Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Feb 19;77(Pt 3):277–281. doi: 10.1107/S2056989021001900

Structural investigation of N-[2-(4-fluoro-3-phen­oxy­benzo­yl)hydrazinecarbo­thio­yl]benzamide and N-[2-(4-fluoro-3-phen­oxy­benzo­yl)hydrazinecarbo­thio­yl]-4-meth­oxy­benzamide

Dhananjay Dey a, I Shruti a, Deepak Chopra a,*, T P Mohan b
PMCID: PMC8061111  PMID: 33953951

Crystal structure analysis of N-[2-(4-fluoro-3-phen­oxy­benzo­yl)hydrazinecarbo­thio­yl]benzamide and its 4-meth­oxy derivative highlights the significance of strong and weak hydrogen bonds. The difference in the contributions of atom–atom contacts obtained from Hirshfeld surface analysis and fingerprint plots helps in distinguishing the variations in the crystal packing of the two compounds.

Keywords: crystal structure, drug, hydrogen bonds, mol­ecular conformation, chalcogen-centered inter­actions

Abstract

The compound N-[2-(4-fluoro-3-phen­oxy­benzo­yl)hydrazinecarbo­thio­yl]benzamide, C21H16FN3O3S, crystallizes in the monoclinic centrosymmetric space group P21/c and its mol­ecular conformation is stabilized via an intra­molecular N—H⋯O hydrogen bond. The corresponding para-meth­oxy derivative, namely, N-[2-(4-fluoro-3-phen­oxy­benzo­yl)hydrazinecarbo­thio­yl]-4-meth­oxy­benzamide, C22H18FN3O4S, crystallizes in the monoclinic centrosymmetric space group C2/c. The supra­molecular network mainly comprises N—H⋯O, N—H⋯S and C—H⋯O hydrogen bonds, which contribute towards the formation of the crystal structures for the two mol­ecules. The different inter­molecular inter­actions have been further analysed using Hirshfeld surface analysis and fingerprint plots.

Chemical context  

Substituted thio­semicarbazides (TSCs) constitute an important class of organic compounds with the general formula R–(C=O)–NH–NH–(C=S)–R′ and find application in the synthesis of five- and six-membered heterocyclic compounds (Gazieva & Kravchenko, 2012) and transition-metal complexes (Campbell, 1975). The chemical diversity of thio­semicarbazides, and their synthesis, including their role in biological applications, is nicely summarized in a recent review article (Acharya et al., 2021). Di­benzoyl­ated TSCs have been synthesized and explored for their anti­bacterial activity (Qandil et al., 2006). Furthermore, mol­ecular modelling studies establish the relevance of both geometry and electron-density distribution in the observed anti­bacterial activity (Paneth et al., 2016). Piperidin-4-yl-based TSCs have been examined for cytotoxicity in breast cancer cell lines in addition to being possible potential topoisomerase inhibitors (Siwek et al., 2014). 1-(2-Hy­droxy­benzo­yl)-thio­semicarbazides have been observed to exhibit anti­microbial activity and structure–activity relationship (SARs) studies establish that the 2-hy­droxy­benzoyl group plays an important role in enzyme inhibition, in addition to these exhibiting low cytotoxicity (Ameryckx et al., 2018). Furthermore, triazole-substituted benzoyl­thio­semicarbazides have been synthesized and their effect on the inhibition of corrosion on mild steel has been investigated (Yan et al., 2018). Keeping in mind the above-mentioned applications of substituted TSCs, we have performed the synthesis and crystal structure analysis of two compounds, namely N-[2-(4-fluoro-3-phen­oxy­benzo­yl)hydrazinecarbo­thio­yl]benzamide (A1) and N-[2-(4-fluoro-3-phen­oxy­benzo­yl)hydrazinecarbo­thio­yl]-4-meth­oxy­benzamide (A2) in the current study. The mol­ecular conformations have been studied with respect to the various flexible bonds and the occurrence of various inter­molecular inter­actions that contribute towards the stability of the mol­ecules in the crystalline lattice has been investigated in detail via an investigation of the crystal packing and qu­anti­tative insights from Hirshfeld surface analysis.graphic file with name e-77-00277-scheme1.jpg

Structural commentary  

Compound A1 crystallizes in the centrosymmetric monoclinic P21/c space group and A2 crystallizes in the centrosymmetric monoclinic C2/c space group. The mol­ecular structure comprises one fluoro-substituted phen­oxy­benzoyl ring, a rigid and planar (C=O)—NH—NH—(C=S) moiety and a benzamide ring. The bond lengths and bond angles are in accordance with the magnitudes in the literature. The mol­ecular conformations of A1 (Fig. 1) and A2 (Fig. 2) are both conformationally locked via the presence of an N—H⋯O hydrogen bond (involving H2N and O3), the N2⋯O3 distance being 2.555 (2) and 2.589 (4) Å in A1 and A2, respectively. The mol­ecular structure possesses four conformational degrees of freedom due to the free rotation with respect to the N1—N2, C7—O1, O1—C1 and C15—C16 single bonds. The torsion angles C13—N1—N2—C14, C8—C7—O1—C1, C7—O1—C1—C2 and N3—C15—C16—C21 are 163.27 (16)/-143.5 (4)°, 97.3 (2)/149.6 (5)°, 167.18 (18)/148.1 (4)° and −160.26 (15)/-174.7 (3)° in A1/A2, respectively.

Figure 1.

Figure 1

Ellipsoid plot of A1 drawn with 50% ellipsoidal probability. The cyan line indicates the intra­molecular N—H⋯O hydrogen bond.

Figure 2.

Figure 2

Ellipsoid plot of A2 drawn with 50% ellipsoidal probability. The cyan line indicates the intra­molecular N—H⋯O hydrogen bond.

