23 (16)

3-(2,3-Dimethylanilino)-N'-[(E)-(furan-2-yl)methylidene]benzohydrazide (I) . Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C17–C20/O2 and C1–C6 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.910 (19) 1.977 (18) 2.7045 (14) 135.8 (15)
N2—H2···O1i 0.883 (18) 2.014 (18) 2.8458 (13) 156.4 (15)
C4—H4···Cg1ii 0.955 (17) 2.941 (17) 3.7248 (15) 140.1 (17)
C6—H6···O1iii 0.976 (18) 2.556 (18) 3.3434 (16) 137.7 (14)
C11—H11···Cg2iv 0.996 (16) 2.765 (16) 3.6231 (14) 144.8 (12)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) x, y, z+1.

N'-[(E)-Benzylidene]-2-(2,3-dimethylanilino)-benzohydrazide (II) . Crystal data

C22H21N3O F(000) = 728
Mr = 343.42 Dx = 1.256 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
a = 14.3493 (8) Å Cell parameters from 9904 reflections
b = 15.7501 (9) Å θ = 4.3–74.6°
c = 8.3737 (5) Å µ = 0.62 mm1
β = 106.285 (2)° T = 150 K
V = 1816.55 (18) Å3 Block, pale yellow
Z = 4 0.19 × 0.13 × 0.08 mm

N'-[(E)-Benzylidene]-2-(2,3-dimethylanilino)-benzohydrazide (II) . Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 3665 independent reflections
Radiation source: INCOATEC IµS micro–focus source 3140 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.031
Detector resolution: 10.4167 pixels mm-1 θmax = 74.6°, θmin = 4.3°
ω scans h = −17→16
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −19→18
Tmin = 0.86, Tmax = 0.95 l = −10→9
13875 measured reflections

N'-[(E)-Benzylidene]-2-(2,3-dimethylanilino)-benzohydrazide (II) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 All H-atom parameters refined
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.444P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3665 reflections Δρmax = 0.17 e Å3
320 parameters Δρmin = −0.15 e Å3
0 restraints Extinction correction: SHELXL 2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0033 (3)

N'-[(E)-Benzylidene]-2-(2,3-dimethylanilino)-benzohydrazide (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

N'-[(E)-Benzylidene]-2-(2,3-dimethylanilino)-benzohydrazide (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.44514 (6) 0.33126 (6) 0.43024 (9) 0.0300 (2)
N1 0.62636 (8) 0.39413 (8) 0.53993 (14) 0.0392 (3)
H1 0.5771 (13) 0.3712 (11) 0.458 (2) 0.051 (5)*
N2 0.39227 (7) 0.26174 (7) 0.62519 (12) 0.0287 (2)
H2 0.4042 (11) 0.2421 (10) 0.732 (2) 0.040 (4)*
N3 0.30815 (7) 0.23802 (7) 0.50842 (12) 0.0278 (2)
C1 0.70441 (8) 0.43293 (8) 0.49433 (14) 0.0301 (3)
C2 0.75817 (9) 0.38475 (8) 0.41121 (14) 0.0301 (3)
C3 0.83421 (9) 0.42441 (9) 0.36395 (15) 0.0330 (3)
C4 0.85496 (10) 0.50931 (9) 0.40197 (17) 0.0386 (3)
H4 0.9098 (13) 0.5351 (11) 0.367 (2) 0.052 (5)*
C5 0.80049 (11) 0.55653 (9) 0.48198 (18) 0.0411 (3)
H5 0.8132 (13) 0.6202 (12) 0.504 (2) 0.053 (5)*
C6 0.72458 (10) 0.51889 (9) 0.52686 (16) 0.0365 (3)
H6 0.6833 (13) 0.5527 (12) 0.578 (2) 0.054 (5)*
C7 0.73544 (13) 0.29257 (9) 0.3725 (2) 0.0451 (4)
H7A 0.7008 (18) 0.2847 (16) 0.256 (3) 0.095 (7)*
H7B 0.7995 (19) 0.2567 (16) 0.388 (3) 0.096 (8)*
H7C 0.6979 (15) 0.2671 (13) 0.443 (3) 0.072 (6)*
C8 0.89350 (12) 0.37677 (12) 0.2713 (2) 0.0490 (4)
H8A 0.8504 (15) 0.3577 (13) 0.155 (3) 0.068 (6)*
H8B 0.9499 (16) 0.4120 (13) 0.259 (2) 0.074 (6)*
H8C 0.9197 (17) 0.3238 (15) 0.328 (3) 0.083 (7)*
C9 0.60826 (8) 0.39908 (8) 0.69193 (14) 0.0300 (3)
C10 0.67446 (9) 0.43734 (9) 0.83041 (16) 0.0356 (3)
H10 0.7358 (12) 0.4613 (10) 0.8156 (19) 0.045 (4)*
C11 0.65461 (10) 0.44332 (9) 0.98135 (16) 0.0391 (3)
H11 0.7018 (12) 0.4732 (10) 1.073 (2) 0.045 (4)*
C12 0.56938 (10) 0.41042 (9) 1.00387 (16) 0.0386 (3)
H12 0.5526 (12) 0.4186 (11) 1.110 (2) 0.053 (5)*
C13 0.50518 (9) 0.36998 (8) 0.87248 (15) 0.0323 (3)
H13 0.4448 (11) 0.3485 (10) 0.8855 (18) 0.037 (4)*
C14 0.52311 (8) 0.36209 (8) 0.71679 (14) 0.0273 (3)
C15 0.45190 (8) 0.31809 (8) 0.57935 (14) 0.0259 (2)
C16 0.25463 (8) 0.18507 (8) 0.55850 (14) 0.0283 (3)
H16 0.2745 (11) 0.1595 (10) 0.6724 (19) 0.039 (4)*
C17 0.15643 (8) 0.16629 (8) 0.45380 (14) 0.0270 (2)
C18 0.11897 (9) 0.20627 (8) 0.30028 (15) 0.0325 (3)
H18 0.1624 (12) 0.2442 (11) 0.258 (2) 0.046 (4)*
C19 0.02375 (10) 0.19387 (9) 0.20915 (17) 0.0387 (3)
H19 −0.0003 (12) 0.2241 (11) 0.098 (2) 0.051 (5)*
C20 −0.03663 (9) 0.14166 (9) 0.26957 (17) 0.0377 (3)
H20 −0.1059 (13) 0.1325 (11) 0.205 (2) 0.050 (4)*
C21 −0.00080 (9) 0.10191 (9) 0.42071 (17) 0.0373 (3)
H21 −0.0449 (13) 0.0660 (11) 0.467 (2) 0.051 (4)*
C22 0.09561 (9) 0.11354 (9) 0.51326 (16) 0.0333 (3)
H22 0.1219 (11) 0.0868 (10) 0.6234 (19) 0.038 (4)*

N'-[(E)-Benzylidene]-2-(2,3-dimethylanilino)-benzohydrazide (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0270 (4) 0.0408 (5) 0.0213 (4) −0.0033 (3) 0.0051 (3) −0.0017 (3)
N1 0.0290 (5) 0.0598 (8) 0.0297 (5) −0.0158 (5) 0.0096 (4) −0.0104 (5)
N2 0.0229 (5) 0.0392 (6) 0.0212 (5) −0.0030 (4) 0.0019 (4) 0.0015 (4)
N3 0.0219 (5) 0.0362 (6) 0.0235 (5) −0.0016 (4) 0.0034 (4) −0.0018 (4)
C1 0.0235 (5) 0.0390 (7) 0.0261 (6) −0.0033 (5) 0.0041 (4) 0.0003 (5)
C2 0.0309 (6) 0.0328 (6) 0.0253 (6) −0.0003 (5) 0.0053 (5) 0.0017 (5)
C3 0.0282 (6) 0.0424 (7) 0.0281 (6) 0.0030 (5) 0.0076 (5) 0.0056 (5)
C4 0.0333 (7) 0.0454 (8) 0.0364 (7) −0.0080 (6) 0.0085 (5) 0.0067 (6)
C5 0.0463 (8) 0.0333 (7) 0.0417 (7) −0.0066 (6) 0.0092 (6) 0.0012 (6)
C6 0.0354 (7) 0.0362 (7) 0.0368 (7) 0.0037 (5) 0.0083 (5) −0.0027 (5)
C7 0.0632 (10) 0.0346 (7) 0.0402 (8) −0.0068 (7) 0.0189 (7) −0.0025 (6)
C8 0.0463 (8) 0.0616 (10) 0.0453 (9) 0.0114 (8) 0.0229 (7) 0.0053 (7)
C9 0.0248 (5) 0.0366 (7) 0.0263 (6) −0.0003 (5) 0.0034 (4) −0.0009 (5)
C10 0.0292 (6) 0.0416 (7) 0.0306 (6) −0.0046 (5) −0.0005 (5) −0.0013 (5)
C11 0.0416 (7) 0.0412 (7) 0.0268 (6) −0.0047 (6) −0.0030 (5) −0.0025 (5)
C12 0.0467 (7) 0.0436 (8) 0.0234 (6) −0.0018 (6) 0.0065 (5) −0.0032 (5)
C13 0.0336 (6) 0.0367 (7) 0.0260 (6) −0.0004 (5) 0.0074 (5) −0.0008 (5)
C14 0.0246 (5) 0.0329 (6) 0.0226 (5) 0.0012 (5) 0.0037 (4) −0.0007 (4)
C15 0.0205 (5) 0.0326 (6) 0.0237 (5) 0.0029 (4) 0.0050 (4) 0.0003 (4)
C16 0.0260 (6) 0.0352 (6) 0.0236 (5) 0.0009 (5) 0.0066 (4) 0.0004 (5)
C17 0.0251 (6) 0.0307 (6) 0.0252 (5) 0.0008 (5) 0.0070 (4) −0.0030 (4)
C18 0.0300 (6) 0.0369 (7) 0.0292 (6) 0.0000 (5) 0.0057 (5) 0.0012 (5)
C19 0.0330 (7) 0.0451 (8) 0.0326 (7) 0.0035 (6) 0.0001 (5) 0.0003 (6)
C20 0.0244 (6) 0.0447 (8) 0.0402 (7) 0.0007 (5) 0.0028 (5) −0.0106 (6)
C21 0.0298 (6) 0.0425 (7) 0.0411 (7) −0.0077 (6) 0.0123 (5) −0.0075 (6)
C22 0.0306 (6) 0.0381 (7) 0.0306 (6) −0.0049 (5) 0.0076 (5) −0.0009 (5)

N'-[(E)-Benzylidene]-2-(2,3-dimethylanilino)-benzohydrazide (II) . Geometric parameters (Å, º)

O1—C15 1.2424 (14) C9—C10 1.4115 (17)
N1—C9 1.3707 (16) C9—C14 1.4208 (17)
N1—C1 1.4189 (16) C10—C11 1.3745 (19)
N1—H1 0.908 (18) C10—H10 0.997 (16)
N2—C15 1.3607 (16) C11—C12 1.389 (2)
N2—N3 1.3750 (13) C11—H11 0.990 (16)
N2—H2 0.913 (16) C12—C13 1.3770 (18)
N3—C16 1.2814 (16) C12—H12 0.988 (17)
C1—C6 1.3954 (19) C13—C14 1.4033 (16)
C1—C2 1.3987 (17) C13—H13 0.965 (16)
C2—C3 1.4068 (17) C14—C15 1.4796 (15)
C2—C7 1.5034 (19) C16—C17 1.4659 (16)
C3—C4 1.387 (2) C16—H16 1.000 (15)
C3—C8 1.5030 (19) C17—C22 1.3941 (17)
C4—C5 1.381 (2) C17—C18 1.3966 (17)
C4—H4 1.001 (17) C18—C19 1.3793 (18)
C5—C6 1.382 (2) C18—H18 0.997 (17)
C5—H5 1.026 (18) C19—C20 1.389 (2)
C6—H6 0.980 (18) C19—H19 1.013 (18)
C7—H7A 0.97 (3) C20—C21 1.376 (2)
C7—H7B 1.06 (3) C20—H20 1.000 (18)
C7—H7C 0.99 (2) C21—C22 1.3952 (18)
C8—H8A 1.04 (2) C21—H21 1.004 (18)
C8—H8B 1.01 (2) C22—H22 0.988 (15)
C8—H8C 0.98 (2)
C9—N1—C1 126.50 (11) C11—C10—C9 121.30 (12)
C9—N1—H1 114.2 (11) C11—C10—H10 120.4 (9)
C1—N1—H1 118.4 (11) C9—C10—H10 118.3 (9)
C15—N2—N3 118.21 (10) C10—C11—C12 121.11 (12)
C15—N2—H2 122.4 (10) C10—C11—H11 118.3 (9)
N3—N2—H2 119.3 (10) C12—C11—H11 120.6 (9)
C16—N3—N2 115.55 (10) C13—C12—C11 118.77 (12)
C6—C1—C2 120.68 (11) C13—C12—H12 120.0 (10)
C6—C1—N1 120.10 (12) C11—C12—H12 121.2 (10)
C2—C1—N1 119.17 (12) C12—C13—C14 121.83 (12)
C1—C2—C3 118.60 (12) C12—C13—H13 119.5 (9)
C1—C2—C7 120.96 (12) C14—C13—H13 118.6 (9)
C3—C2—C7 120.44 (12) C13—C14—C9 119.28 (11)
C4—C3—C2 119.79 (12) C13—C14—C15 119.84 (11)
C4—C3—C8 118.91 (13) C9—C14—C15 120.85 (10)
C2—C3—C8 121.30 (13) O1—C15—N2 120.95 (10)
C5—C4—C3 121.08 (12) O1—C15—C14 123.08 (10)
C5—C4—H4 121.5 (10) N2—C15—C14 115.96 (10)
C3—C4—H4 117.4 (10) N3—C16—C17 119.96 (11)
C4—C5—C6 119.84 (13) N3—C16—H16 122.5 (9)
C4—C5—H5 121.3 (9) C17—C16—H16 117.3 (9)
C6—C5—H5 118.8 (10) C22—C17—C18 118.65 (11)
C5—C6—C1 119.96 (12) C22—C17—C16 119.98 (11)
C5—C6—H6 120.4 (10) C18—C17—C16 121.12 (11)
C1—C6—H6 119.6 (10) C19—C18—C17 120.75 (12)
C2—C7—H7A 111.1 (15) C19—C18—H18 120.5 (9)
C2—C7—H7B 111.2 (13) C17—C18—H18 118.7 (9)
H7A—C7—H7B 103.8 (19) C18—C19—C20 120.31 (12)
C2—C7—H7C 112.7 (12) C18—C19—H19 118.0 (10)
H7A—C7—H7C 109.5 (19) C20—C19—H19 121.7 (10)
H7B—C7—H7C 108.2 (18) C21—C20—C19 119.62 (12)
C3—C8—H8A 110.6 (11) C21—C20—H20 119.3 (10)
C3—C8—H8B 111.4 (12) C19—C20—H20 121.0 (10)
H8A—C8—H8B 110.3 (15) C20—C21—C22 120.51 (12)
C3—C8—H8C 111.8 (13) C20—C21—H21 119.9 (10)
H8A—C8—H8C 104.6 (17) C22—C21—H21 119.6 (10)
H8B—C8—H8C 107.9 (18) C17—C22—C21 120.16 (12)
N1—C9—C10 121.87 (11) C17—C22—H22 118.3 (9)
N1—C9—C14 120.49 (10) C21—C22—H22 121.5 (9)
C10—C9—C14 117.58 (11)
C15—N2—N3—C16 −179.78 (11) C12—C13—C14—C9 −2.03 (19)
C9—N1—C1—C6 −49.49 (19) C12—C13—C14—C15 −179.98 (12)
C9—N1—C1—C2 132.87 (14) N1—C9—C14—C13 −178.39 (12)
C6—C1—C2—C3 1.20 (17) C10—C9—C14—C13 4.26 (18)
N1—C1—C2—C3 178.83 (11) N1—C9—C14—C15 −0.46 (18)
C6—C1—C2—C7 −178.68 (12) C10—C9—C14—C15 −177.81 (11)
N1—C1—C2—C7 −1.05 (18) N3—N2—C15—O1 −18.17 (17)
C1—C2—C3—C4 0.75 (18) N3—N2—C15—C14 161.30 (10)
C7—C2—C3—C4 −179.36 (12) C13—C14—C15—O1 156.06 (12)
C1—C2—C3—C8 −178.75 (12) C9—C14—C15—O1 −21.86 (18)
C7—C2—C3—C8 1.13 (19) C13—C14—C15—N2 −23.40 (16)
C2—C3—C4—C5 −1.70 (19) C9—C14—C15—N2 158.68 (11)
C8—C3—C4—C5 177.82 (13) N2—N3—C16—C17 169.95 (10)
C3—C4—C5—C6 0.7 (2) N3—C16—C17—C22 −175.28 (12)
C4—C5—C6—C1 1.3 (2) N3—C16—C17—C18 −1.04 (18)
C2—C1—C6—C5 −2.25 (19) C22—C17—C18—C19 −0.02 (19)
N1—C1—C6—C5 −179.86 (12) C16—C17—C18—C19 −174.33 (12)
C1—N1—C9—C10 −7.4 (2) C17—C18—C19—C20 0.4 (2)
C1—N1—C9—C14 175.32 (12) C18—C19—C20—C21 −0.3 (2)
N1—C9—C10—C11 178.76 (13) C19—C20—C21—C22 −0.1 (2)
C14—C9—C10—C11 −3.9 (2) C18—C17—C22—C21 −0.45 (19)
C9—C10—C11—C12 1.2 (2) C16—C17—C22—C21 173.93 (12)
C10—C11—C12—C13 1.2 (2) C20—C21—C22—C17 0.5 (2)
C11—C12—C13—C14 −0.7 (2)

N'-[(E)-Benzylidene]-2-(2,3-dimethylanilino)-benzohydrazide (II) . Hydrogen-bond geometry (Å, º)

Cg1 and Cg3 are the centroids of the C1–C6 and C17–C22 benzene rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.908 (18) 1.946 (18) 2.6920 (13) 138.2 (15)
N2—H2···O1i 0.913 (16) 1.974 (17) 2.8564 (13) 162.0 (14)
C4—H4···Cg3ii 1.001 (17) 2.796 (17) 3.6141 (15) 139.4 (13)
C6—H6···O1iii 0.980 (18) 2.583 (19) 3.4815 (16) 152.5 (13)
C20—H20···Cg1iv 1.000 (18) 2.838 (17) 3.6644 (15) 140.5 (13)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) x−1, −y−1/2, z−3/2.

Funding Statement

This work was funded by National Science Foundation grant 1228232. Tulane University grant .

References

  1. Abbas, A. (2017). Bull. Chem. Soc. Ethiop. 31, 171–175.
  2. Al-Said, M. S., Bashandy, M. S., Al-qasoumi, S. I. & Ghorab, M. M. (2011). Eur. J. Med. Chem. 46, 137–141. [DOI] [PubMed]
  3. Bhat, M. A., Abdel-Aziz, H. A., Ghabbour, H. A., Hemamalini, M. & Fun, H.-K. (2012). Acta Cryst. E68, o1135. [DOI] [PMC free article] [PubMed]
  4. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  5. Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.
  6. Fun, H.-K., Chia, T. S., Bhat, M. A., Al-Omar, M. A. & Abdel-Aziz, H. A. (2012a). Acta Cryst. E68, o2524–o2525. [DOI] [PMC free article] [PubMed]
  7. Fun, H.-K., Chia, T. S., Elsaman, T., Attia, M. I. & Abdel-Aziz, H. A. (2012b). Acta Cryst. E68, o2527–o2528. [DOI] [PMC free article] [PubMed]
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Hernández, P., Cabrera, M., Lavaggi, M. L., Celano, L., Tiscornia, I., Rodrigues da Costa, T., Thomson, L., Bollati-Fogolín, M., Miranda, A. L. P., Lima, L. M., Barreiro, E. J., González, M. & Cerecetto, H. (2012). Bioorg. Med. Chem. 20, 2158–2171. [DOI] [PubMed]
  10. Jasinski, J. P., Akkurt, M., Mohamed, S. K., Dunkley, E. M. & Albayati, M. R. (2017). IUCrData, 2, x171187.
  11. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  12. Kumar, S., Bawa, S., Drabu, S., Kumar, R. & Machawal, L. (2010). Acta Pol. Pharm. 67, 567–573. [PubMed]
  13. Maguene, G. M., Jakhlal, J., Ladyman, M., Vallin, A., Ralambomanana, D. A., Bousquet, T., Maugein, J., Lebibi, J. & Pélinski, L. (2011). Eur. J. Med. Chem. 46, 31–38. [DOI] [PubMed]
  14. Mohamed, S. K., Jasinski, J. P., Akkurt, M., McGurk, E. A., Albayati, M. R. & Mohamed, A. F. (2017). IUCrData, 2, x171188.
  15. Mohamed, S. K., Mague, J. T., Akkurt, M., Mohamed, A. F. & Albayati, M. R. (2015). Acta Cryst. E71, o957–o958. [DOI] [PMC free article] [PubMed]
  16. Mohareb, R. M., El-Sharkawy, K. A., Hussein, M. M. & El-Sehrawi, H. M. (2010). J. Pharm. Sci. Res. 2, 185–196.
  17. Pringsheim, T., Davenport, W. J. & Dodick, D. (2008). Neurology, 70, 1555–1563. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Siddiqui, S. M., Salahuddin, A. & Azam, A. (2012). Eur. J. Med. Chem. 49, 411–416. [DOI] [PubMed]
  21. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989021001353/wm5599sup1.cif

e-77-00242-sup1.cif (834.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021001353/wm5599Isup2.hkl

e-77-00242-Isup2.hkl (269.3KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989021001353/wm5599IIsup3.hkl

e-77-00242-IIsup3.hkl (292.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021001353/wm5599Isup4.cml

Supporting information file. DOI: 10.1107/S2056989021001353/wm5599IIsup5.cml

CCDC references: 2061393, 2061392

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES