Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2021 Apr 23;2021(1):75. doi: 10.1186/s13660-021-02612-z

The existence of nonnegative solutions for a nonlinear fractional q-differential problem via a different numerical approach

Mohammad Esmael Samei 1,4,, Ahmad Ahmadi 1, Sayyedeh Narges Hajiseyedazizi 1, Shashi Kant Mishra 2, Bhagwat Ram 3
PMCID: PMC8063195  PMID: 33907360

Abstract

This paper deals with the existence of nonnegative solutions for a class of boundary value problems of fractional q-differential equation Dqσc[k](t)=w(t,k(t),cDqζ[k](t)) with three-point conditions for t(0,1) on a time scale Tt0={t:t=t0qn}{0}, where nN, t0R, and 0<q<1, based on the Leray–Schauder nonlinear alternative and Guo–Krasnoselskii theorem. Moreover, we discuss the existence of nonnegative solutions. Examples involving algorithms and illustrated graphs are presented to demonstrate the validity of our theoretical findings.

Keywords: Three-point conditions, Nonnegative solutions, Caputo fractional q-derivative, Numerical results

Introduction

It is recognized that fractional calculus provides a meaningful generalization for the classical integration and differentiation to any order. They can describe many phenomena in various fields of science and engineering such as control, porous media, electro chemistry, HIV-immune system with memory, epidemic model for COVID-19, chaotic synchronization, dynamical networks, continuum mechanics, financial economics, impulsive phenomena, complex dynamic networks, and so on (for more details, see [17]). It should be noted that most of the papers and books on fractional calculus are devoted to the solvability of linear initial value fractional differential equation in terms of special functions.

The study of q-difference equations has gained intensive interest in the last years. It has been shown that these equations have numerous applications in diverse fields and thus have evolved into multidisciplinary subjects. On the other hand, quantum calculus is equivalent to traditional infinitesimal calculus without the notion of limits. Fractional q-calculus, initially proposed by Jackson [8], is regarded as the fractional analogue of q-calculus. Soon afterward, it is further promoted by Al-Salam and Agarwal [9, 10], where many outstanding theoretical results are given. Its emergence and development extended the application of interdisciplinary to be further and aroused widespread attention of the scholars; see [1123] and references therein.

In 2012, Zhoujin et al. considered the fractional differential equation

Dσc[k](s)+w(s,k(s),cDζ[k](s))

for 0<s<1 and σ(3,4) under the boundary conditions k(0)=k(0)=k(0)=0 and k(1)=k(ς) for 0<ς<1, where Dσc denotes the Caputo fractional derivative, ζ>0, and σζ1. The existence results are derived by means of Schauder’s fixed-point theorem. Then Liang and Zhang [24] studied the existence and uniqueness of positive solutions by properties of the Green function, the lower and upper solution method, and the fixed point theorem for the fractional equation Dqσ[k](s)+w(s,k(s))=0 for 0<s<1 under the boundary conditions k(0)=k(0)=0 and k(1)=i=1m2ik(ςi), where 2<σ3, and Dqσc is the Riemann–Liouville fractional derivative. In 2015, Zhang et al. [25] through the spectral analysis and fixed point index theorem obtained the existence of positive solutions of the singular nonlinear fractional differential equation

Dσk(s)=w(S,k(s),Dζk(s))

for almost all s(0,1) with integral boundary value conditions Dtζk(0)=0 and Dζk(1)=01Dζk(r)dμ(r) where σ(1,2], ζ(0,1], w(s,k,l) may be singular at both t=0, 1 and k=l=0, 01k(r)dμ(r) denotes the Riemann–Stieltjes integral with signed measure, in which μ:[0,1]R is a function of bounded variation. In 2016, Ahmad et al. [16] investigated the existence of solutions for a q-antiperiodic boundary value problem of fractional q-difference inclusions

Dqαc[k](t)F(t,k(t),Dq[k](t),Dq2[k](t))

for t[0,1], q(0,1), 2<α3, 0<β3, and k(0)+k(1)=0, Dqk(0)+Dqk(1)=0, Dq2k(0)+Dq2k(1)=0, where Dqαc is the Caputo fractional q-derivative of order α, and F:[0,1]×R×R×RP(R) is a multivalued map with P(R) the class of all subsets of R.

In 2018, Guezane-Lakoud and Belakroum [26] considered the existence and uniqueness of nonnegative solutions of the boundary value problem for nonlinear fractional differential equation D0αc[z](t)=ϕ(t,z(t),cD0β[z](t)) for t(0,1) under the conditions z(0)=z(0)=0 and z(τ)=αz(1), where ϕ:[0,1]×R2R is a given function, α, β in (2,3) and (0,1), respectively, 0<η<1, and D0βc denotes the Caputo fractional derivative. In 2019, Ren and Zhai [27] discussed the existence of a unique solution and multiple positive solutions for the fractional q-differential equation Dqα[x](t)+w(t,x(t))=0 for each t[0,1] with nonlocal boundary conditions x(0)=Dqα2[x](0)=0 and

Dqα1[x](1)=μ(x)+0ηϕ(r)Dqβ[x](t)dqr,

where Dqα is the standard Riemann–Liouville fractional q-derivative of order α such that 2<α3 and α1β>0, q(0,1), ϕL1[0,1] is nonnegative, μ[x] is a linear functional given by μ[x]=01x(t)dN(t) involving the Stieltjes integral with respect to a nondecreasing function N:[0,1]R such that N(t) is right-continuous on [0,1), left-continuous at t=1, N(0)=0, and dN is a positive Stieltjes measure. Rehman et al. [28] developed Haar wavelets operational matrices to approximate the solution of generalized Caputo–Katugampola fractional differential equations. They introduced the Green–Haar approach for a family of generalized fractional boundary value problems and compared the method with the classical Haar wavelets technique. The existence of solutions for the multiterm nonlinear fractional q-integro-differential Dqαc[u](t) equation in two modes and inclusions of order α(n1,n], where the natural number n5, with nonseparated boundary and initial boundary conditions was considered in [29]. In [30] the investigation is centered around the quantum estimates by utilizing the quantum Hahn integral operator via the quantum shift operator. In [20] the q-fractional integral inequalities of Henry–Gronwall type are presented.

Inspired by all the works mentioned, in this research, we investigate the existence and uniqueness of nonnegative solutions of the nonlinear fractional q-differential equation

Dqσc[k](t)+w(t,k(t),cDqζ[k](t))=0 1

under the boundary conditions k(0)=k(0)=0 and k(r)=λk(1) for tJ:=(0,1) and 0<q<1, where w:J×R2R is a given function with J:=[0,1], 2<σ<3, ζJ, rJ,and λ>0, and Dqσc denotes the Caputo fractional q-derivative.

The rest of the paper is organized as follows. In Sect. 2, we cite some definitions and lemmas needed in our proofs. Section 3 treats the existence and uniqueness of solutions by using the Banach contraction principle and Leray–Schauder nonlinear alternative. Also, Sect. 3 is devoted to prove the existence of nonnegative solutions with the help of the Guo–Krasnoselskii theorem. Finally, Sect. 4 contains some illustrative examples showing the validity and applicability of our results. The paper concludes with some interesting observations.

Preliminaries and lemmas

In this section, we recall some basic notions and definitions, which are necessary for the next goals. This section is devoted to state some notations and essential preliminaries acting as necessary prerequisites for the results of the subsequent sections. Throughout this paper, we will apply the time-scale calculus notation [31].

In fact, we consider the fractional q-calculus on the specific time scale T=R, where Tt0={0}{t:t=t0qn} for nonnegative integer n, t0R, and q(0,1). Let aR. Define [a]q=(1qa)/(1q) [8]. The power function (xy)qn with nN0 is defined by (xy)q(n)=k=0n1(xyqk) for n1 and (xy)q(0)=1, where x and y are real numbers, and N0:={0}N [11]. Also, for αR and a0, we have

(xy)q(α)=xαk=0(xyqk)/(xyqα+k).

If y=0, then it is clear that x(α)=xα [12] (Algorithm 1). The q-gamma function is given by Γq(z)=(1q)(z1)/(1q)z1, where zR{0,1,2,} [8]. Note that Γq(z+1)=[z]qΓq(z). Algorithm 2 shows a pseudocode description of the technique for estimating the q-gamma function of order n. The q-derivative of a function f is defined by

Dq[f](x)=f(x)f(qx)(1q)x

and Dq[f](0)=limx0Dq[f](x), which is shown in Algorithm 3 [11]. Furthermore, the higher-order q-derivative of a function f is defined by Dqn[f](x)=Dq[Dqn1[f]](x) for n1, where Dq0[f](x)=f(x) [11]. The q-integral of a function f is defined on [0,b] by

Iqf(x)=0xf(s)dqs=x(1q)k=0qkf(xqk)

for 0xb, provided that the series absolutely converges [11]. If x[0,T], then xTf(r)dqr=Iq[f](T)Iq[f](x), which is equal to

(1q)k=0qk[Tf(Tqk)xf(xqk)]

whenever the series exists. The operator Iqn is given by Iq0[h](x)=h(x) and Iqn[h](x)=Iq[Iqn1[h]](x) for n1 and hC([0,T]) [11]. It has been proved that Dq[Iq[h]](x)=h(x) and Iq[Dq[h]](x)=h(x)h(0) whenever h is continuous at x=0 [11]. The fractional Riemann–Liouville-type q-integral of a function h on J=(0,1) for α0 is defined by Iq0[h](t)=h(t) and

Iqα[h](t)=1Γq(α)0t(tqs)(α1)h(s)dqs=tα(1q)αk=0qki=1k1(1qα+i)i=1k1(1qi+1)h(tqk) 2

for tJ [15, 17]. We can use Algorithm 5 for calculating Iqα[h](t) according to Eq. (2). Also, the Caputo fractional q-derivative of a function h is defined by

Dqαc[h](t)=Iq[α]α[Dq[α][h]](t)=1Γq([α]α)0t(tqs)([α]α1)Dq[α][h](s)dqs 3

for tJ and α>0 [17]. It has been proved that Iqβ[Iqα[h]](x)=Iqα+β[h](x) and Dqα[Iqα[h]](x)=h(x) for α,β0 [17]. Algorithm 5 gives a pseudocode for Iqα[h](x).

Algorithm 1.

Algorithm 1

The proposed method for calculating (xy)q(α)

Algorithm 2.

Algorithm 2

The proposed method for calculating Γq(x)

Algorithm 3.

Algorithm 3

The proposed method for calculating (Dqf)(x)

Lemma 2.1

([17])

Let α, β0 and kL1[a,b]. Then

Iqα[Iqβ[k]](t)=Iqα+β[k](t)=Iqα[Iqβ[k]](t)

and Dqαc[Iqβ[k]](t)=[k](t) for all t[a,b].

Lemma 2.2

Let γ>λ>0. Then Dqλc[Iqγ[k]](t)=Iqγλ[k](t) almost everywhere on t[a,b] for kL1[a,b], and it is valid at any point x[a,b] if kC[a,b].

Lemma 2.3

([22])

Let σ>0 and wL1([a,b],R+). Then we have

Dqσ+1[k](t)Dqσ[k]L1

for t[a,b].

To prove the theorems, we further apply the Leray–Schauder nonlinear alternative.

Lemma 2.4

([32])

Let A be a Banach space, let O be a bounded open subset of OA, and let H:OA be a completely continuous operator. Then either there exist kO and λ>1 such that H(k)=λk, or there exists a fixed point kO.

Theorem 2.5

Let B be a Banach space, and let CB be a cone. Let O1 and O2 be open subsets of B with 0O1, O1O2, and let Θ:C(O2O1)C be a completely continuous operator such that

  • (i)

    Θ(k)k for kCO1 and Θ(k)k for kCO2,

  • (ii)

    Θ(k)k for kCO1 and Θ(k)k for kCO2.

Then Θ has a fixed point in C(O2O1).

Main results

To facilitate exposition, we will provide our analysis in two separate folds. Now we give a solution of an auxiliary problem. Denote by L=L1(J,R) the Banach space of Lebesgue-integrable functions with the norm k=01|k(ξ)|dξ.

Lemma 3.1

Let 2<σ<3 and zC[a,b]. The unique solution of the q-fractional problem

{Dqσc[k](t)=z(t),k(0)=k(0)=0,k(r)=λk(1), 4

for tJ is given by

k(t)=1Γq(σ2)[011Gqζ(t,ξ)z(ξ)dqξtσ20r(rqξ)(σ2)z(ξ)dqξ], 5

where

Gqζ1(t,ξ)={(tqξ)(σ1)(σ2)(σ1)+λt(1qξ)(σ3),ξt,λt(1qξ)(σ3),ξ>t. 6

Proof

First, by Lemma 2.1 and equation (4) we get

k(t)=Iqσ[z](t)+d1+d2t+d3t2. 7

Differentiating both sides of (7) and using Lemma 2.2, we get

k(t)=Iqσ1[z](t)+d2+d3t,k(t)=Iqσ2[z](t)+d3. 8

The first condition in equation (4) implies d1=d3=0, and the second one gives

d2=λIqσ2[z](1)Iqσ1[z](r).

Substituting d2 into equation (7), we obtain

k(t)=Iqσ[z](t)+t[λIqσ2[z](1)Iqσ1[z](r)], 9

which can be written as

k(t)=1Γq(σ)0t(tqξ)(σ1)z(ξ)dqξ+λtΓq(σ2)01(1qξ)(σ3)z(ξ)dqξtΓq(σ1)0r(ηqξ)(σ2)z(ξ)dqξ. 10

Indeed,

k(t)=1Γq(σ2)[01G(t,ξ)z(ξ)dqξtσ20r(rqξ)(σ2)z(ξ)dqξ], 11

where Gqζ1(t,ξ) is defined by (6). The proof is complete. □

Existence and uniqueness results

In this section, we prove the existence and uniqueness of nonnegative solutions in the Banach space B of all functions kC(J) into R with the norm

k=maxtJ|k(t)|+maxtJ|cDqζ[k](t)|.

Note that DqζckC(J) if ζJ. Denote

B={kB|k(t)0,tJ}.

Throughout this section, we suppose that wC(J×R2,R). We define the integral operator Θ:BB by

Θ[k](t)=1Γq(σ2)[011Gqζ(t,ξ)w(ξ,k(ξ),cDqσ[k](ξ))dqξtσ20r(rqξ)(σ2)w(ξ,k(ξ),cDqσ[k](ξ))dqξ]. 12

Then we have the following lemma.

Lemma 3.2

The function kB is a solution of problem (1) if and only if Θ[k](t)=k(t) for tJ.

Theorem 3.3

The nonlinear fractional q-differential equation (1) has a unique solution kB whenever there exist nonnegative functions g1, g2C(J,R+) such that

  1. for all ki,liR with i=1,2 and tJ, we have
    |w(t,k1,k2)w(t,l1,l2)|i=12gi(t)|kili|, 13
  2. ΣA=A1+A2<1 and ΣB=B1+B2<(1ζ)Γq(1ζ), where
    Ai=Iqσ1[gi]L1+|λ|Iqσ2[gi](1)+Iqσ1[gi](r),Bi=Iqσ1([gi](1)+[gi](r))+|λ|Iqσ2[gi](1) 14
    for rJ and λ>1.

Proof

We transform the fractional q-differential equation to a fixed point problem. By Lemma 3.2 the fractional q-differential problem (1) has a solution if and only if the operator Θ has a fixed point in B. First, we will prove that Θ is a contraction. Let k,lB. Then

Θ[k](t)Θ[l](t)=1Γq(σ2)[011Gqζ(t,ξ)[w(ξ,k(ξ),cDqζ[k](ξ))w(ξ,l(ξ),cDqζ[l](ξ))]dqξtσ20r(rqξ)(σ2)[w(ξ,k(ξ),cDqζ[k](ξ))w(ξ,l(ξ),cDqζ[l](ξ))]dqξ]=Iqσ[w(t,k(t),cDqζ[k](t))w(t,l(t),cDqζ[l](t))]+tλIqσ2[w(1,k(1),cDqζ[k](1))w(1,l(1),cDqζ[l](1))]tIqσ2[w(r,k(r),cDqζ[k](r))w(r,l(r),cDqζ[l](r))]. 15

By inequality (13) we obtain

Θ[k](t)Θ[l](t)maxtJ|k(t)l(t)|×[Iqσ[g1](t)+|λ|Iqσ2[g1](1)+Iqσ1[g1](r)]+maxtJ|cDqσ[k](t)cDqσ[l](t)|×[Iqσ[g2](t)+|λ|Iqσ2[g2](1)+Iqσ1[g2](r)]. 16

On the other hand, Lemma 2.3 implies

|Θ[k](t)Θ[l](t)|k(t)l(t)[Iqσ1[g1]|+|λ|Iqσ2[g1](1)+Iqσ1[g1](r)+Iqσ1[g2]+|λ|Iqσ2[g2](1)+Iqσ1[g2](r)]k(t)l(t)(A1+A2). 17

In view of (13), it yields

|Θ[k](t)Θ[l](t)|k(t)l(t) 18

for tJ. Also, we have

Dqζc[k](t)cDqζ[l](t)=1Γq(1ζ)0t(tqξ)(ζ)×[(Θ[k])(ξ)(Θ[l])(ξ)]dqξ, 19

where

(Θ[k])(t)=1Γq(σ2)[011Hqζ(t,ξ)w(ξ,k(ξ),cDqζ[k](ξ))dqξ1Γq(σ2)0r(rqξ)(σ2)w(ξ,k(ξ),cDqζ[k](ξ))dqξ],

and

Hqζ1(t,ξ)=1Gqζ(t,ξ)t={(tξ)(σ2)σ2+λ(1qξ)(σ3),ξt,λ(1qξ)(σ3),ξ>t. 20

Therefore

Dqζc[Θ[k]](t)cDqζ[Θ[l]](t)=1Γq(σ2)Γq(1ζ)[0t(tqξ)(ζ)(011Hqζ(ξ,qs)×[w(s,k(s),cDqζ[k](s))w(s,l(s),cDqζ[l](s))]dqs1Γq(σ2)0r(rqs)(σ2)×[w(s,k(s),cDqζ[k](s))w(s,l(s),cDqζ[l](s))]dqs)dqξ]. 21

Applying inequality (13), we get

|cDqζ[Θ[k]](t)cDqζ[Θ[l]](t)|1Γq(σ2)Γq(1ζ)×[(tqξ)(ζ)0t(maxtJ|k(t)l(t)|×(011Hqζ(ξ,s)g1(s)dqs0r(rqs)(σ2)σ2g1(s)dqs)+maxtJ|cDqζ[k](t)cDqζ[l](t)|×(011Hqζ(ξ,s)g2(s)dqs0r(rqs)(σ2)σ2g2(s)dqs))]dqξ. 22

Now let us estimate the term

011Hqζ(ξ,s)g1(s)dqs0r(rqs)(σ2)σ2g1(s)dqs.

We have

|011Gqζ(ξ,s)g1(s)dqsξσ20r(rqs)(σ2)g1(s)dqs|=|Γq(σ2)[Iqσ[g1](ξ)+ξ(λIqσ2[g1](1)+Iqσ1[g1](r))]|, 23
|011Hqζ(ξ,s)g1(s)dqs0r(rqs)(σ2)σ2g1(s)dqs|=|Γq(σ2)[Iqσ[g1](ξ)+λIqσ2[g1](1)+Iqσ1[g1](r)]|Γq(σ2)[Iqσ[g1](ξ)+λIqσ2[g1](1)+Iqσ1[g1](r)]Γq(σ2)B1, 24

and, consequently, (22) becomes

|cDqζ[Θ[k]](t)cDqζ[Θ[l]](t)|=k(t)l(t)(1ζ)Γq(1ζ)ΣB.

By (15) this yields

|cDqζ[Θ[k]](t)cDqζ[Θ[l]](t)|k(t)l(t). 25

Taking into account (18)–(25), we obtain Θ[k]Θ[l]k(t)l(t) for tJ. From here the contraction principle ensures the uniqueness of solution for the fractional q-differential problem (1), which finishes the proof. □

We now give an existence result for the fractional q-differential problem (1).

Theorem 3.4

Assume that w(0,0,0)0 and there exist nonnegative functions g1,g2,g3C(J,R+), nondecreasing functions ϕ1,ϕ2C(R+,[0,]), and η>0 such that

|w(t,k,k)|g1(t)ϕ1(|k(t)|)+g2(t)ϕ2(|k(t)|)+g3(t) 26

for almost all (t,k,k)J×R2, and

[ϕ1(η)+ϕ2(η)+1](M1+M2(1ζ)Γq(1ζ))<η, 27

where M1=maxtJ{A1,A2,A3} and M2=maxtJ{B1,B2,B3} with Ai and Bi defined as in Theorem 3.3by (14). Then the fractional q-differential problem (1) has at least one nontrivial solution kB.

Proof

First, let us prove that Θ is completely continuous. It is clear that Θ is continuous since w and Gqζ1 are continuous. Let Bη={kB:kη} be a bounded subset in B. We will prove that Θ(Bη) is relatively compact.

  • (i)
    For kBη, using inequality (26), we get
    |Θ[k](t)|1Γq(σ2)[01|1Gqζ(t,ξ)|×[g1(ξ)ϕ1(|k(ξ)|)+g2(ξ)ϕ2(|cDqζ[k](ξ)|)+g3(ξ)]dqξ+tΓq(σ2)0r(rqξ)(σ2)×[g1(ξ)ϕ1(|k(ξ)|)+g2(ξ)ϕ2(|cDqζ[k](ξ)|)]dqξ]. 28
    Since ϕ1 and ϕ2 are nondecreasing, inequality (28) implies
    |Θ[k](t)|1Γq(σ2)[01|1Gqζ(t,ξ)|[g1(ξ)ϕ1(k)+g2(ξ)ϕ2(k)+g3(ξ)]dqξ+tΓq(σ2)0r(rqξ)(σ2)[g1(ξ)ϕ1(k)+g2(ξ)ϕ2(k)]dqξ]1Γq(σ2)[01|1Gqζ(t,ξ)|[g1(ξ)ϕ1(η)+g2(ξ)ϕ2(η)+g3(ξ)]dqξ+tΓq(σ2)0r(rqξ)(σ2)[g1(ξ)ϕ1(η)+g2(ξ)ϕ2(η)]dqξ]. 29
    Using similar techniques to get (18), this yields
    |Θ[k](t)|<ϕ1(η)[Iqσ1[g1]L1+|λ|Iqσ2[g1](1)+Iqσ1[g1](r)]+ϕ2(η)[Iqσ1[g2]L1+|λ|Iqσ2[g2](1)+Iqσ1[g2](r)]+Iqσ1[g3]L1+|λ|Iqσ2[g3](1)+Iqσ1[g3](r)A1ϕ1(η)+A2ϕ2(η)+A3. 30
    Hence
    |Θ[k](t)|M1[ϕ1(η)+ϕ2(η)+1]. 31
    Moreover, we have
    |(Θ[k])(t)|=|1Γq(σ2)[011Hqζ(t,ξ)w(ξ,k(ξ),cDqζ[k](ξ))dqξ1(σ2)0r(rqξ)(σ2)w(ξ,k(ξ),cDqζ[k](ξ))dqξ]|1Γq(σ2)|01|1Hqζ(t,ξ)|[g1(ξ)ϕ1(η)+g2(ξ)ϕ2(η)+g3(ξ)]dqξ1(σ2)0r(rqξ)(σ2)[g1(ξ)ϕ1(η)+g2(ξ)ϕ2(η)]dqr|1Γq(σ2)[|ϕ1(η)011Hqζ(t,ξ)g1(ξ)dqξ1(σ2)0r(rqξ)(σ2)g1(ξ)dqξ|]+[|ϕ2(η)011Hqζ(t,ξ)g2(ξ)dqξ1(σ2)0r(rqξ)(σ2)g2(ξ)dqξ|]+[|011Hqζ(t,ξ)g3(ξ)dqξ1(σ2)0r(rqξ)(σ2)g3(ξ)dqξ|] 32
    and
    |(Θ[k])(t)|B1ϕ1(η)+B2ϕ2(η)+B3,|(Θ[k])(t)|M2[ϕ1(η)+ϕ2(η)+1]. 33
    On the other hand, by (23) and (24) we obtain
    |cDqζ[Θ[k]](t)|1Γq(1ζ)×0t(tqξ)(ζ)[B1ϕ1(η)+B2ϕ2(η)+B3]dqξM2Γq(1ζ)0t(tqξ)(ζ)[ϕ1(η)+ϕ2(η)+1]dqξM2(1ζ)Γq(1ζ)[ϕ1(η)+ϕ2(η)+1], 34
    and from (31) and (32) we get
    Θ[k](t)=[ϕ1(η)+ϕ2(η)+1](M1+M2(1ζ)Γq(1ζ)). 35
    Then Θ(Bη) is uniformly bounded.
  • (ii)
    Θ(Bη) is equicontinuous. Indeed, for all kBη and t1,t2J with t1<t2, denoting
    M=maxtJ{|w(t,k(t),cDqζ[k](t))|:k<η},
    we have
    |Θ[k](t1)Θ[k](t2)|=t1t2|(Θ[k])(ξ)|dqξt1t2[B1ϕ1(η)+B2ϕ2(η)+B3]dqξ(t1t2)[B1ϕ1(η)+B2ϕ2(η)+B3]. 36
    Also, we have
    |cDqζ[Θ[k]](t1)cDqζ[Θ[l]](t2)|=|1Γq(1ζ)0t1(t1qξ)(ζ)(Θ[k])(ξ)dqξ1Γq(1ζ)0t2(t2qξ)(ζ)(Θ[k])(ξ)dqξ|1Γq(1ζ)0t1|(t1qξ)(ζ)(t2qr)(ζ)||(Θ[k])(ξ)|dqξ+1Γq(1ζ)t1t2(t2qξ)(ζ)|(Θ[k])(ξ)|dqξ. 37
    Using (23), (24), and (32), this yields
    |(Θ[k])(t)|M2[ϕ1(η)+ϕ2(η)+1] 38
    and
    |cDqζ[Θ[k]](t1)cDqζ[Θ[k]](t2)|M2(ϕ1(η)+ϕ2(η)+1)(1ζ)Γq(1ζ)×[2(t2t1)(1ζ)+(t2)(1ζ)+(t1)(1ζ)]. 39
    As t1t2 in (36) and (39), |Θ[k](t1)Θ[k](t2)| and
    |cDqζ[Θ[k]](t1)cDqζ[Θ[l]](t2)|
    tend to 0. Consequently, Θ(Bη) is equicontinuous.

By the Arzelá–Ascoli theorem we deduce that Θ is a completely continuous operator. Now we apply the Leray–Schauder nonlinear alternative to prove that Θ has at least one nontrivial solution in B. Letting O={kB:k<η}, for any kO such that k=τΘ[k](t), 0<τ<1, by (31) we get

|k(t)|=τ|Θ[k](t)||Θ[k](t)|M1(ϕ1(η)+ϕ2(η)+1). 40

Taking into account (34), we obtain

|cDqζ[Θ[k]](t)|M2(1ζ)Γq(1ζ)[ϕ1(η)+ϕ2(η)+1]. 41

From (40) and (41) we deduce that

k[ϕ1(η)+ϕ2(η)+1][M1+M2(1ζ)Γq(1ζ)]<η, 42

which contradicts the fact that kO. In this stage, Lemma 2.4 allows us to conclude that the operator Θ has a fixed point kO, and thus the fractional q-differential problem (1) has a nontrivial solution kO. The proof is completed. □

Existence of nonnegative solutions

In this section, we investigate the positivity of nonnegative solutions for the fractional q-differential problem (1). To do this, we introduce the following assumptions.

  1. w(t,k,l)=μ(t)γ(k,l), where μC(J,(0,)) and γC(R+×R,R+).

  2. 0<01(1qξ)(σ3)μ(ξ)ϱq(ξ)dqξ<, where
    ϱq(ξ)={λ,ξ>r,λ(rqξ)(σ2)(1qξ)(σ3)σ2,ξr.

Let us rewrite the function k as

k(t)=1Γq(σ2)01(1qξ)(σ3)2Gqζ(t,ξ)μ(ξ)γ(k(ξ),cDqζ[k](ξ))dqξ,

where

Gqζ2(t,ξ)={(tqξ)(σ1)(1qξ)(σ3)(σ2)(σ1)+λtt(rqξ)(σ2)(1qξ)(σ3)σ2,ξt,ξr,(qtqξ)(σ1)(1qξ)(σ3)(σ2)(σ1)+λt,ξt,ξ>r,λtt(rqξ)(σ2)(1qξ)(σ3)σ2,ξ>t,ξr,λt,ξ>t,ξ>r. 43

Hence

Dqζc[k](t)=01(1qξ)(σ3)2Hqζ(t,ξ)μ(ξ)γ(k(ξ),cDqζ[k](ξ))dqξ,

where

Hqζ2(t,qξ)={(tqξ)(σζ1)(1qξ)(σ3)Γq(σζ)+λt1ζΓq(ζ)Γq(σ2)t1ζ(rqξ)(σ2)(1qξ)(σ3)Γq(ζ)Γq(σ1),ξt,ξr,(tqξ)(σζ1)(1qξ)(σ3)Γq(σζ)+λt1ζΓq(ζ)Γq(σ2),ξt,ξ>r,λt1ζΓq(ζ)Γq(σ2)t1ζ(rqξ)(σ2)(1qξ)(σ3)Γq(ζ)Γq(σ1),ξ>t,ξr,λt1ζΓq(ζ)Γq(σ2),ξ>t,ξ>r. 44

Now we give the properties of the Green function Hqζ2(t,ξ).

Lemma 3.5

If λ(σ2)1, then Gqζ2(t,ξ) and Hqζ2(t,ξ) belong to C(J2) with Gqζ2(t,ξ)>0 and Hqζ2(t,ξ)>0 for all t,ξJ. Furthermore, if t[τ,1], τ>0, then for each ξJ, we have

0<τϱq(ξ)2Gqζ(t,ξ)2ϱq(ξ)

and

0<τΓq(ζ)Γq(σ2)ϱq(ξ)2Hqζ(t,ξ)[1+(σ2)Γq(ζ)Γq(ζ)Γq(σ2)]ϱq(ξ). 45

Proof

It is obvious that Gqζ2(t,ξ)C(J2). Moreover, we have

λtt(rqξ)(σ2)(1ξ)(σ3)σ2=tσ2[λ(σ2)(1qξ)(σ3)(rqξ)(σ2)],

which is positive if λ(σ2)1. Hence Gqζ2(t,ξ) is nonnegative for all t,ξJ. Let t[τ,1]. It is easy to see that ϱq(ξ)0. Then we have

Gqζ2(t,ξ)=1λϱq(ξ)[tλ+(tqξ)(σ1)(1qξ)(σ3)(σ2)(σ1)](1qξ)2σ1+t2

whenever e<ξt,

Gqζ2(t,ξ)=ϱq(ξ)[λ(rqξ)(σ2)(1qξ)(σ3)(σ2)]1×[(tqξ)(σ1)(1qξ)(σ3)(σ2)(σ1)+λtt(rqξ)(σ2)(1qξ)(σ3)σ2]=t+(tqξ)(σ1)(1qξ)(σ3)(σ1)[λ(σ2)(rqξ)(σ2)(1qξ)(σ3)]2,

whenever ξt, ξr,

Gqζ2(t,ξ)=ϱq(ξ)[λt(1qξ)(σ3)t(eqξ)(σ2)σ2]×[λ(1qξ)(σ3)(rqξ)(σ2)σ2]1=t2

whenever t<ξr, and Gqζ2(t,ξ)=tϱq(ξ)2 whenever t<ξ, e<ξ. Thus

Gqζ2(t,ξ)tϱq(ξ)τϱq(ξ)

in all the cases. Since ϱq(ξ) is nonnegative, we obtain

0<τϱq(ξ)2Gqζ(t,ξ)2ϱq(ξ).

Similarly, we can prove that Hqζ2(t,ξ) has the stated properties. The proof is completed. □

We recall the definition of a positive solution. A function k is called a positive solution of the fractional q-differential problem (1) if k(t)0 for all tJ.

Lemma 3.6

If kB and λ(σ2)1, then the solution of the fractional q-differential problem (1) is nonnegative and satisfies

mint[τ,l](k(t)+cDqζ[k](t))τ(1+Γq(ζ))1+σΓq(ζ)k. 46

Proof

First, let us remark that under the assumptions on k and w, the function Dqζc[k] is nonnegative. Applying the right-hand side of inequality (45), we get

k(t)2Γq(σ2)01(1qξ)(σ3)ϱ(ξ)μ(ξ)γ(k(ξ),cDqζ[k](ξ))dqξ. 47

Also, inequality (45) implies that

Dqζc[k](t)=01(1qξ)(σ3)2Hqζ(t,ξ)μ(ξ)γ(k(ξ),cDqζ[k](ξ))dqξΛ01(1qξ)(σ3)μ(ξ)ϱ(ξ)γ(k(ξ),cDqζ[k](ξ))dqξ, 48

where Λ=1+(σ2)Γq(ζ)Γq(σ2)Γq(ζ). Combining (47) and (48) yields

k[Λ+2Γq(σ2)]01(1qξ)(σ3)μ(ξ)ϱ(ξ)γ(k(ξ),cDqζ[k](ξ))dqξ,

which is equivalent to

k1+σΓq(ζ)Γq(ζ)Γq(σ2)01(1qξ)(σ3)μ(ξ)ϱ(ξ)γ(k(ξ),cDqζ[k](ξ))dqξ.

Indeed,

01(1qξ)(σ3)μ(ξ)ϱ(ξ)γ(k(ξ),cDqζ[k](ξ))dqξΓq(ζ)Γq(σ2)1+σΓq(ζ)k. 49

In view of the left-hand side of (45), we obtain that for all t[τ,l],

k(t)τΓq(σ2)01(1qξ)(σ3)μ(ξ)ϱ(ξ)γ(k(ξ),cDqζ[k](ξ))dqξ. 50

On the other hand, we have

Dqζc[k](t)τΓq(ζ)Γq(σ2)×01(1qξ)(σ3)μ(ξ)ϱ(ξ)γ(k(ξ),cDqζ[k](ξ))dqξ. 51

From (50) and (51) we get

mint[τ,l](k(t)+cDqζ[k](t))τ(1+Γq(ζ))Γq(ζ)Γq(σ2)01(1qξ)(σ3)μ(ξ)ϱ(ξ)γ(k(ξ),cDqζ[k](ξ))dqξ,

and by (49) we deduce that

mint[τ,l](k(t)+cDqζ[k](t))τ(1+Γq(ζ))Γq(ζ)Γq(σ2)k.

This completes the proof. □

Define the quantities L0 and L by

L0=lim(|k|+|l|)0γ(k,l)|k|+|l|,L=lim(|k|+|l|)γ(k,l)|k|+|l|.

The case of L0=0 and L= is called the superlinear case, and the case of L0= and L=0 is called the sublinear case. To prove the main result of this section, we apply the well-known Guo–Krasnoselkii fixed point Theorem 2.5 on a cone.

Theorem 3.7

Under the assumptions of Lemma 3.6, the fractional q-differential problem (1) has at least one nonnegative solution in the both superlinear and sublinear cases.

Proof

First, we define the cone

C={kB|mint[τ,l](k(t)+cDqζ[k](t))τ(1+Γq(ζ))Γq(ζ)Γq(σ2)k}. 52

We can easily check that C is a nonempty closed convex subset of B, and hence it is a cone. Using (3.6), we see that Θ[C]C. Also, from the proof of Theorem (3.4) we know that Θ is completely continuous in B. Let us prove the superlinear case.

  1. Since L0=0, for any ε>0, there exists δ1>0 such that γ(k,l)ε(|k|+|l|) for 0<|k|+|l|<δ1. Letting O1={kB:kδ1}, for any kCO1, this yields
    Θ[k](t)=1Γq(σ2)01(1qξ)(σ3)×2Gqζ(t,ξ)μ(ξ)γ(k(ξ),cDqζ[k](ξ))dqξ2εkΓq(σ2)01(1qξ)(σ3)μ(ξ)ϱ(ξ)dqξ. 53
    Moreover, we have
    Dqζc[k](t)Λ01(1qξ)(σ3)μ(ξ)ϱ(r)γ(k(ξ),cDqζ[k](r))dqξΛεk01(1qξ)(σ3)μ(ξ)ϱ(ξ)dqξ. 54
    From (53) and (54) we conclude
    Θ[k][2Γq(σ2)+Λ]εk01(1qξ)(σ3)μ(ξ)ϱ(ξ)dqξ,Θ[k][σΓq(ζ)+1Γq(ζ)Γq(σ2)]εk01(1qξ)(σ3)μ(ξ)ϱ(ξ)dqξ. 55
    In view of assumption (A2), we can choose ε such that
    [01(1qξ)(σ3)μ(ξ)ϱ(ξ)dqξ]εΓq(ζ)Γq(σ2)1+σΓq(ζ). 56
    Inequalities (55) and (56) imply that Θ[k](t)k(t) for each kCO1.
  2. Second, in view of L=0, for any M>0, there exists δ2>0 such that w1(k,l)M(|k|+|l|) for (|k|+|l|)δ2. Take
    δ=max{2δ1,1+σΓq(ζ)τ(1+Γq(ζ))δ2}
    and denote by O2 the open set {kB:kδ. If kCO2, then
    mint[τ,l](k(t)+cDqζ[k](t))τ(1+Γq(ζ))1+σΓq(ζ)k=τ(1+Γq(ζ))1+σΓq(ζ)δδ2.
    Using the left-hand side of (45) and Lemma (3.6), we obtain
    Θ[k](t)τΓq(σ2)01(1qξ)(σ3)×μ(ξ)ϱ(ξ)γ(k(ξ),cDqζ[k](ξ))dqξτMΓq(σ2)k01(1qξ)(σ3)μ(ξ)ϱ(ξ)dqξ. 57
    Moreover, by inequality (51) we get
    Dqζc[Θ[k]](t)τΓq(ζ)Γq(σ2)×01(1qξ)(σ3)μ(ξ)ϱ(ξ)γ(k(ξ),cDqζ[k](ξ))dqξτΓq(ζ)Γq(σ2)Mk01(1qξ)(σ3)μ(r)ϱ(ξ)dqξ. 58
    In view of inequalities (57) and (58), we can write
    Θ[k](t)+cDqζ[Θ[k]](t)τ(1+Γq(ζ))Γq(ζ)Γq(σ2)Mk01(1qξ)(σ3)μ(ξ)ϱ(ξ)dqξ.
    Let us choose M such that
    Γq(ζ)Γq(σ2)M[τ(1+Γq(ζ))01(1qξ)(σ3)μ(ξ)ϱ(ξ)dqξ].
    Then we get Θ[k](t)+cDqζ[Θ[k]](t)k. So, Θ[k](t)k(t) for each kCO2.

The first part of Theorem (2.5) implies that Θ has a fixed point in C(O2O1) such that δ2kδ. To prove the sublinear case, we apply similar techniques. The proof is complete. □

Some illustrative examples

Herein, we give some examples to show the validity of the main results. In this way, we give a computational technique for checking problem (1). We need to present a simplified analysis that is able to execute the values of the q-gamma function. For this purpose, we provided a pseudocode description of the method for calculation of the q-gamma function of order n in Algorithms 2, 3, 4, and 5; for more detail, follow these address https://www.dm.uniba.it/members/garrappa/software.

Algorithm 4.

Algorithm 4

The proposed method for calculating abf(r)dqr

Algorithm 5.

Algorithm 5

The proposed method for calculating Iqα[x]

For problems for which the analytical solution is not known, we will use, as reference solution, the numerical approximation obtained with a tiny step h by the implicit trapezoidal PI rule, which, as we will see, usually shows an excellent accuracy [33]. All the experiments are carried out in MATLAB Ver. 8.5.0.197613 (R2015a) on a computer equipped with a CPU AMD Athlon(tm) II X2 245 at 2.90 GHz running under the operating system Windows 7.

Example 4.1

We consider the nonlinear fractional q-differential equation

Dq114c[k](t)exp(t)123k(t)sin2t15(1t)3Dq37[k](t)=0 59

under the boundary conditions k(0)=k(0)=0 and k(15)=213k(1) for t(0,1). It is clear that σ=114(2,3), ζ=37(0,1), r=15(0,1), and λ=213>0. We define the function w:J×R2R by

w(t,k(t),l(t))=exp(t)+123k(t)sin2t+15(1t)3l(t).

Let k1, k2, l1,l2R. Then we have

|w(t,k1,l1)w(t,k2,l2)|=|exp(t)+123k1sin2t+15(1t)3l1(exp(t)+123k2sin2t+(1t)3l2)|13|k1k2|sin2t+15(1t)3|l1l2|.

Therefore g1(t)=123sin2t and g2(t)=15(1t)3, and by using equality (2) we obtain

Iqσ1[g1](1)0.1402,0.0770,0.0378,Iqσ1[g2](1)0.0237,0.0351,1.2390

for q=15, 12, 78, respectively,

Iqσ1[g1]L10.2531,0.2172,0.1872,Iqσ1[g2]L10.1754,0.1505,0.1297

for q=15, 12, 78, respectively, and

ΣA0.4941,0.4259,0.3687,

which are less than one, for q=15, 12, 78, respectively,

ΣB0.2295<0.7280=(47)Γq(47),ΣB0.1704<0.8077=(47)Γq(47),ΣB0.1332<0.8728=(47)Γq(47)

for q=15, 12, 78, respectively. Table 1 shows these results. Figures 2a and 2b show the curves of ΣA and ΣB. Also, Figs. 1a and 1b show the curves of Iqσ1[g1]L1 and Iqσ1[g2]L1, respectively. Thus Theorem 3.3 implies that the nonlinear fractional q-differential equation (59) has a unique solution in B.

Table 1.

Numerical results of problem (59) for q=15, 12, 78 and (1) Iqσ1[g1]L1 and (2) Iqσ1[g2]L1 in Example 4.1

n g1(t) g2(t) ΣA ΣB Γq(1ζ)(1ζ)1
(1) A1 B1 (2) A2 B2
q=15
1 0.2413 0.2941 0.1930 0.1672 0.2516 0.0267 0.4716 0.2196 0.7280
2 0.2507 0.3036 0.1930 0.1737 0.2630 0.0344 0.4896 0.2274 0.7280
3 0.2526 0.3055 0.1930 0.1750 0.2653 0.0361 0.4932 0.2291 0.7280
4 0.2530 0.3058 0.1930 0.1753 0.2658 0.0364 0.4939 0.2294 0.7280
5 0.2531 0.3059 0.1930 0.1753 0.2659 0.0365 0.4941 0.2295 0.7280
6 0.2531 0.3059 0.1930 0.1753 0.2659 0.0365 0.4941 0.2295 0.7280
7 0.2531 0.3059 0.1930 0.1754 0.2659 0.0365 0.4941 0.2295 0.7280
8 0.2531 0.3059 0.1930 0.1754 0.2659 0.0365 0.4941 0.2295 0.7280
9 0.2531 0.3059 0.1930 0.1754 0.2659 0.0365 0.4941 0.2295 0.7280
q=12
1 0.1461 0.1876 0.1161 0.1012 0.1067 0.0107 0.2943 0.1268 0.8077
2 0.1804 0.2225 0.1188 0.1250 0.1345 0.0248 0.3569 0.1436 0.8077
3 0.1985 0.2406 0.1192 0.1375 0.1499 0.0361 0.3906 0.1552 0.8077
9 0.2169 0.2591 0.1192 0.1503 0.1663 0.0509 0.4254 0.1701 0.8077
10 0.2171 0.2593 0.1192 0.1504 0.1664 0.0510 0.4257 0.1702 0.8077
11 0.2171 0.2593 0.1192 0.1504 0.1665 0.0511 0.4258 0.1703 0.8077
12 0.2172 0.2594 0.1192 0.1505 0.1665 0.0511 0.4259 0.1703 0.8077
13 0.2172 0.2594 0.1192 0.1505 0.1665 0.0511 0.4259 0.1704 0.8077
14 0.2172 0.2594 0.1192 0.1505 0.1665 0.0511 0.4259 0.1704 0.8077
15 0.2172 0.2594 0.1192 0.1505 0.1665 0.0511 0.4259 0.1704 0.8077
q=78
1 0.0187 0.0387 0.0320 0.0129 0.0134 0.0004 0.0521 0.0324 0.4938
2 0.0313 0.0560 0.0426 0.0217 0.0226 0.0010 0.0785 0.0436 0.5608
3 0.0446 0.0722 0.0507 0.0309 0.0323 0.0018 0.1045 0.0526 0.6119
21 0.1710 0.2046 0.0713 0.1185 0.1338 0.0485 0.3383 0.1199 0.8535
22 0.1730 0.2065 0.0714 0.1199 0.1355 0.0501 0.3421 0.1214 0.8560
23 0.1748 0.2083 0.0714 0.1211 0.1371 0.0514 0.3454 0.1228 0.8581
24 0.1763 0.2098 0.0714 0.1222 0.1384 0.0527 0.3483 0.1240 0.8600
50 0.1869 0.2204 0.0714 0.1295 0.1478 0.0616 0.3682 0.1330 0.8725
51 0.1870 0.2205 0.0714 0.1295 0.1478 0.0617 0.3683 0.1330 0.8725
52 0.1870 0.2205 0.0714 0.1296 0.1479 0.0617 0.3684 0.1331 0.8726
53 0.1870 0.2206 0.0714 0.1296 0.1479 0.0617 0.3685 0.1331 0.8726
54 0.1871 0.2206 0.0714 0.1296 0.1479 0.0618 0.3685 0.1331 0.8726
55 0.1871 0.2206 0.0714 0.1296 0.1480 0.0618 0.3686 0.1331 0.8727
56 0.1871 0.2206 0.0714 0.1296 0.1480 0.0618 0.3686 0.1332 0.8727
57 0.1871 0.2206 0.0714 0.1296 0.1480 0.0618 0.3686 0.1332 0.8727
58 0.1871 0.2207 0.0714 0.1297 0.1480 0.0618 0.3687 0.1332 0.8727
59 0.1872 0.2207 0.0714 0.1297 0.1480 0.0618 0.3687 0.1332 0.8728
60 0.1872 0.2207 0.0714 0.1297 0.1480 0.0619 0.3687 0.1332 0.8728

Figure 2.

Figure 2

Graphical representation of ΣA and ΣB for q=15, 12, 78 in Example 4.1

Figure 1.

Figure 1

Graphical representation of Iqσ1[gi]L1 for q=15, 12, 78 in Example 4.1

Example 4.2

In this example, we apply Theorem 3.4 to prove that the fractional q-differential equation

Dq83c[k](t)=(11t+1)2[(k(t))26+(k(t))4+ln(1+(cDq45[k](t))2)+1], 60

under the boundary conditions k(0)=k(0)=0 and k(14)=53k(1) for t(0,1), has at least one nontrivial solution. It is obvious that σ=83(2,3), ζ=611(0,1), r=14(0,1), and λ=53>0. We define function the w:J×R2R by

w(t,k(t),l(t))=(11t+1)2[(k(t))26+(k(t))4+ln(1+(l(t))2)+1].

Figures 3a and 3b show the curves of M1 and M2. Let k, kR. Then we have

|w(t,k,k)|=(11t+1)2|(k(t))26+(k(t))4+ln(1+(k(t))2)+1|(11t+1)2(k(t))26+(k(t))4+(11t+1)2ln(1+(k(t))2)+(11t+1)2.

Now from inequality (26) we can consider gi(t)=(11t+1)2 for i=1,2,3 and

ϕ1(|k(t)|)=(k(t))26+(k(t))4,ϕ2(|k(t)|)=ln(1+(k(t))2).

Let us find η such that inequality (27) holds. In this case, by (14) we calculate Ai and Bi for i=1,2,3. We obtain

A10.5913,0.5109,0.4445,B10.5453,0.4240,0.3353,A20.5913,0.5109,0.4445,B20.5453,0.4240,0.3353,A30.5913,0.5109,0.4445,B30.5453,0.4240,0.3353,

for q=15, 12, 78, respectively, and so

p(q=15)=M1+M2(1ζ)Γ15(1ζ)1.5075,p(q=12)=M1+M2(1ζ)Γ12(1ζ)1.1474,p(q=78)=M1+M2(1ζ)Γ78(1ζ)0.9073.

Tables 2 and 3 show these results. Also, Fig. 4 shows the curve of the p base on Table 2 for q=15,12,78. Now we see that inequality (27) is equivalent to

[ϕ1(η)+ϕ2(η)+1]pη=[η26+η4+ln(1+η2)+1](1.5075)η<0,[ϕ1(η)+ϕ2(η)+1]pη=[η26+η4+ln(1+η2)+1](1.1474)η<0,[ϕ1(η)+ϕ2(η)+1]pη=[η26+η4+ln(1+η2)+1](0.9073)η<0, 61

for q=15, 12, 78, respectively. Now by using Algorithm 6 we try to find a suitable value for η in inequalities (61). The algorithm is created for the same problems. On the other hand, the results show that it works exactly. According to Table 4, the suitable values of η in (61) are η=4,5,8 for q=15, 1278, respectively. Note that Ω(η) defined by

Ω(η)=[ϕ1(η)+ϕ2(η)+1](M1+M2(1ζ)Γq(1ζ))η

is negative for values of η. Thus Theorem 3.4 implies that the nonlinear fractional q-differential equation (60) has at least one nontrivial solution in B.

Algorithm 6.

Algorithm 6

MATLAB lines for finding suitable values of η in Eq. (27) for q variable in Example 4.2

Figure 3.

Figure 3

Graphical representation of M1 and M2 for q=15, 12, 78 in Example 4.2

Table 2.

Numerical results of problem (59) for q=15, 12, 78 and (1) Iqσ1[g1]L1, (2) Iqσ1[g2]L1, and (3) Iqσ1[g3]L1 in Example 4.2

n (1) A1 B1 (2) A2 B2 (3) A3 B3
g1(t) g2(t) g3(t)
q=15
1 0.2125 0.5809 0.5452 0.2125 0.5809 0.5452 0.2125 0.5809 0.5452
2 0.2207 0.5892 0.5453 0.2207 0.5892 0.5453 0.2207 0.5892 0.5453
3 0.2224 0.5909 0.5453 0.2224 0.5909 0.5453 0.2224 0.5909 0.5453
4 0.2227 0.5912 0.5453 0.2227 0.5912 0.5453 0.2227 0.5912 0.5453
5 0.2228 0.5913 0.5453 0.2228 0.5913 0.5453 0.2228 0.5913 0.5453
6 0.2228 0.5913 0.5453 0.2228 0.5913 0.5453 0.2228 0.5913 0.5453
7 0.2228 0.5913 0.5453 0.2228 0.5913 0.5453 0.2228 0.5913 0.5453
q=12
1 0.1327 0.4399 0.4099 0.1327 0.4399 0.4099 0.1327 0.4399 0.4099
2 0.1630 0.4773 0.4219 0.1630 0.4773 0.4219 0.1630 0.4773 0.4219
3 0.1789 0.4943 0.4237 0.1789 0.4943 0.4237 0.1789 0.4943 0.4237
4 0.1871 0.5026 0.4240 0.1871 0.5026 0.4240 0.1871 0.5026 0.4240
5 0.1912 0.5068 0.4240 0.1912 0.5068 0.4240 0.1912 0.5068 0.4240
10 0.1953 0.5108 0.4240 0.1953 0.5108 0.4240 0.1953 0.5108 0.4240
11 0.1953 0.5109 0.4240 0.1953 0.5109 0.4240 0.1953 0.5109 0.4240
12 0.1954 0.5109 0.4240 0.1954 0.5109 0.4240 0.1954 0.5109 0.4240
13 0.1954 0.5109 0.4240 0.1954 0.5109 0.4240 0.1954 0.5109 0.4240
14 0.1954 0.5109 0.4240 0.1954 0.5109 0.4240 0.1954 0.5109 0.4240
q=78
1 0.0187 0.1773 0.1759 0.0187 0.1773 0.1759 0.0187 0.1773 0.1759
2 0.0309 0.2244 0.2199 0.0309 0.2244 0.2199 0.0309 0.2244 0.2199
3 0.0435 0.2607 0.2518 0.0435 0.2607 0.2518 0.0435 0.2607 0.2518
24 0.1626 0.4350 0.3352 0.1626 0.4350 0.3352 0.1626 0.4350 0.3352
25 0.1638 0.4362 0.3352 0.1638 0.4362 0.3352 0.1638 0.4362 0.3352
26 0.1648 0.4373 0.3353 0.1648 0.4373 0.3353 0.1648 0.4373 0.3353
27 0.1658 0.4382 0.3353 0.1658 0.4382 0.3353 0.1658 0.4382 0.3353
28 0.1666 0.4390 0.3353 0.1666 0.4390 0.3353 0.1666 0.4390 0.3353
50 0.1719 0.4444 0.3353 0.1719 0.4444 0.3353 0.1719 0.4444 0.3353
51 0.1720 0.4444 0.3353 0.1720 0.4444 0.3353 0.1720 0.4444 0.3353
52 0.1720 0.4444 0.3353 0.1720 0.4444 0.3353 0.1720 0.4444 0.3353
53 0.1720 0.4445 0.3353 0.1720 0.4445 0.3353 0.1720 0.4445 0.3353
54 0.1721 0.4445 0.3353 0.1721 0.4445 0.3353 0.1721 0.4445 0.3353
55 0.1721 0.4445 0.3353 0.1721 0.4445 0.3353 0.1721 0.4445 0.3353
56 0.1721 0.4445 0.3353 0.1721 0.4445 0.3353 0.1721 0.4445 0.3353

Table 3.

Numerical results of M1, M2, and p=M1+M2(1ζ)Γq(1ζ) for q=15, 12, 78 in Example 4.2

n q=15 q=12 q=78
M1 M2 p M1 M2 p M1 M2 p
1 0.5809 0.5452 1.5070 0.4399 0.4099 1.1219 0.1773 0.1759 0.6224
2 0.5892 0.5453 1.5075 0.4773 0.4219 1.1421 0.2244 0.2199 0.7104
3 0.5909 0.5453 1.5075 0.4943 0.4237 1.1455 0.2607 0.2518 0.7677
4 0.5912 0.5453 1.5075 0.5026 0.4240 1.1465 0.2894 0.2750 0.8067
9 0.5913 0.5453 1.5075 0.5107 0.4240 1.1473 0.3722 0.3243 0.8834
10 0.5913 0.5453 1.5075 0.5108 0.4240 1.1473 0.3817 0.3276 0.8884
11 0.5913 0.5453 1.5075 0.5109 0.4240 1.1474 0.3899 0.3299 0.8921
12 0.5913 0.5453 1.5075 0.5109 0.4240 1.1474 0.3969 0.3316 0.8949
13 0.5913 0.5453 1.5075 0.5109 0.4240 1.1474 0.4029 0.3327 0.8970
40 0.5913 0.5453 1.5075 0.5109 0.4240 1.1474 0.4435 0.3353 0.9071
41 0.5913 0.5453 1.5075 0.5109 0.4240 1.1474 0.4437 0.3353 0.9072
42 0.5913 0.5453 1.5075 0.5109 0.4240 1.1474 0.4438 0.3353 0.9072
43 0.5913 0.5453 1.5075 0.5109 0.4240 1.1474 0.4439 0.3353 0.9072
44 0.5913 0.5453 1.5075 0.5109 0.4240 1.1474 0.4440 0.3353 0.9072
45 0.5913 0.5453 1.5075 0.5109 0.4240 1.1474 0.4441 0.3353 0.9073
46 0.5913 0.5453 1.5075 0.5109 0.4240 1.1474 0.4442 0.3353 0.9073
47 0.5913 0.5453 1.5075 0.5109 0.4240 1.1474 0.4442 0.3353 0.9073

Figure 4.

Figure 4

2D graphs of p=M1+M2(1ζ)Γ15(1ζ) for q=15, 12, 78 in Example 4.2

Table 4.

Numerical results for finding suitable values of η in equation (27) for q=15, 12, 78 in Example 4.2, where Ω(η)=[ϕ1(η)+ϕ2(η)+1](M1+M2(1ζ)Γq(1ζ))η

n η Ω(η)<0
q=15 q=12 q=78
1 3.0000 2.1347 0.9079 0.0906
2 3.1000 2.1154 0.8693 0.0392
3 3.2000 2.0943 0.8294 Inline graphic
4 3.3000 2.0715 0.7882 −0.0668
9 3.8000 1.9351 0.5649 −0.3480
10 3.9000 1.9036 0.5170 −0.4068
11 4.0000 1.8708 0.4681 −0.4663
12 4.1000 1.8367 0.4183 −0.5266
13 4.2000 1.8014 0.3676 −0.5877
18 4.7000 1.6077 0.1007 −0.9033
19 4.8000 1.5658 0.0449 −0.9684
20 4.9000 1.5229 Inline graphic −1.0340
21 5.0000 1.4790 −0.0690 −1.1002
22 5.1000 1.4342 −0.1270 −1.1670
23 5.2000 1.3884 −0.1857 −1.2344
47 7.6000 0.0745 −1.7591 −2.9806
48 7.7000 0.0126 −1.8301 −3.0577
49 7.8000 Inline graphic −1.9015 −3.1351
50 7.9000 −0.1126 −1.9732 −3.2127
51 8.0000 −0.1759 −2.0452 −3.2906
52 8.1000 −0.2395 −2.1176 −3.3687
53 8.2000 −0.3037 −2.1903 −3.4471

Example 4.3

In this example, we consider the fractional q-differential equation

Dq187c[k](t)=1t21+t2[3πk(t)+cDq56[k](t)+6π+exp(π(k(t)+cDq56[k](t)))] 62

under boundary conditions k(0)=k(0)=0 and k(38)=154k(1) for t(0,1) such that the assumptions of Lemma 3.6 hold. Clearly, σ=187(2,3), ζ=56(0,1), r=38(0,1), and λ=154>0. Also, λ(σ2)=157>1. Table 5 shows thatΛ1.1887, 1.0505, 0.9579 for q=15, 12, 78, respectively, which we calculated by Algorithm 7. In the algorithm, we define the matrix for saving the results for q=15,12,78. We define the function w:J×R2R by

w(t,k(t),l(t))=1t21+t2[3πk(t)+l(t)+6π+exp(π(k(t)+l(t)))].

Figure 5 shows the curve of the Λ base on Table 5 for q=15,12,78. If we define the functions γ:R2R and μ:JR+ by

γ(k(t),l(t))=3πk(t)+l(t)+6π+exp(π(k(t)+l(t)))

and μ(t)=1t21+t2, then assumption (A1) holds. Now we verify assumption (A2). Let

ϱq(ξ)={154,ξ>38,154(38qξ)(1872)(1qξ)(1873)1872,ξ38,={154,ξ>38,15474(38qξ)(47)(1qξ)(37),ξ38.

Therefore

Γq(47)Iq47[μ(ξ)ϱq(ξ)](1)=01(1qξ)(1873)μ(ξ)ϱq(ξ)dqξ=01(1qξ)(47)1ξ21+ξ2ϱq(ξ)dqξ={0.36485,q=15,0.68838,q=12,0.63316,q=78. 63

So assumption (A2) holds. Table 6 shows these results. For this, we use Algorithm 8. Figure 6 shows the results of equation (63). On the other hand,

L0=lim(|k|+|l|)0γ(k,l)|k|+|l|,=lim(|k|+|l|)01|k|+|l|[3πk(t)+l(t)+6π+exp(π(k(t)+l(t)))]=,L=lim(|k|+|l|)γ(k,l)|k|+|l|=lim(|k|+|l|)1|k|+|l|[3πk(t)+l(t)+6π+exp(π(k(t)+l(t)))]=0.

Thus by Theorem 3.7 we get that problem (62) has at least one nonnegative solution.

Algorithm 7.

Algorithm 7

MATLAB lines for calculating values of Λ=1+(σ2)Γq(ζ)Γq(σ2)Γq(ζ) in Theorem 3.7 for q variable in Example 4.3

Algorithm 8.

Algorithm 8

MATLAB lines for calculating 01(1qξ)(σ3)μ(ξ)ϱq(ξ)dqξ in Assumption (A2) for q variable in Example 4.3

Table 5.

Numerical results of Γq(σ2), Γq(ζ), and Λ=1+(σ2)Γq(ζ)Γq(σ2)Γq(ζ) in equation (62) for q=15, 12, 78 in Example 4.3

n q=15 q=12 q=78
Γq(σ2) Γq(ζ) Λ Γq(σ2) Γq(ζ) Λ Γq(σ2) Γq(ζ) Λ
1 1.2612 1.0573 1.2030 1.2839 1.0584 1.1809 0.8642 0.9059 1.9386
2 1.2714 1.0600 1.1915 1.3507 1.0773 1.1103 0.9815 0.9493 1.6555
3 1.2734 1.0605 1.1892 1.3826 1.0861 1.0792 1.0708 0.9805 1.4860
4 1.2738 1.0606 1.1888 1.3982 1.0905 1.0646 1.1416 1.0043 1.3727
5 1.2739 1.0606 Inline graphic 1.4059 1.0926 1.0575 1.1991 1.0231 1.2917
6 1.2739 1.0606 1.1887 1.4097 1.0936 1.0540 1.2466 1.0382 1.2311
7 1.2739 1.0606 1.1887 1.4116 1.0942 1.0522 1.2863 1.0506 1.1843
8 1.2739 1.0606 1.1887 1.4126 1.0944 1.0514 1.3197 1.0608 1.1473
9 1.2739 1.0606 1.1887 1.4131 1.0945 1.0509 1.3480 1.0694 1.1176
10 1.2739 1.0606 1.1887 1.4133 1.0946 1.0507 1.3722 1.0767 1.0933
11 1.2739 1.0606 1.1887 1.4134 1.0946 1.0506 1.3929 1.0828 1.0733
12 1.2739 1.0606 1.1887 1.4135 1.0947 Inline graphic 1.4106 1.0881 1.0566
13 1.2739 1.0606 1.1887 1.4135 1.0947 1.0505 1.4260 1.0925 1.0426
14 1.2739 1.0606 1.1887 1.4135 1.0947 1.0505 1.4392 1.0964 1.0308
15 1.2739 1.0606 1.1887 1.4136 1.0947 1.0505 1.4506 1.0997 1.0208
16 1.2739 1.0606 1.1887 1.4136 1.0947 1.0505 1.4605 1.1026 1.0122
51 1.2739 1.0606 1.1887 1.4136 1.0947 1.0505 1.5269 1.1214 0.9582
52 1.2739 1.0606 1.1887 1.4136 1.0947 1.0505 1.5270 1.1215 0.9582
53 1.2739 1.0606 1.1887 1.4136 1.0947 1.0505 1.5271 1.1215 0.9581
54 1.2739 1.0606 1.1887 1.4136 1.0947 1.0505 1.5271 1.1215 0.9581
55 1.2739 1.0606 1.1887 1.4136 1.0947 1.0505 1.5272 1.1215 0.9580
56 1.2739 1.0606 1.1887 1.4136 1.0947 1.0505 1.5272 1.1215 0.9580
57 1.2739 1.0606 1.1887 1.4136 1.0947 1.0505 1.5273 1.1215 0.9580
58 1.2739 1.0606 1.1887 1.4136 1.0947 1.0505 1.5273 1.1215 Inline graphic
59 1.2739 1.0606 1.1887 1.4136 1.0947 1.0505 1.5273 1.1216 0.9579
60 1.2739 1.0606 1.1887 1.4136 1.0947 1.0505 1.5273 1.1216 0.9579

Figure 5.

Figure 5

2D graphs of Λ=1+(σ2)Γq(ζ)Γq(σ2)Γq(ζ) for q=15, 12, 78 in Example 4.3

Table 6.

Numerical results of 01(1qξ)(σ3)μ(ξ)ϱq(ξ)dqξ for σ=187 in Assumption (A2) and for q=15, 12, 78 in Example 4.3

n 0<01(1qξ)(σ3)μ(ξ)ϱq(ξ)dqξ<1
q=15 q=12 q=78
1 0.28515 0.31485 0.00482
2 0.34871 0.47839 0.01824
3 0.36161 0.57866 0.04195
4 0.36420 0.63251 0.07572
5 0.36472 0.66022 0.11804
6 0.36482 0.67425 0.16674
7 0.36484 0.68130 0.21946
8 0.36485 0.68484 0.25289
9 0.36485 0.68661 0.28682
10 0.36485 0.68750 0.31984
11 0.36485 0.68794 0.35125
15 0.36485 0.68836 0.45528
16 0.36485 0.68837 0.47565
17 0.36485 0.68838 0.49394
18 0.36485 0.68838 0.51030
19 0.36485 0.68838 0.52486
77 0.36485 0.68838 0.63313
78 0.36485 0.68838 0.63314
79 0.36485 0.68838 0.63314
80 0.36485 0.68838 0.63315
81 0.36485 0.68838 0.63315
82 0.36485 0.68838 0.63315
83 0.36485 0.68838 0.63316
84 0.36485 0.68838 0.63316
85 0.36485 0.68838 0.63316

Figure 6.

Figure 6

2D graphs of 01(1qξ)(σ3)μ(ξ)ϱq(ξ)dqξ for q=15, 12, 78 in Example 4.3

Conclusion

The q-differential boundary equations and their applications represent a matter of high interest in the area of fractional q-calculus and its applications in various areas of science and technology. q-differential boundary value problems occur in the mathematical modeling of a variety of physical operations. In the end of this paper, we investigated a complicated case by utilizing an appropriate basic theory. An interesting feature of the proposed method is replacing the classical derivative with q-derivative to prove the existence of nonnegative solutions for a familiar problem for q-differential equations on a time scale, and under suitable assumptions, we have presented the global convergence of the proposed method with the line searches. The results of numerical experiments demonstrated the effectiveness of the proposed algorithm.

Acknowledgements

The first, second, and third authors were supported by Bu-Ali Sina University. The fourth author was supported by the Science and Engineering Research Board (Grant No. DST-SERBMTR-2018/000121), and the fifth author was supported by University Grants Commission (IN) (Grant No. UGC-2015-UTT-59235).

Authors’ contributions

The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved the final manuscript.

Funding

Not applicable.

Availability of data and materials

Data sharing not applicable to this paper as no datasets were generated or analyzed during the current study.

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

References

  • 1.Ding Y., Wang Z., Ye H. Optimal control of a fractional-order HIV-immune system with memory. IEEE Trans. Control Syst. Technol. 2012;20(3):763–769. doi: 10.1109/TCST.2011.2153203. [DOI] [Google Scholar]
  • 2. Dianavinnarasi, J., Raja, R., Alzabut, J., Cao, J., Niezabitowski, M., Bagdasar, O.: Application of Caputo–Ffabrizio operator to suppress the Aedes Aegypti mosquitoes via Wolbachia: an LMI approach. Mathematics and Computers in Simulation 44 (2021). 10.1016/j.matcom.2021.02.002
  • 3.Rezapour S., Mojammadi H., Samei M.E. SEIR epidemic model for Covid-19 transmission by Caputo derivative of fractional order. Adv. Differ. Equ. 2020;2020:490. doi: 10.1186/s13662-020-02952-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Xu Y., Li W. Finite-time synchronization of fractional-order complex-valued coupled systems. Phys. A, Stat. Mech. Appl. 2020;549:123903. doi: 10.1016/j.physa.2019.123903. [DOI] [Google Scholar]
  • 5.Aadhithiyan S., Raja R., Zhu Q., Alzabut J., Niezabitowski M., Lim C.P. Exponential synchronization of nonlinear multi-weighted complex dynamic networks with hybrid time varying delays. Neural Process. Lett. 2021;44(2):2033–2039. doi: 10.1007/s11063-021-10428-7. [DOI] [Google Scholar]
  • 6.Xu Y., Li Y., Li W. Adaptive finite-time synchronization control for fractional-order complex-valued dynamical networks with multiple weights. Commun. Nonlinear Sci. Numer. Simul. 2020;85:105239. doi: 10.1016/j.cnsns.2020.105239. [DOI] [Google Scholar]
  • 7.Pratap A., Raja R., Alzabut J., Dianavinnarasi J., Cao J., Rajchakit G. Finite-time Mittag-Leffler stability of fractional-order quaternion-valued memristive neural networks with impulses. Neural Process. Lett. 2020;51:1485–1526. doi: 10.1007/s11063-019-10154-1. [DOI] [Google Scholar]
  • 8.Jackson F.H. q-difference equations. Am. J. Math. 1910;32:305–314. doi: 10.2307/2370183. [DOI] [Google Scholar]
  • 9.Al-Salam W.A. q-analogues of Cauchy’s formula. Proc. Am. Math. Soc. 1952;17:182–184. [Google Scholar]
  • 10.Agarwal R.P. Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 1969;66:365–370. doi: 10.1017/S0305004100045060. [DOI] [Google Scholar]
  • 11.Adams C.R. The general theory of a class of linear partial q-difference equations. Trans. Am. Math. Soc. 1924;26:283–312. [Google Scholar]
  • 12.Atici F., Eloe P.W. Fractional q-calculus on a time scale. J. Nonlinear Math. Phys. 2007;14(3):341–352. doi: 10.2991/jnmp.2007.14.3.4. [DOI] [Google Scholar]
  • 13.Ahmadi A., Samei M.E. On existence and uniqueness of solutions for a class of coupled system of three term fractional q-differential equations. J. Adv. Math. Stud. 2020;13(1):69–80. [Google Scholar]
  • 14.Samei M.E., Hedayati V., Rezapour S. Existence results for a fraction hybrid differential inclusion with Caputo–Hadamard type fractional derivative. Adv. Differ. Equ. 2019;2019:163. doi: 10.1186/s13662-019-2090-8. [DOI] [Google Scholar]
  • 15.Annaby M.H., Mansour Z.S. q-Fractional Calculus and Equations. Cambridge: Springer; 2012. [Google Scholar]
  • 16.Ahmad B., Etemad S., Ettefagh M., Rezapour S. On the existence of solutions for fractional q-difference inclusions with q-antiperiodic boundary conditions. Bull. Math. Soc. Sci. Math. Roum. 2016;59(107):119–134. doi: 10.1016/0003-4916(63)90068-X. [DOI] [Google Scholar]
  • 17.Ferreira R.A.C. Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2010;2010:70. [Google Scholar]
  • 18.Lai K.K., Mishra S.K., Ram B. On q-quasi-Newton’s method for unconstrained multiobjective optimization problems. Mathematics. 2020;8(4):616. doi: 10.3390/math8040616. [DOI] [Google Scholar]
  • 19.Ntouyas S.K., Samei M.E. Existence and uniqueness of solutions for multi-term fractional q-integro-differential equations via quantum calculus. Adv. Differ. Equ. 2019;2019:475. doi: 10.1186/s13662-019-2414-8. [DOI] [Google Scholar]
  • 20.Makhlouf A.B., Kharrat M., Hammami M.A., Baleanu D. Henry–Gronwall type q-fractional integral inequalities. Mathematics. 2021;44(2):2033–2039. doi: 10.1002/mma.6909. [DOI] [Google Scholar]
  • 21.Samei M.E., Hedayati V., Ranjbar G.K. The existence of solution for k-dimensional system of Langevin Hadamard-type fractional differential inclusions with 2k different fractional orders. Mediterr. J. Math. 2020;17:37. doi: 10.1007/s00009-019-1471-2. [DOI] [Google Scholar]
  • 22.Goodrich C., Peterson A.C. Discrete Fractional Calculus. Switzerland: Springer; 2015. [Google Scholar]
  • 23.Lai K.K., Mishra S.K., Panda G., Ansary M.A.T., Ram B. On q-steepest descent method for unconstrained multiobjective optimization problems. AIMS Math. 2020;5(6):5521–5540. doi: 10.3934/math.2020354. [DOI] [Google Scholar]
  • 24.Liang S., Zhang J. Existence and uniqueness of positive solutions to m-point boundary value problem for nonlinear fractional differential equation. J. Appl. Math. Comput. 2012;2012:225–241. doi: 10.1007/s12190-011-0475-2. [DOI] [Google Scholar]
  • 25.Zhang X., Liu L., Wu Y., Wiwatanapataphee B. The spectral analysis for a singular fractional differential equation with a signed measure. Appl. Math. Comput. 2015;257:252–263. doi: 10.1016/j.amc.2014.12.068. [DOI] [Google Scholar]
  • 26.Guezane-Lakoud A., Belakroum K. Existence of nonnegative solutions for a nonlinear fractional boundary value problem. J. Anal. Appl. Math. 2018;2018:56–80. doi: 10.2478/ejaam-2018-0005. [DOI] [Google Scholar]
  • 27.Ren J., Zhai C. Nonlocal q-fractional boundary value problem with Stieltjes integral conditions. Nonlinear Anal., Model. Control. 2019;24(4):582–602. doi: 10.15388/NA.2019.4.6. [DOI] [Google Scholar]
  • 28.ur Rehman M., Baleanu D., Alzabut J., Ismail M., Saeed U. Green–Haar wavelets method for generalized fractional differential equations. Adv. Differ. Equ. 2020;2020:515. doi: 10.1186/s13662-020-02974-6. [DOI] [Google Scholar]
  • 29.Samei M.E., Ranjbar G.K., Hedayati V. Existence of solutions for equations and inclusions of multi-term fractional q-integro-differential with non-separated and initial boundary conditions. J. Inequal. Appl. 2019;2019:273. doi: 10.1186/s13660-019-2224-2. [DOI] [Google Scholar]
  • 30.Rashid S., Hammouch Z., Ashraf R., Baleanu D., Nisar K.S. New quantum estimates in the setting of fractional calculus theory. Adv. Differ. Equ. 2020;2020:383. doi: 10.1186/s13662-020-02843-2. [DOI] [Google Scholar]
  • 31.Bohner M., Peterson A. Dynamic Equations on Time Scales. Boston: Birkhäuser; 2001. [Google Scholar]
  • 32.Deimling K. Nonlinear Functional Analysis. Berlin: Springer; 1985. [Google Scholar]
  • 33.Garrappa R. Numerical solution of fractional differential equations: a survey and a software tutorial. Mathematics. 2018;6(16):1–23. doi: 10.3390/math6020016. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Data sharing not applicable to this paper as no datasets were generated or analyzed during the current study.


Articles from Journal of Inequalities and Applications are provided here courtesy of Nature Publishing Group

RESOURCES