Supra­molecular features  

In the crystal structure of A1, the mol­ecules are primarily assembled through the presence of N3—H3N⋯O2 and C18—H18⋯O3 hydrogen bonds (Table 1), forming mol­ecular chains along the c-axis direction utilizing the c-glide as the symmetry element (Fig. 3). Adjacent layers are held together via C20—H20⋯O1 and C19—H19⋯S1 hydrogen bonds. The crystal packing of A2 (Fig. 4) primarily consists of N1—H1⋯O2 hydrogen bonds (Table 2), forming mol­ecular chains along the b-axis direction. Two such adjacent layers are held via N3—H3N⋯S1 and C17—H17⋯S1 hydrogen bonds. In addition S1⋯C17 contacts (S⋯π type), [3.384 (4) Å, 174.9 (1)°, −x + 1, y + 1, −z + Inline graphic] chalcogen-centered contacts are also present in the crystal packing (Fig. 4). Inter­molecular contacts involving chalcogens are well-recognized in the literature [Pramanik & Chopra, 2020]. Furthermore, additional C21—H21⋯O3 hydrogen bonds form centrosymmetric dimers and provide additional stability to the crystal packing.

Table 1. Hydrogen-bond geometry (Å, °) for A1 .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O3 0.86 1.88 2.555 (2) 135
C18—H18⋯O3i 0.93 2.45 3.218 (2) 141
N3—H3N⋯O2i 0.86 2.28 3.067 (2) 152
C19—H19⋯S1ii 0.93 2.98 3.778 (2) 145
C20—H20⋯O1iii 0.93 2.77 3.510 (3) 138

Symmetry codes: (i) x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}; (ii) -x+1, y+{\script{1\over 2}}, -z+{\script{5\over 2}}; (iii) -x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}.

Figure 3.

Figure 3

Crystal packing of A1 showing the formation of the crystal structure primarily via N—H⋯O and C—H⋯O inter­molecular inter­actions.

Figure 4.

Figure 4

Crystal packing of A2 showing the formation of the crystal structure primarily via N—H⋯O, N—H⋯S, C—H⋯S and S⋯C inter­molecular inter­actions.

Table 2. Hydrogen-bond geometry (Å, °) for A2 .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O3 0.86 1.92 2.589 (4) 134
N3—H3N⋯S1i 0.86 2.80 3.615 (3) 159
C17—H17⋯S1i 0.93 2.69 3.614 (4) 174
N1—H1⋯O2ii 0.86 2.15 2.915 (4) 148
C21—H21⋯O3iii 0.93 2.57 3.399 (4) 148

Symmetry codes: (i) -x+1, y, -z+{\script{1\over 2}}; (ii) x, y+1, z; (iii) -x+1, -y-1, -z.

Database survey  

A search for the di­benzoyl­thio­semicarbazide skeleton, Ph–(C=O)–NH–NH–(C=S)–NH–(C=O)–Ph was carried out in the Cambridge Structural Database (CSD version 5.40, updates of Aug 2019; Groom et al., 2016) . No hits were obtained. Thus, further systematic studies related to the investigation of the role of differently substituted thio­semicarbazide mol­ecules towards the crystal packing, including a detailed investigation of polymorphism in this class of compounds, is of relevance.

Hirshfeld surface analysis and fingerprint plots  

The relevance of different inter­molecular inter­actions can be established via Hirshfeld surface analysis (Spackman & Jayatilaka, 2009). These surfaces, along with the two-dimensional fingerprint plots, were evaluated using Crystal Explorer 17.5 (Turner et al., 2017). The surfaces mapped over d norm for A1, Fig. 5(a), and A2, Fig. 5(b) and 5(c), show the important hydrogen bonds. The red and blue spots correspond to inter­molecular inter­actions that are less or greater than the sum of the van der Waals radii. The fingerprint plots depict the individual contributions of the different inter­actions. The fingerprint plots for A1/A2 (Figs. 6 and 7) show that the greatest contributions are from H⋯H (31.3/32%) contacts, followed by C⋯H/H⋯C (23.2/23.2%), O⋯H/H⋯O (14.3/16.7%), S⋯H/H⋯S (7/5.7%), S⋯C/C⋯S (4.9/2.8%) and F⋯H/H⋯F (8.8/6.9%) contacts. The O⋯H/H⋯O contribution is slightly higher in the case of A2 (16.7%) due to the presence of an additional meth­oxy group in the mol­ecule. Further inter­actions, involving F⋯H/H⋯F, contributing around 7–9% (A1: 8.8% and A2: 6.9%) and S⋯H (A1: 7.0% and A2: 5.7%) correspond to the presence of highly directional inter­actions, involving fluorine and sulfur in A2, and are important; this is clearly illustrated in the fingerprint plot (Fig. 7). The percentage contribution of S⋯C/C⋯S contacts in A2 is 2.8% lower than in A1. However, the relevance of this contact is greater in A2 on account of the presence of the highly directional C—S⋯π inter­molecular contact and this feature is also clearly visible in the 2D fingerprint plot (Fig. 7).

Figure 5.

Figure 5

The Hirshfeld surface mapped over d norm for (a) A1, (b) A2 depicting N—H⋯O hydrogen bonds and (c) A2 depicting C—S⋯π inter­actions.

Figure 6.

Figure 6

The fingerprint plots for A1 showing the different contributions derived from the H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, H⋯F/F⋯H,S⋯H/S⋯H and C⋯S/S⋯C contacts.

Figure 7.

Figure 7

The fingerprint plots for A2 showing the different contributions derived from the H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, H⋯F/F⋯H,S⋯H/S⋯H and C⋯S/S⋯C contacts.

Synthesis and Crystallization  

The title compounds were synthesized in accordance with the procedure reported in the literature (Mohan, 2006). Crystallization was performed in 5.0 ml beakers at room temperature via the slow evaporation method from methanol solvent.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were placed in idealized positions (N—H = 0.86 Å, C—H = 0.93 Å) and refined using a riding model with U iso(H) = 1.2U eq(C, N) or 1.5U eq(C-meth­yl).

Table 3. Experimental details.

  A1 A2
Crystal data
Chemical formula C21H16FN3O3S C22H18FN3O4S
M r 409.43 439.45
Crystal system, space group Monoclinic, P21/c Monoclinic, C2/c
Temperature (K) 298 298
a, b, c (Å) 18.3849 (13), 7.7063 (6), 13.9216 (10) 47.298 (3), 4.8054 (3), 18.4939 (10)
β (°) 100.136 (5) 100.429 (6)
V3) 1941.6 (2) 4134.0 (4)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.20 0.20
Crystal size (mm) 0.27 × 0.20 × 0.14 0.25 × 0.17 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008) Multi-scan (SADABS; Bruker, 2008)
No. of measured, independent and observed [I > 2σ(I)] reflections 31160, 4460, 2753 9841, 2188, 1751
R int 0.043 0.062
θmax (°) 27.7 20.9
(sin θ/λ)max−1) 0.653 0.503
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.119, 1.04 0.046, 0.122, 1.06
No. of reflections 4460 2188
No. of parameters 262 281
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.17 0.20, −0.16

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), Mercury (Macrae et al., 2020), WinGX (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) A1, A2. DOI: 10.1107/S2056989021001900/dj2021sup1.cif

e-77-00277-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) A1. DOI: 10.1107/S2056989021001900/dj2021A1sup2.hkl

e-77-00277-A1sup2.hkl (355.3KB, hkl)

Structure factors: contains datablock(s) A2. DOI: 10.1107/S2056989021001900/dj2021A2sup3.hkl

e-77-00277-A2sup3.hkl (175.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021001900/dj2021A1sup4.cml

Supporting information file. DOI: 10.1107/S2056989021001900/dj2021A2sup5.cml

CCDC references: 2063226, 2063225

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are thankful to the CIF of IISER Bhopal for research facilities and infrastructure.

supplementary crystallographic information

N-[2-(4-Fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]benzamide (A1) . Crystal data

C21H16FN3O3S F(000) = 848
Mr = 409.43 Dx = 1.401 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 18.3849 (13) Å Cell parameters from 10485 reflections
b = 7.7063 (6) Å θ = 2.2–28.6°
c = 13.9216 (10) Å µ = 0.20 mm1
β = 100.136 (5)° T = 298 K
V = 1941.6 (2) Å3 Plates, colorless
Z = 4 0.27 × 0.20 × 0.14 mm

N-[2-(4-Fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]benzamide (A1) . Data collection

Bruker APEXII CCD diffractometer 2753 reflections with I > 2σ(I)
φ and ω scans Rint = 0.043
Absorption correction: multi-scan (SADABS; Bruker, 2008) θmax = 27.7°, θmin = 2.3°
h = −23→21
31160 measured reflections k = −10→10
4460 independent reflections l = −18→18

N-[2-(4-Fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]benzamide (A1) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.1773P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
4460 reflections Δρmax = 0.15 e Å3
262 parameters Δρmin = −0.17 e Å3
0 restraints

N-[2-(4-Fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]benzamide (A1) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

N-[2-(4-Fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]benzamide (A1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N2 0.35731 (8) 0.0786 (2) 0.88306 (10) 0.0603 (4)
H2N 0.398146 0.108884 0.865793 0.072*
O2 0.35727 (7) 0.08997 (19) 0.69344 (9) 0.0715 (4)
N1 0.30299 (8) 0.0015 (2) 0.81656 (10) 0.0635 (4)
H1 0.267495 −0.053998 0.835584 0.076*
C15 0.47522 (9) 0.2198 (2) 1.01326 (12) 0.0544 (4)
N3 0.40609 (7) 0.18548 (18) 1.03435 (9) 0.0538 (4)
H3N 0.398570 0.216229 1.091172 0.065*
C19 0.63953 (10) 0.4486 (3) 1.22873 (13) 0.0637 (5)
H19 0.675815 0.500499 1.274731 0.076*
C13 0.30627 (10) 0.0143 (2) 0.72070 (12) 0.0546 (4)
C11 0.24397 (10) −0.0680 (2) 0.65341 (12) 0.0548 (4)
O3 0.48982 (7) 0.18773 (19) 0.93243 (8) 0.0737 (4)
C12 0.23455 (10) −0.0202 (2) 0.55602 (12) 0.0587 (5)
H12 0.267655 0.056422 0.535242 0.070*
C18 0.58177 (10) 0.3634 (3) 1.25799 (13) 0.0651 (5)
H18 0.579476 0.355776 1.324057 0.078*
C16 0.53052 (9) 0.2979 (2) 1.09115 (11) 0.0509 (4)
C7 0.17640 (11) −0.0857 (3) 0.48974 (13) 0.0650 (5)
C17 0.52695 (10) 0.2888 (2) 1.19000 (12) 0.0589 (5)
H17 0.487572 0.232436 1.210329 0.071*
O1 0.16903 (8) −0.0470 (2) 0.39147 (9) 0.0815 (4)
C20 0.64377 (11) 0.4571 (3) 1.13081 (13) 0.0683 (5)
H20 0.683089 0.514503 1.110943 0.082*
C14 0.34729 (9) 0.1066 (2) 0.97367 (11) 0.0524 (4)
C1 0.13186 (10) 0.1053 (3) 0.35731 (13) 0.0658 (5)
C10 0.19555 (10) −0.1858 (3) 0.68345 (14) 0.0678 (5)
H10 0.202440 −0.221053 0.748315 0.081*
C21 0.59024 (10) 0.3814 (3) 1.06281 (12) 0.0610 (5)
H21 0.593940 0.385998 0.997084 0.073*
C8 0.12811 (11) −0.1982 (3) 0.52212 (15) 0.0755 (6)
F1 0.07018 (8) −0.2577 (2) 0.45739 (10) 0.1157 (5)
C9 0.13740 (12) −0.2507 (3) 0.61757 (16) 0.0828 (6)
H9 0.104704 −0.329362 0.637526 0.099*
C6 0.09068 (11) 0.2008 (3) 0.41052 (15) 0.0756 (6)
H6 0.086151 0.166959 0.473327 0.091*
C4 0.06114 (16) 0.3971 (4) 0.2770 (2) 0.1119 (9)
H4 0.036467 0.495305 0.249363 0.134*
C2 0.13978 (13) 0.1537 (3) 0.26449 (15) 0.0849 (7)
H2 0.169036 0.089353 0.229477 0.102*
C3 0.10316 (18) 0.3001 (4) 0.2249 (2) 0.1101 (9)
H3 0.107028 0.333605 0.161870 0.132*
C5 0.05585 (13) 0.3485 (4) 0.3694 (2) 0.0958 (7)
H5 0.028365 0.415792 0.405426 0.115*
S1 0.26986 (3) 0.05350 (8) 1.01272 (3) 0.07183 (19)

N-[2-(4-Fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]benzamide (A1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N2 0.0605 (9) 0.0788 (10) 0.0420 (8) −0.0123 (8) 0.0097 (7) −0.0069 (7)
O2 0.0662 (8) 0.0981 (10) 0.0499 (7) −0.0220 (7) 0.0097 (6) 0.0030 (7)
N1 0.0659 (10) 0.0808 (11) 0.0435 (8) −0.0197 (8) 0.0090 (7) −0.0051 (8)
C15 0.0558 (10) 0.0637 (11) 0.0457 (9) 0.0021 (8) 0.0147 (8) −0.0033 (8)
N3 0.0539 (8) 0.0702 (10) 0.0381 (7) −0.0016 (7) 0.0100 (6) −0.0055 (7)
C19 0.0562 (11) 0.0809 (13) 0.0525 (10) −0.0022 (10) 0.0053 (8) −0.0055 (10)
C13 0.0590 (11) 0.0618 (11) 0.0425 (9) −0.0026 (9) 0.0076 (8) 0.0010 (8)
C11 0.0566 (10) 0.0612 (11) 0.0457 (9) −0.0014 (9) 0.0070 (8) −0.0016 (8)
O3 0.0684 (8) 0.1078 (11) 0.0495 (7) −0.0126 (7) 0.0229 (6) −0.0201 (7)
C12 0.0637 (11) 0.0683 (12) 0.0444 (9) −0.0035 (9) 0.0107 (8) −0.0032 (8)
C18 0.0610 (11) 0.0937 (14) 0.0408 (9) 0.0028 (10) 0.0095 (8) −0.0040 (9)
C16 0.0512 (10) 0.0590 (10) 0.0433 (8) 0.0056 (8) 0.0104 (7) −0.0012 (8)
C7 0.0693 (12) 0.0775 (13) 0.0450 (10) 0.0071 (10) 0.0012 (9) −0.0073 (9)
C17 0.0540 (10) 0.0781 (12) 0.0467 (9) −0.0011 (9) 0.0149 (8) −0.0006 (9)
O1 0.0998 (11) 0.0991 (11) 0.0421 (7) 0.0170 (9) 0.0026 (7) −0.0105 (7)
C20 0.0595 (11) 0.0891 (14) 0.0576 (11) −0.0121 (10) 0.0136 (9) 0.0041 (10)
C14 0.0585 (11) 0.0573 (10) 0.0409 (8) 0.0019 (8) 0.0076 (8) 0.0015 (8)
C1 0.0568 (11) 0.0850 (14) 0.0496 (10) −0.0092 (10) −0.0068 (9) −0.0020 (10)
C10 0.0663 (12) 0.0775 (13) 0.0573 (11) −0.0110 (10) 0.0048 (9) 0.0084 (10)
C21 0.0609 (11) 0.0792 (13) 0.0443 (9) −0.0033 (10) 0.0134 (8) 0.0014 (9)
C8 0.0648 (13) 0.0863 (15) 0.0666 (13) −0.0101 (11) −0.0126 (10) −0.0100 (11)
F1 0.0972 (10) 0.1390 (12) 0.0957 (9) −0.0334 (9) −0.0246 (8) −0.0135 (9)
C9 0.0714 (13) 0.0906 (15) 0.0824 (15) −0.0234 (12) 0.0023 (11) 0.0080 (13)
C6 0.0658 (13) 0.0965 (17) 0.0625 (12) 0.0016 (11) 0.0058 (10) −0.0011 (12)
C4 0.101 (2) 0.112 (2) 0.116 (2) 0.0046 (17) 0.0013 (18) 0.034 (2)
C2 0.0881 (16) 0.1073 (18) 0.0569 (12) −0.0178 (14) 0.0063 (11) −0.0009 (13)
C3 0.128 (2) 0.122 (2) 0.0745 (16) −0.0238 (19) 0.0032 (16) 0.0288 (17)
C5 0.0718 (15) 0.1026 (19) 0.111 (2) 0.0045 (14) 0.0110 (14) 0.0038 (16)
S1 0.0630 (3) 0.1025 (4) 0.0515 (3) −0.0143 (3) 0.0141 (2) −0.0031 (3)

N-[2-(4-Fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]benzamide (A1) . Geometric parameters (Å, º)

N2—C14 1.3242 (19) C7—O1 1.383 (2)
N2—N1 1.3718 (19) C17—H17 0.9300
N2—H2N 0.8600 O1—C1 1.399 (2)
O2—C13 1.220 (2) C20—C21 1.370 (3)
N1—C13 1.350 (2) C20—H20 0.9300
N1—H1 0.8600 C14—S1 1.6617 (17)
C15—O3 1.2272 (18) C1—C6 1.364 (3)
C15—N3 1.379 (2) C1—C2 1.377 (3)
C15—C16 1.478 (2) C10—C9 1.374 (3)
N3—C14 1.389 (2) C10—H10 0.9300
N3—H3N 0.8600 C21—H21 0.9300
C19—C18 1.370 (3) C8—F1 1.349 (2)
C19—C20 1.381 (2) C8—C9 1.371 (3)
C19—H19 0.9300 C9—H9 0.9300
C13—C11 1.488 (2) C6—C5 1.380 (3)
C11—C12 1.386 (2) C6—H6 0.9300
C11—C10 1.387 (2) C4—C5 1.360 (4)
C12—C7 1.379 (3) C4—C3 1.370 (4)
C12—H12 0.9300 C4—H4 0.9300
C18—C17 1.381 (2) C2—C3 1.378 (4)
C18—H18 0.9300 C2—H2 0.9300
C16—C21 1.389 (2) C3—H3 0.9300
C16—C17 1.391 (2) C5—H5 0.9300
C7—C8 1.372 (3)
C14—N2—N1 120.44 (14) C21—C20—C19 120.23 (17)
C14—N2—H2N 119.8 C21—C20—H20 119.9
N1—N2—H2N 119.8 C19—C20—H20 119.9
C13—N1—N2 118.79 (14) N2—C14—N3 115.25 (14)
C13—N1—H1 120.6 N2—C14—S1 122.85 (13)
N2—N1—H1 120.6 N3—C14—S1 121.90 (12)
O3—C15—N3 120.99 (16) C6—C1—C2 121.6 (2)
O3—C15—C16 121.44 (15) C6—C1—O1 123.55 (18)
N3—C15—C16 117.57 (13) C2—C1—O1 114.8 (2)
C15—N3—C14 127.02 (13) C9—C10—C11 120.14 (18)
C15—N3—H3N 116.5 C9—C10—H10 119.9
C14—N3—H3N 116.5 C11—C10—H10 119.9
C18—C19—C20 119.86 (17) C20—C21—C16 120.58 (16)
C18—C19—H19 120.1 C20—C21—H21 119.7
C20—C19—H19 120.1 C16—C21—H21 119.7
O2—C13—N1 120.86 (16) F1—C8—C9 119.7 (2)
O2—C13—C11 123.81 (15) F1—C8—C7 118.42 (19)
N1—C13—C11 115.33 (15) C9—C8—C7 121.84 (18)
C12—C11—C10 119.51 (17) C8—C9—C10 119.28 (19)
C12—C11—C13 116.91 (16) C8—C9—H9 120.4
C10—C11—C13 123.57 (16) C10—C9—H9 120.4
C7—C12—C11 120.40 (18) C1—C6—C5 118.7 (2)
C7—C12—H12 119.8 C1—C6—H6 120.6
C11—C12—H12 119.8 C5—C6—H6 120.6
C19—C18—C17 120.41 (16) C5—C4—C3 119.4 (3)
C19—C18—H18 119.8 C5—C4—H4 120.3
C17—C18—H18 119.8 C3—C4—H4 120.3
C21—C16—C17 118.81 (16) C1—C2—C3 118.1 (2)
C21—C16—C15 117.16 (14) C1—C2—H2 120.9
C17—C16—C15 124.01 (15) C3—C2—H2 120.9
C8—C7—C12 118.78 (17) C4—C3—C2 121.1 (2)
C8—C7—O1 120.31 (18) C4—C3—H3 119.4
C12—C7—O1 120.81 (18) C2—C3—H3 119.4
C18—C17—C16 120.09 (16) C4—C5—C6 121.0 (3)
C18—C17—H17 120.0 C4—C5—H5 119.5
C16—C17—H17 120.0 C6—C5—H5 119.5
C7—O1—C1 118.30 (15)
C14—N2—N1—C13 163.27 (16) N1—N2—C14—S1 −0.5 (2)
O3—C15—N3—C14 3.4 (3) C15—N3—C14—N2 −7.4 (2)
C16—C15—N3—C14 −177.17 (15) C15—N3—C14—S1 173.17 (14)
N2—N1—C13—O2 1.4 (3) C7—O1—C1—C6 −12.8 (3)
N2—N1—C13—C11 −178.11 (15) C7—O1—C1—C2 167.18 (18)
O2—C13—C11—C12 −15.9 (3) C12—C11—C10—C9 −1.9 (3)
N1—C13—C11—C12 163.59 (16) C13—C11—C10—C9 177.23 (19)
O2—C13—C11—C10 164.89 (19) C19—C20—C21—C16 1.1 (3)
N1—C13—C11—C10 −15.6 (3) C17—C16—C21—C20 −1.5 (3)
C10—C11—C12—C7 1.7 (3) C15—C16—C21—C20 179.92 (17)
C13—C11—C12—C7 −177.53 (17) C12—C7—C8—F1 178.13 (18)
C20—C19—C18—C17 −1.2 (3) O1—C7—C8—F1 −5.5 (3)
O3—C15—C16—C21 19.2 (3) C12—C7—C8—C9 −1.9 (3)
N3—C15—C16—C21 −160.26 (15) O1—C7—C8—C9 174.4 (2)
O3—C15—C16—C17 −159.26 (18) F1—C8—C9—C10 −178.4 (2)
N3—C15—C16—C17 21.3 (3) C7—C8—C9—C10 1.7 (4)
C11—C12—C7—C8 0.2 (3) C11—C10—C9—C8 0.3 (3)
C11—C12—C7—O1 −176.13 (16) C2—C1—C6—C5 0.5 (3)
C19—C18—C17—C16 0.8 (3) O1—C1—C6—C5 −179.55 (18)
C21—C16—C17—C18 0.6 (3) C6—C1—C2—C3 −1.7 (3)
C15—C16—C17—C18 179.02 (17) O1—C1—C2—C3 178.36 (19)
C8—C7—O1—C1 97.3 (2) C5—C4—C3—C2 0.4 (4)
C12—C7—O1—C1 −86.4 (2) C1—C2—C3—C4 1.3 (4)
C18—C19—C20—C21 0.3 (3) C3—C4—C5—C6 −1.6 (4)
N1—N2—C14—N3 −179.95 (15) C1—C6—C5—C4 1.2 (4)

N-[2-(4-Fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]benzamide (A1) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2N···O3 0.86 1.88 2.555 (2) 135
C18—H18···O3i 0.93 2.45 3.218 (2) 141
N3—H3N···O2i 0.86 2.28 3.067 (2) 152
C19—H19···S1ii 0.93 2.98 3.778 (2) 145
C20—H20···O1iii 0.93 2.77 3.510 (3) 138

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y+1/2, −z+5/2; (iii) −x+1, y+1/2, −z+3/2.

N-[2-(4-Fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]-4-methoxybenzamide (A2) . Crystal data

C22H18FN3O4S F(000) = 1824
Mr = 439.45 Dx = 1.412 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 47.298 (3) Å Cell parameters from 9864 reflections
b = 4.8054 (3) Å θ = 2.3–21.0°
c = 18.4939 (10) Å µ = 0.20 mm1
β = 100.429 (6)° T = 298 K
V = 4134.0 (4) Å3 Plates, colorless
Z = 8 0.25 × 0.17 × 0.10 mm

N-[2-(4-Fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]-4-methoxybenzamide (A2) . Data collection

Bruker APEXII CCD diffractometer 1751 reflections with I > 2σ(I)
φ and ω scans Rint = 0.062
Absorption correction: multi-scan (SADABS; Bruker, 2008) θmax = 20.9°, θmin = 2.3°
h = −46→38
9841 measured reflections k = −4→4
2188 independent reflections l = −18→18

N-[2-(4-Fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]-4-methoxybenzamide (A2) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0421P)2 + 7.4575P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
2188 reflections Δρmax = 0.20 e Å3
281 parameters Δρmin = −0.16 e Å3
0 restraints

N-[2-(4-Fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]-4-methoxybenzamide (A2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

N-[2-(4-Fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]-4-methoxybenzamide (A2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.46155 (2) 0.5067 (2) 0.20257 (5) 0.0570 (4)
O3 0.48485 (5) −0.1767 (5) 0.05581 (13) 0.0564 (7)
O2 0.40193 (5) −0.2064 (6) 0.06269 (16) 0.0693 (8)
N3 0.49466 (6) 0.1596 (6) 0.14319 (15) 0.0476 (8)
H3N 0.508458 0.244009 0.171425 0.057*
O4 0.61871 (6) −0.3864 (7) 0.15455 (17) 0.0846 (9)
N2 0.44651 (6) 0.1428 (6) 0.09635 (17) 0.0548 (8)
H2N 0.450510 0.022383 0.065314 0.066*
F1 0.28801 (5) 0.3872 (7) 0.11032 (16) 0.1091 (10)
C16 0.53329 (7) −0.1387 (7) 0.11626 (18) 0.0431 (9)
N1 0.41856 (7) 0.2174 (7) 0.09631 (18) 0.0636 (9)
H1 0.414588 0.386840 0.105555 0.076*
C13 0.39757 (8) 0.0319 (9) 0.0822 (2) 0.0514 (10)
C11 0.36866 (8) 0.1329 (8) 0.0915 (2) 0.0516 (10)
C14 0.46729 (8) 0.2578 (7) 0.14456 (18) 0.0438 (9)
O1 0.29250 (6) 0.0013 (8) 0.01236 (19) 0.1023 (12)
C21 0.54221 (8) −0.3385 (8) 0.0720 (2) 0.0547 (10)
H21 0.528867 −0.416711 0.034349 0.066*
C15 0.50265 (8) −0.0588 (7) 0.10183 (19) 0.0441 (9)
C19 0.59029 (8) −0.3153 (9) 0.1383 (2) 0.0576 (10)
C20 0.57034 (9) −0.4253 (8) 0.0820 (2) 0.0603 (11)
H20 0.575894 −0.558120 0.050737 0.072*
C17 0.55367 (9) −0.0281 (8) 0.1725 (2) 0.0601 (11)
H17 0.548250 0.107588 0.203190 0.072*
C12 0.34481 (8) 0.0178 (9) 0.0473 (2) 0.0638 (11)
H12 0.347192 −0.119851 0.013548 0.077*
C18 0.58180 (9) −0.1171 (10) 0.1835 (2) 0.0678 (12)
H18 0.595147 −0.042543 0.221674 0.081*
C10 0.36521 (9) 0.3291 (9) 0.1432 (2) 0.0663 (11)
H10 0.381175 0.405703 0.173417 0.080*
C7 0.31751 (9) 0.1059 (10) 0.0528 (2) 0.0710 (12)
C8 0.31463 (9) 0.3024 (10) 0.1041 (3) 0.0714 (12)
C9 0.33763 (11) 0.4125 (10) 0.1500 (3) 0.0804 (14)
H9 0.334955 0.542017 0.185500 0.096*
C1 0.29108 (10) −0.0900 (12) −0.0591 (3) 0.0824 (15)
C22 0.62909 (10) −0.5808 (11) 0.1078 (3) 0.0994 (17)
H22A 0.619623 −0.756318 0.110327 0.149*
H22B 0.649439 −0.604267 0.123394 0.149*
H22C 0.625228 −0.513264 0.058166 0.149*
C2 0.27240 (11) −0.3041 (13) −0.0798 (3) 0.1014 (17)
H2 0.262932 −0.386389 −0.045353 0.122*
C5 0.30114 (16) −0.0664 (17) −0.1801 (4) 0.120 (2)
H5 0.310776 0.012404 −0.214659 0.144*
C4 0.28168 (18) −0.2822 (19) −0.1998 (4) 0.128 (3)
H4 0.278282 −0.348577 −0.247824 0.153*
C6 0.30602 (11) 0.0306 (13) −0.1075 (3) 0.1001 (17)
H6 0.319071 0.173145 −0.092598 0.120*
C3 0.26762 (14) −0.3964 (17) −0.1492 (5) 0.131 (2)
H3 0.254553 −0.539896 −0.162868 0.157*

N-[2-(4-Fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]-4-methoxybenzamide (A2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0682 (7) 0.0481 (6) 0.0553 (6) 0.0142 (5) 0.0124 (5) −0.0014 (5)
O3 0.0554 (16) 0.0545 (17) 0.0589 (16) 0.0012 (14) 0.0092 (13) −0.0131 (14)
O2 0.0576 (17) 0.0393 (18) 0.109 (2) 0.0029 (14) 0.0092 (15) −0.0124 (16)
N3 0.0473 (19) 0.0409 (18) 0.0556 (18) −0.0008 (16) 0.0119 (14) −0.0034 (16)
O4 0.0587 (19) 0.094 (2) 0.098 (2) 0.0215 (18) 0.0072 (16) −0.0099 (19)
N2 0.047 (2) 0.0453 (19) 0.074 (2) 0.0059 (17) 0.0161 (17) −0.0125 (17)
F1 0.0701 (18) 0.141 (3) 0.127 (2) 0.0232 (18) 0.0454 (15) −0.0117 (19)
C16 0.051 (2) 0.036 (2) 0.045 (2) 0.0000 (19) 0.0154 (19) 0.0032 (18)
N1 0.050 (2) 0.036 (2) 0.107 (3) 0.0023 (18) 0.0183 (18) −0.0086 (18)
C13 0.052 (3) 0.039 (3) 0.062 (2) 0.003 (2) 0.0088 (19) 0.003 (2)
C11 0.047 (2) 0.044 (2) 0.065 (2) 0.001 (2) 0.013 (2) 0.002 (2)
C14 0.050 (2) 0.036 (2) 0.047 (2) 0.000 (2) 0.0138 (19) 0.0088 (18)
O1 0.0447 (18) 0.159 (3) 0.104 (3) −0.010 (2) 0.0170 (17) −0.039 (2)
C21 0.055 (3) 0.053 (3) 0.058 (2) 0.001 (2) 0.0142 (19) −0.006 (2)
C15 0.052 (2) 0.039 (2) 0.045 (2) 0.000 (2) 0.018 (2) 0.0040 (19)
C19 0.053 (3) 0.057 (3) 0.063 (3) 0.008 (2) 0.010 (2) 0.005 (2)
C20 0.065 (3) 0.052 (3) 0.068 (3) 0.007 (2) 0.022 (2) −0.011 (2)
C17 0.063 (3) 0.060 (3) 0.059 (2) 0.005 (2) 0.015 (2) −0.011 (2)
C12 0.051 (3) 0.064 (3) 0.079 (3) 0.003 (2) 0.020 (2) −0.014 (2)
C18 0.056 (3) 0.080 (3) 0.064 (3) 0.008 (2) 0.002 (2) −0.013 (2)
C10 0.060 (3) 0.066 (3) 0.075 (3) −0.004 (2) 0.017 (2) −0.010 (3)
C7 0.059 (3) 0.082 (3) 0.074 (3) 0.001 (3) 0.017 (2) −0.003 (3)
C8 0.053 (3) 0.084 (3) 0.084 (3) 0.012 (3) 0.031 (3) −0.001 (3)
C9 0.089 (4) 0.073 (3) 0.088 (3) 0.003 (3) 0.039 (3) −0.017 (3)
C1 0.050 (3) 0.104 (4) 0.088 (4) 0.017 (3) 0.000 (3) −0.024 (3)
C22 0.077 (3) 0.097 (4) 0.129 (4) 0.028 (3) 0.031 (3) −0.010 (4)
C2 0.073 (3) 0.121 (5) 0.106 (4) 0.014 (4) 0.005 (3) −0.023 (4)
C5 0.118 (5) 0.142 (6) 0.099 (5) 0.046 (5) 0.015 (4) 0.027 (5)
C4 0.128 (6) 0.151 (7) 0.091 (5) 0.056 (5) −0.015 (5) −0.018 (5)
C6 0.082 (4) 0.117 (5) 0.101 (4) 0.013 (3) 0.015 (3) 0.001 (4)
C3 0.100 (5) 0.158 (7) 0.125 (6) 0.022 (5) −0.006 (5) −0.039 (6)

N-[2-(4-Fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]-4-methoxybenzamide (A2) . Geometric parameters (Å, º)

S1—C14 1.661 (4) C20—H20 0.9300
O3—C15 1.223 (4) C17—C18 1.377 (5)
O2—C13 1.229 (4) C17—H17 0.9300
N3—C14 1.383 (4) C12—C7 1.380 (5)
N3—C15 1.391 (4) C12—H12 0.9300
N3—H3N 0.8600 C18—H18 0.9300
O4—C19 1.367 (4) C10—C9 1.392 (6)
O4—C22 1.419 (5) C10—H10 0.9300
N2—C14 1.322 (4) C7—C8 1.362 (6)
N2—N1 1.369 (4) C8—C9 1.360 (6)
N2—H2N 0.8600 C9—H9 0.9300
F1—C8 1.348 (4) C1—C2 1.365 (7)
C16—C21 1.377 (5) C1—C6 1.365 (7)
C16—C17 1.390 (5) C22—H22A 0.9600
C16—C15 1.476 (5) C22—H22B 0.9600
N1—C13 1.325 (5) C22—H22C 0.9600
N1—H1 0.8600 C2—C3 1.338 (8)
C13—C11 1.490 (5) C2—H2 0.9300
C11—C10 1.373 (5) C5—C4 1.390 (9)
C11—C12 1.383 (5) C5—C6 1.401 (8)
O1—C7 1.375 (5) C5—H5 0.9300
O1—C1 1.383 (5) C4—C3 1.359 (9)
C21—C20 1.374 (5) C4—H4 0.9300
C21—H21 0.9300 C6—H6 0.9300
C19—C18 1.374 (5) C3—H3 0.9300
C19—C20 1.378 (5)
C14—N3—C15 128.0 (3) C11—C12—H12 119.8
C14—N3—H3N 116.0 C19—C18—C17 120.5 (4)
C15—N3—H3N 116.0 C19—C18—H18 119.8
C19—O4—C22 117.7 (3) C17—C18—H18 119.8
C14—N2—N1 119.4 (3) C11—C10—C9 119.4 (4)
C14—N2—H2N 120.3 C11—C10—H10 120.3
N1—N2—H2N 120.3 C9—C10—H10 120.3
C21—C16—C17 117.8 (3) C8—C7—O1 116.6 (4)
C21—C16—C15 118.1 (3) C8—C7—C12 118.5 (4)
C17—C16—C15 124.1 (3) O1—C7—C12 124.9 (4)
C13—N1—N2 120.9 (3) F1—C8—C9 118.9 (4)
C13—N1—H1 119.6 F1—C8—C7 118.8 (4)
N2—N1—H1 119.6 C9—C8—C7 122.3 (4)
O2—C13—N1 121.7 (3) C8—C9—C10 119.3 (4)
O2—C13—C11 122.9 (4) C8—C9—H9 120.4
N1—C13—C11 115.4 (4) C10—C9—H9 120.4
C10—C11—C12 120.0 (4) C2—C1—C6 121.5 (5)
C10—C11—C13 122.1 (4) C2—C1—O1 115.1 (5)
C12—C11—C13 117.9 (4) C6—C1—O1 123.4 (5)
N2—C14—N3 115.4 (3) O4—C22—H22A 109.5
N2—C14—S1 123.2 (3) O4—C22—H22B 109.5
N3—C14—S1 121.4 (3) H22A—C22—H22B 109.5
C7—O1—C1 121.6 (4) O4—C22—H22C 109.5
C20—C21—C16 121.7 (4) H22A—C22—H22C 109.5
C20—C21—H21 119.2 H22B—C22—H22C 109.5
C16—C21—H21 119.2 C3—C2—C1 120.4 (7)
O3—C15—N3 120.7 (3) C3—C2—H2 119.8
O3—C15—C16 122.3 (3) C1—C2—H2 119.8
N3—C15—C16 116.9 (3) C4—C5—C6 119.0 (7)
O4—C19—C18 115.0 (4) C4—C5—H5 120.5
O4—C19—C20 125.6 (4) C6—C5—H5 120.5
C18—C19—C20 119.3 (4) C3—C4—C5 120.3 (7)
C21—C20—C19 119.9 (4) C3—C4—H4 119.9
C21—C20—H20 120.0 C5—C4—H4 119.9
C19—C20—H20 120.0 C1—C6—C5 118.2 (6)
C18—C17—C16 120.8 (4) C1—C6—H6 120.9
C18—C17—H17 119.6 C5—C6—H6 120.9
C16—C17—H17 119.6 C2—C3—C4 120.6 (7)
C7—C12—C11 120.5 (4) C2—C3—H3 119.7
C7—C12—H12 119.8 C4—C3—H3 119.7
C14—N2—N1—C13 −143.5 (4) C13—C11—C12—C7 −179.2 (4)
N2—N1—C13—O2 −6.2 (6) O4—C19—C18—C17 180.0 (4)
N2—N1—C13—C11 173.9 (3) C20—C19—C18—C17 −0.2 (6)
O2—C13—C11—C10 147.9 (4) C16—C17—C18—C19 0.7 (6)
N1—C13—C11—C10 −32.2 (5) C12—C11—C10—C9 −0.6 (6)
O2—C13—C11—C12 −30.6 (5) C13—C11—C10—C9 −179.1 (4)
N1—C13—C11—C12 149.3 (4) C1—O1—C7—C8 149.6 (5)
N1—N2—C14—N3 176.7 (3) C1—O1—C7—C12 −33.4 (7)
N1—N2—C14—S1 −4.1 (5) C11—C12—C7—C8 −1.8 (6)
C15—N3—C14—N2 −5.7 (5) C11—C12—C7—O1 −178.8 (4)
C15—N3—C14—S1 175.2 (3) O1—C7—C8—F1 −2.0 (6)
C17—C16—C21—C20 −0.7 (5) C12—C7—C8—F1 −179.3 (4)
C15—C16—C21—C20 −179.7 (3) O1—C7—C8—C9 176.8 (4)
C14—N3—C15—O3 5.9 (5) C12—C7—C8—C9 −0.4 (7)
C14—N3—C15—C16 −174.1 (3) F1—C8—C9—C10 −179.1 (4)
C21—C16—C15—O3 5.2 (5) C7—C8—C9—C10 2.1 (7)
C17—C16—C15—O3 −173.8 (3) C11—C10—C9—C8 −1.5 (7)
C21—C16—C15—N3 −174.7 (3) C7—O1—C1—C2 148.1 (4)
C17—C16—C15—N3 6.3 (5) C7—O1—C1—C6 −34.9 (7)
C22—O4—C19—C18 −177.2 (4) C6—C1—C2—C3 −2.0 (8)
C22—O4—C19—C20 3.0 (6) O1—C1—C2—C3 175.1 (5)
C16—C21—C20—C19 1.2 (6) C6—C5—C4—C3 0.1 (9)
O4—C19—C20—C21 179.1 (4) C2—C1—C6—C5 1.7 (8)
C18—C19—C20—C21 −0.7 (6) O1—C1—C6—C5 −175.1 (4)
C21—C16—C17—C18 −0.2 (6) C4—C5—C6—C1 −0.7 (8)
C15—C16—C17—C18 178.8 (3) C1—C2—C3—C4 1.3 (9)
C10—C11—C12—C7 2.3 (6) C5—C4—C3—C2 −0.4 (10)

N-[2-(4-Fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]-4-methoxybenzamide (A2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2N···O3 0.86 1.92 2.589 (4) 134
N3—H3N···S1i 0.86 2.80 3.615 (3) 159
C17—H17···S1i 0.93 2.69 3.614 (4) 174
N1—H1···O2ii 0.86 2.15 2.915 (4) 148
C21—H21···O3iii 0.93 2.57 3.399 (4) 148

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x, y+1, z; (iii) −x+1, −y−1, −z.

References

  1. Acharya, P. T., Bhavsar, Z. A., Jethava, D., Patel, D. B. & Patel, H. D. (2021). J. Mol. Struct. 1226, 129268.
  2. Ameryckx, A., Thabault, L., Pochet, L., Leimanis, S., Poupaert, J. H., Wouters, J., Joris, B., Van Bambeke, F. & Frédérick, R. (2018). Eur. J. Med. Chem. 159, 324–338. [DOI] [PubMed]
  3. Bruker (2008). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Campbell, M. J. M. (1975). Coord. Chem. Rev. 15, 279–319.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Gazieva, G. A. & Kravchenko, A. N. (2012). Russ. Chem. Rev. 81, 494–523.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  10. Mohan, T. P. (2006). PhD Thesis, Mangalore University, Mangalore, Karnataka, India.
  11. Paneth, A., Stączek, P., Plech, T., Strzelczyk, A., Dzitko, K., Wujec, M., Kuśmierz, E., Kosikowska, U., Grzegorczyk, A. & Paneth, P. (2016). J. Enzyme Inhib. Med. Chem. 31, 14–22. [DOI] [PubMed]
  12. Pramanik, S. & Chopra, D. (2020). J. Indian Inst. Sci. 100, 43–59.
  13. Qandil, A. M., Tumah, H. N. & Hassan, M. A. (2006). Acta. Pharm. Sci. 48, 95–107.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Siwek, A., Bielawska, A., Maciorkowska, E., Lepiarczyk, M., Bielawski, K., Trotsko, N. & Wujec, M. (2014). J. Enzyme Inhib. Med. Chem. 29, 243–248. [DOI] [PubMed]
  17. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  18. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  19. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17.5. University of Western Australia, Perth.
  20. Yan, Y., Dai, L., Zhang, L., Zhong, S., Zhou, H., Wu, L. & Cai, L. (2018). Res. Chem. Intermed. 44, 3437–3454.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) A1, A2. DOI: 10.1107/S2056989021001900/dj2021sup1.cif

e-77-00277-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) A1. DOI: 10.1107/S2056989021001900/dj2021A1sup2.hkl

e-77-00277-A1sup2.hkl (355.3KB, hkl)

Structure factors: contains datablock(s) A2. DOI: 10.1107/S2056989021001900/dj2021A2sup3.hkl

e-77-00277-A2sup3.hkl (175.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021001900/dj2021A1sup4.cml

Supporting information file. DOI: 10.1107/S2056989021001900/dj2021A2sup5.cml

CCDC references: 2063226, 2063225

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES