Skip to main content
Journal of Peking University (Health Sciences) logoLink to Journal of Peking University (Health Sciences)
. 2021 Feb 22;53(2):406–412. [Article in Chinese] doi: 10.19723/j.issn.1671-167X.2021.02.029

可摘局部义齿适合性方法的评价

Evaluation of methods for fitness of removable partial denture

Jung-min YOON 1, Zi-xuan WANG 1, Chon-kai CHAN 1, Yu-chun SUN 2, Yun-song LIU 1, Hong-qiang YE 1,*, Yong-sheng ZHOU 1,*
PMCID: PMC8072425  PMID: 33879919

Abstract

Objective

To compare the differences and indications of three evaluation methods for fitness evaluation of removable partial denture (RPD).

Methods

A RPD was fabricated and seated on the stone cast of a partially edentulous mandible, and the spaces between RPD and stone cast were recorded with polyvinyl siloxane (PVS) impression material forming PVS replicas. Using cross sectional measurement, the average thicknesses of PVS replicas were measured under stereomicroscope with different numbers of selected measuring points in the denture base, major connector, occlusal rest of the RPD, and the average thicknesses of the PVS replicas measured with different numbers of measuring points were compared using one-way analysis of variance (ANOVA) and independent sample t test. Three kinds of method, including cross sectional measurement, three-dimensional analysis on the stone cast, and three-dimensional analysis on the polyether cast, were applied to measure the average thicknesses of the PVS replicas, and the average thicknesses of the PVS replicas measured by these three evaluation methods were compared with ANOVA.

Results

For cross sectional measurement, statistically significant differences were found in the average thicknesses of the PVS replicas in the denture base and the major connector among the different numbers of measuring points (P < 0.05), but no differences were found in the average thicknesses of the PVS replicas in the occlusal rest (P>0.05). There were significant differences among the average thicknesses of the PVS replicas measured by these three evaluation methods in each component of the RPD (P < 0.01). The average thickness measured by three-dimensional analysis on the stone cast and three-dimensional analysis on polyether cast were smaller than that measured by cross sectional measurement (P < 0.05). And there were no differences between the average thicknesses of PVS replicas measured by three-dimensional analysis on stone cast and three-dimensional analysis on polyether cast (P>0.05).

Conclusion

For cross sectional measurement, the average thickness of the PVS replicas was influenced by the number of measuring points, and the measurement accuracy of cross sectional measurement was not reliable enough. Three-dimensional analysis on stone cast which is suitable for evaluation in vitro and three-dimensional analysis on polyether cast which is suitable for evaluation in vivo can evaluate the fitness of RPD more comprehensively and effectively than that of cross sectional measurement.

Keywords: Removable partial denture, Digital, Fit


牙列缺损是修复科常见病、多发病之一,随着我国人口老龄化程度日益加剧,牙列缺损的发病率不断上升,修复治疗的需求也不断增长。牙列缺损不仅会影响患者的咀嚼功能和面容,进一步还可能会导致Inline graphic创伤及颞下颌关节功能紊乱,因此及时进行修复治疗非常重要。近年来虽然种植修复技术快速发展,但由于全身情况、解剖条件和经济等多方面的限制因素,可摘局部义齿(removable partial denture, RPD)仍然是牙列缺损的常用修复方式之一[1]

RPD的适合性是影响其修复质量的重要因素,适合性良好的RPD能够减少菌斑堆积,并且降低对基牙产生的扭力[2]。目前国内外还没有公认的用于评价RPD适合性的标准方法。一些学者使用目测法和施压法对RPD的适合性进行定性评价,若RPD戴入后无明显翘动和肉眼可见的间隙,即可认为其适合性良好,但此方法缺乏量化指标[3-6]。20世纪80年代起,一些学者陆续开始使用硅橡胶印模材复制间隙的方法对RPD的适合性进行定量评价[7]。用硅橡胶印模材把RPD各组件与其相应的口内软、硬组织之间的间隙复制到口外,将硅橡胶薄膜切片后选取若干测量点,利用体视显微镜、游标卡尺、轮廓投影仪等测量其厚度[8-11]。此方法对于测量点数量和位置的选择尚未有统一标准,不同学者在研究中选取的测量点数量和位置有所不同[8, 12-14]。本课题组前期在RPD适合性的体外评价中,引入三维测量分析法,测量RPD各组件处的间隙,取得良好的效果[15],但目前尚未见RPD体内适合性三维测量分析评价方法的报道。

本研究将探索硅橡胶膜切片测量法中测量点数量不同对测量结果的影响,并比较可用于RPD适合性评价方法的石膏模型三维分析法、翻制模型三维分析法和硅橡胶膜切片测量法的异同及适应证,为RPD适合性评价方法的选择提供参考。

1. 材料与方法

1.1. 实验材料

1.1.1. 材料

模型石膏(Ⅳ型超硬石膏)购自美国丹特纳公司,高流动性硅橡胶印模材(Variotime Light Flow)、单一组分硅橡胶印模材(Variotime Dynamix Monophase)和藻酸盐印模材(ALGINoplast)购自德国Heraeus公司,油泥型硅橡胶印模材(Rapid)购自瑞士COLTENE公司,聚醚印模材(Impregum)购自美国的3M公司。

1.1.2. 设备

模型扫描仪(Smart Optics 880 Dental Scanner)购自德国Smart Optics公司,体视显微镜(SZX7)购自日本Olympus公司。

1.1.3. 软件

三维测量软件(Geomagic Studio 2014)和三维分析软件(Geomagic Qualify 2014)购自美国的Geomagic公司,体视显微镜测量软件(PROGRES GRYPHAX)购自德国Jenoptik公司,统计软件(IBM SPSS Statistics 20)购自美国IBM公司。

1.2. 用硅橡胶复制间隙

选择一个下颌牙列缺损石膏模型(Kennedy Ⅱ类缺损,左下第一磨牙、左下第二磨牙、右下第二前磨牙、右下第一磨牙缺失),左下第二前磨牙、右下第一前磨牙、右下第二磨牙作为基牙并进行牙体预备,在模型上制作一副铸造支架式RPD,试戴合适。用石膏模型翻制出15个同样的石膏模型,RPD在每个模型上均能良好就位。将高流动性硅橡胶印模材注射于RPD组织面后,将RPD分别在15个表面湿润的翻制石膏模型上就位并垂直加力20 N(图 1)直到印模材完全凝固,印模材的厚度即代表了RPD各组件与相应石膏模型表面的间隙。

图 1.

图 1

获取硅橡胶薄膜样本

Fabrication of polyvinyl siloxane replica specimen

1.3. 硅橡胶膜切片测量法中测量点数量对测量结果的影响

1.3.1. 硅橡胶膜切片测量法

取下RPD后,见硅橡胶薄膜黏附于RPD组织面。在RPD组织面的硅橡胶薄膜上注射单一组分硅橡胶印模材并待其凝固作为底座,用于制作硅橡胶薄膜样本并防止硅橡胶薄膜变形。将硅橡胶薄膜连同底座切分为基托、大连接体和Inline graphic支托, 共包括1个大连接体样本、2个基托(游离端基托和非游离端基托)样本和3个Inline graphic支托(右下第一前磨牙Inline graphic支托、右下第二磨牙Inline graphic支托、左下第二前磨牙Inline graphic支托)样本。在体视显微镜下,垂直于薄膜面切断硅橡胶薄膜和底座,获得测量截面,并使测量截面平行于体视显微镜的物镜,选择测量点测量硅橡胶薄膜的厚度。

1.3.2. 选择测量点

基托样本沿近远中向切断,在颊舌向上4等分,选取切断样本后面向颊侧的截面进行测量。在每个测量截面取近远中向6等分的5个点、3等分的2个点、2等分的1个点(图 2),测量每个点相应的厚度(图 3)。分别计算15个测量点(每个测量截面6等分的5个点)、6个测量点(每个测量截面3等分的2个点)和3个测量点(每个测量截面2等分的1个点)时的平均厚度,代表选择不同数量测量点时基托处硅橡胶薄膜的厚度,并计算基托总体不同等分时的平均厚度。同基托样本相似,将大连接体样本沿近远中向切断,在Inline graphic龈向上3等分,选取切断后面向龈方的截面进行测量。在每个测量截面取近远中向8等分的7个点、4等分的3个点、2等分的1个点(图 2),测量每个点相应的厚度。计算14个测量点、6个测量点和2个测量点时的平均厚度,代表选择不同数量测量点时大连接体处硅橡胶薄膜的平均厚度。同理,将Inline graphic支托样本沿近远中向切断,在颊舌向上4等分,选取切断后面向颊侧的截面进行测量。在每个测量截面取近远中向4等分的3个点、2等分的1个点(图 2),测量每个点相应的厚度。分别计算9个测量点和3个测量点时的平均厚度,代表选择不同数量测量点时Inline graphic支托处硅橡胶薄膜的厚度,并计算Inline graphic支托总体不同等分时的平均厚度。

图 2.

硅橡胶薄膜上不同数量测量点选择示意图

Schematic diagram of different numbers of measuring points on polyvinyl siloxane replicas

A, measured points on polyvinyl siloxane replicas of denture base; B, measured points on polyvinyl siloxane replicas of major connecter; C, measured points on polyvinyl siloxane replicas of occlusal rest.

图 2

图 3.

图 3

体视显微镜镜下硅橡胶薄膜厚度测量

Thickness measurement of polyvinyl siloxane replica under stereomicroscope

1.4. 三种RPD适合性评价方法的比较

1.4.1. 硅橡胶膜切片测量法

按照第1.2和1.3.1小节获得硅橡胶薄膜样本,在体视显微镜下,将基托和Inline graphic支托样本沿近远中向切断,在颊舌向4等分,选取切断后面向颊侧的截面作为测量面;将大连接体沿近远中向切断,在Inline graphic龈向3等分,选取切断样本后面向龈方的截面作为测量面。将样本测量面平行于体视显微镜的物镜进行测量,在每个测量截面上,基托样本取近远中向6等分的5个点,大连接体样本取8等分的7个点,Inline graphic支托样本取4等分的3个点,分别测量硅橡胶薄膜厚度,即每个基托样本选择15个测量点,大连接体样本选择14个测量点,每个Inline graphic支托样本选择9个测量点,各组件所有测量点的平均值作为该组件处硅橡胶薄膜的平均厚度。

1.4.2. 石膏模型三维分析法

按照第1.2小节所述方法用硅橡胶复制间隙,唯一区别是RPD就位于表面干燥的石膏模型。硅橡胶凝固后,用锋利的手术刀去除多余的硅橡胶以防RPD脱位时硅橡胶薄膜脱落或移位。取下RPD后可见硅橡胶薄膜黏附于石膏模型上(图 4A),用模型扫描仪对其进行三维扫描,去除硅橡胶薄膜后对石膏模型再次进行扫描。将两次扫描数据导入Geomagic Qualify软件,配准后通过“创建样条边界”分别选择RPD基托、大连接体、Inline graphic支托相对应的范围并进行三维偏差分析,获得硅橡胶薄膜厚度的三维颜色地图,并计算出各组件对应处硅橡胶薄膜的平均厚度(图 4B),此方法适用于RPD适合性的体外评价。

图 4.

石膏模型三维分析法

Three-dimensional analysis on stone cast

A, polyvinyl siloxane replica on stone cast; B, 3D color-coded map showing thickness of polyvinyl siloxane replica.

图 4

1.4.3. 翻制模型三维分析法

按照第1.2小节所述用硅橡胶复制间隙,待硅橡胶印模材完全凝固后,选用合适的成品托盘,用藻酸盐印模材制取印模。藻酸盐印模材凝固后,连同RPD一起取下印模,可见硅橡胶印模材黏附于RPD组织面(图 5A)。将聚醚橡胶印模材注射于藻酸盐印模及RPD组织面,即可用聚醚橡胶复制出完整的剩余牙槽嵴和牙列形态。在聚醚橡胶处于半凝固状态时,用油泥型硅橡胶印模材置于聚醚橡胶上制作底座。待印模材完全凝固后,取下藻酸盐印模及托盘,并使RPD就位于聚醚橡胶翻制的牙列上。用锋利的手术刀去除妨碍RPD脱位的硅橡胶及聚醚橡胶印模材,取下RPD,可见硅橡胶薄膜黏附于聚醚橡胶模型上(图 5B)。将黏附有硅橡胶薄膜的聚醚橡胶模型固定于扫描架上,扫描架包含用于配准的不规则形状的定位结构(图 5C)。用模型扫描仪对其进行三维扫描,去除硅橡胶薄膜后对聚醚橡胶模型再次进行扫描。将两次扫描数据导入Geomagic Qualify软件,通过扫描架上的定位结构配准后进行三维偏差分析,即可计算出各组件对应处硅橡胶薄膜的平均厚度(图 5D),此方法中石膏模型模拟口内余留牙和剩余牙槽嵴,适用于RPD适合性的体内评价。

图 5.

翻制模型三维分析法

Three-dimensional analysis on polyether cast

A, alginate impression of removable partial denture with polyvinyl siloxane replica; B, polyvinyl siloxane replica on polyether cast after removing alginate impression; C, fixed polyether cast on a registration frame; D, 3D color-coded map showing thickness of polyvinyl siloxane replica.

图 5

1.5. 统计学分析

用SPSS 20.0软件进行统计学分析。用单因素方差分析和独立样本t检验比较RPD各组件处测量点数不同时硅橡胶薄膜平均厚度差异是否有统计学意义。用单因素方差分析比较硅橡胶膜切片测量法、石膏模型三维分析法和翻制模型三维分析法测得的硅橡胶薄膜厚度差异是否有统计学意义,如差异有统计学意义,则用LSD法进一步进行多重比较。

2. 结果

2.1. 硅橡胶膜切片测量法中测量点数量对测量结果的影响

单因素方差分析表明基托和大连接体处硅橡胶薄膜测量点数量不同测得的平均间隙差异有统计学意义(P < 0.05),进一步多重比较表明测量点数少时测得的平均厚度小于测量点数多时测得的平均厚度(表 12)。独立样本t检验表明Inline graphic支托处硅橡胶薄膜测量点数量不同测得的平均厚度差异无统计学意义(P>0.05,表 2)。

表 1.

不同数量测量点时基托处硅橡胶薄膜厚度(x±s, /μm)

Thickness of polyvinyl siloxane replica on denture bases measured with different numbers of measuring points (x±s, /μm)

Items 6 equal parts (15 MP) 3 equal parts (6 MP) 2 equal parts (3 MP) P
* P < 0.05, vs. 2 equal parts; # P < 0.05, vs. 6 equal parts. MP, measurement point.
Denture base 302.4±56.8* 301.7±54.2* 254.8±51.5 0.030
Extension denture base 240.8±36.2 208.1±43.1# 203.1±42.7# 0.031
Non-extensive denture base 364.0±92.1* 395.4±94.2* 286.8±88.1 0.007

表 2.

不同数量测量点时大连接体和Inline graphic支托处硅橡胶薄膜厚度(x±s, /μm)

Thickness of polyvinyl siloxane replica on major connector and occlusal rests with different numbers of measuring points(x±s, /μm)

Items 8 equal parts 4 equal parts 2 equal parts P
* P < 0.05, vs. 2 equal parts. 44, right mandibular first premolar; 47, right mandibular second molar; 35, left mandibular second premolar.
Major connector 130.0±40.6* 130.5±41.4* 96.5±41.0 0.043
44 occlusal rest 246.7±56.0 227.2±58.3 0.843
47 occlusal rest 325.9±112.6 359.6±154.4 0.360
35 occlusal rest 244.4±71.2 230.3±72.3 0.805
Occlusal rest total 272.3±63.8 272.4±74.7 0.562

2.2. 三种RPD适合性评价方法的比较

单因素方差分析表明三种评价方法测得的RPD各组件和总体硅橡胶薄膜厚度差异均有显著的统计学意义(P < 0.01,表 3)。进一步多重比较表明,石膏模型三维分析法和翻制模型三维分析法测量的结果差异无统计学意义(P>0.05),石膏模型三维分析法和翻制模型三维分析法的测量结果与硅橡胶膜切片测量法的测量结果差异均有统计学意义(P < 0.05)。

表 3.

三种评价方法测量的硅橡胶薄膜厚度(x±s, /μm)

Thicknesses of polyvinyl siloxane replicas measured by three methods in each component of removable partial denture (x±s, /μm)

Items CSM group TAS group TAP group P
* P < 0.05, vs. CSM group. CSM, cross sectional measurement; TAS, three-dimensional analysis on stone cast; TAP, three-dimensional analysis on polyether cast.
Denture base 302.4±56.8 179.7±39.9* 173.3±24.5* < 0.001
Major connector 130.0±40.6 61.9±28.4* 81.9±37.7* < 0.001
Occlusal rest 272.3±63.8 159.5±44.1* 162.9±32.7* < 0.001
Total 234.9±44.3 166.1±36.6* 168.1±22.1* < 0.001

3. 讨论

本研究表明,用硅橡胶膜切片测量法测量RPD与相应组织间的硅橡胶膜厚度时,测量点数量的不同对测量结果有较大影响,这是由于硅橡胶膜样本为形态不规则且厚度不均匀的薄膜,当选择的测量点数量较少时,随机误差的影响增大,导致测量点数少时测得的平均厚度可能大于或小于测量点数多时测得的平均厚度。Groten等[16]对单冠边缘间隙测量的研究中发现,单冠边缘测量点数从230个减少至50个时,测量值变化小于5 μm,标准差小于3 μm,因此认为全冠边缘适合性评价时至少选取50个测量点才能得到可靠的结果,而目前大部分研究都无法达到此标准,因为测量点数量的增加会带来工作量的大大增加。

随着三维扫描和三维分析技术的发展,许多学者将三维测量分析法引入RPD适合性的评价中[2, 17-19]。三维测量分析法通过扫描获得软、硬组织表面完整的三维形态,在软件中能够在测量模型表面均匀大量取点并且分别测量每个测量点至参考模型表面与其对应点的距离,因此能够更全面、有效地反映修复体的适合性[18]。RPD各组件与口内软、硬组织之间的间隙,是一个非均匀、无规律的三维间隙,目前没有测量方法能准确测量出其平均厚度。三维测量分析法在各组件区域能在测量平面大量选择测量点,计算出测量点到参考平面对应点之间的距离并计算出该区域的平均距离,即各组件处间隙的平均厚度,因此测量结果最接近真实值。国外学者的研究也证实了三维测量分析法的准确性和可靠性良好。Anadioti等[20]利用全冠修复体边缘适合性评价中常用的硅橡胶膜切片测量法和三维分析法对不同方法制作的全冠修复体边缘适合性进行研究,结果表明硅橡胶膜切片测量法和三维分析法测得的测量结果相差约10 μm,并且用三维分析法进行两次重复测量,其结果差异无统计学意义,这一方法已应用于全冠和RPD适合性的体外评价[15, 17]

采用三维测量分析法评价RPD的适合性时,用硅橡胶复制RPD与口腔组织间的间隙后,硅橡胶需要良好的黏附于口腔组织(或口腔组织的模型)表面并保持稳定,才能进行准确的三维扫描和测量。体外评价时,硅橡胶薄膜可良好地黏附于石膏模型上[15, 19],因此,石膏模型三维分析法测得的RPD与相应口腔组织之间的间隙,在现有的测量方法中具有较高的可靠性且最接近真实值,而在体内评价时,由于存在唾液等方面的影响,硅橡胶薄膜难以良好黏附于口内软、硬组织表面。本研究中使用的翻制模型三维分析法,模拟临床上硅橡胶薄膜不能黏附于口腔组织的情形,利用聚醚橡胶具有流动性良好、尺寸稳定、体积变化小,与加成型硅橡胶有一定的黏附性并且也能够完全分离的特性,翻制口内组织的形态,且硅橡胶薄膜可良好黏附于聚醚橡胶翻制的模型上,从而可以使用三维测量分析法评价RPD的适合性。虽然翻制模型三维分析法较石膏模型三维分析法增加了制取藻酸盐印模和聚醚橡胶翻制模型的步骤,可能引入新的误差,但本研究结果表明两种方法测量的硅橡胶薄膜厚度差异无统计学意义(P>0.05)。

本研究表明,三种评价RPD适合性的方法中,硅橡胶膜切片测量法的测量结果受测量点数量影响,其测量结果可靠性较差,石膏模型三维分析法、翻制模型三维分析法利用三维测量技术在测量面能够大量选取测量点,其测量结果较硅橡胶膜切片测量法能更全面、有效地反映RPD的适合性,石膏模型三维分析法适用于体外评价,翻制模型三维分析法适用于体内评价,两者测量结果差异无统计学意义。

Funding Statement

首都卫生发展科研专项(首发2018-2-4101)、国家自然科学基金(81801015)、北京大学口腔医学院新技术新疗法(PKUSSNCT-17A03)

Supported by Capital's Funds for Health Improvement and Research (CFH 2018-2-4101), the National Natural Science Foundation of China (81801015), the New Clinical Techniques and Therapies of Peking University School and Hospital of Stomatology (PKUSSNCT-17A03)

Contributor Information

叶 红强 (Hong-qiang YE), Email: yhqfy@163.com.

周 永胜 (Yong-sheng ZHOU), Email: zhouysh72@163.com.

References

  • 1.冯 海兰. 口腔修复学. 北京: 北京大学医学出版社; 2013. pp. 135–136. [Google Scholar]
  • 2.刘 一帆, 王 伟娜, 于 海, et al. 选择性激光熔覆(SLM)钛合金可摘局部义齿支架的适合性研究. 实用口腔医学杂志. 2017;33(3):302–305. doi: 10.3969/j.issn.1001-3733.2017.03.004. [DOI] [Google Scholar]
  • 3.Keltjens HM, Mulder J, Kayser AF, et al. Fit of direct retainers in removable partial dentures after 8 years of use. J Oral Rehabil. 1997;24(2):138–142. doi: 10.1046/j.1365-2842.1997.d01-266.x. [DOI] [PubMed] [Google Scholar]
  • 4.吴 琳, 吕 培军, 王 勇, et al. 可摘局部义齿支架铸型的计算机辅助设计与制作. 中华口腔医学杂志. 2006;41(7):432–435. doi: 10.3760/j.issn:1002-0098.2006.07.015. [DOI] [PubMed] [Google Scholar]
  • 5.Frank RP, Brudvik JS, Leroux B, et al. Relationship between the standards of removable partial denture construction, clinical acceptability, and patient satisfaction. J Prosthet Dent. 2000;83(5):521–527. doi: 10.1016/S0022-3913(00)70008-4. [DOI] [PubMed] [Google Scholar]
  • 6.Hu F, Pei Z, Wen Y. Using intraoral scanning technology for three-dimensional printing of kennedy class Ⅰ removable partial denture metal framework: a clinical report. J Prosthodont. 2019;28(2):473–476. doi: 10.1111/jopr.12712. [DOI] [PubMed] [Google Scholar]
  • 7.Dunham D, Brudvik JS, Morris WJ, et al. A clinical investigation of the fit of removable partial dental prosthesis clasp assemblies. J Prosthet Dent. 2006;95(4):323–326. doi: 10.1016/j.prosdent.2006.02.001. [DOI] [PubMed] [Google Scholar]
  • 8.Lee JW, Park JM, Park EJ, et al. Accuracy of a digital removable partial denture fabricated by casting a rapid prototyped pattern: A clinical study. J Prosthet Dent. 2017;118(4):468–474. doi: 10.1016/j.prosdent.2016.12.007. [DOI] [PubMed] [Google Scholar]
  • 9.Torii M, Nakata T, Takahashi K, et al. Fitness and retentive force of cobalt-chromium alloy clasps fabricated with repeated laser sintering and milling. J Prosthodont Res. 2018;62(3):342–346. doi: 10.1016/j.jpor.2018.01.001. [DOI] [PubMed] [Google Scholar]
  • 10.Viswambaran M, Sundaram RK. Effect of storage time and framework design on the accuracy of maxillary cobalt-chromium cast removable partial dentures. Contemp Clin Dent. 2015;6(4):471–476. doi: 10.4103/0976-237X.169841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Ye H, Ning J, Li M, et al. Preliminary clinical application of removable partial denture frameworks fabricated using computer-aided design and rapid prototyping techniques. Int J Prosthodont. 2017;30(4):348–353. doi: 10.11607/ijp.5270. [DOI] [PubMed] [Google Scholar]
  • 12.Arnold C, Hey J, Schweyen R, et al. Accuracy of CAD-CAM-fabricated removable partial dentures. J Prosthet Dent. 2018;119(4):586–592. doi: 10.1016/j.prosdent.2017.04.017. [DOI] [PubMed] [Google Scholar]
  • 13.Lee WS, Lee DH, Lee KB. Evaluation of internal fit of interim crown fabricated with CAD/CAM milling and 3D printing system. J Adv Prosthodont. 2017;9(4):265–270. doi: 10.4047/jap.2017.9.4.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Kim DY, Kim JH, Kim HY, et al. Comparison and evaluation of marginal and internal gaps in cobalt-chromium alloy copings fabricated using subtractive and additive manufacturing. J Pros-thodont Res. 2018;62(1):56–64. doi: 10.1016/j.jpor.2017.05.008. [DOI] [PubMed] [Google Scholar]
  • 15.Ye H, Li X, Wang G, et al. A Novel computer-aided design/computer-assisted manufacture method for one-piece removable partial denture and evaluation of fit. Int J Prosthodont. 2018;31(2):149–151. doi: 10.11607/ijp.5508. [DOI] [PubMed] [Google Scholar]
  • 16.Groten M, Axmann D, Probster L, et al. Determination of the minimum number of marginal gap measurements required for practical in vitro testing. J Prosthet Dent. 2000;83(1):40–49. doi: 10.1016/S0022-3913(00)70087-4. [DOI] [PubMed] [Google Scholar]
  • 17.Liu Y, Ye H, Wang Y, et al. Three-dimensional analysis of internal adaptations of crowns cast from resin patterns fabricated using computer-aided design/computer-assisted manufacturing technologies. Int J Prosthodont. 2018;31(4):386–393. doi: 10.11607/ijp.5678. [DOI] [PubMed] [Google Scholar]
  • 18.Kim KB, Kim JH, Kim WC, et al. Three-dimensional evaluation of gaps associated with fixed dental prostheses fabricated with new technologies. J Prosthet Dent. 2014;112(6):1432–1436. doi: 10.1016/j.prosdent.2014.07.002. [DOI] [PubMed] [Google Scholar]
  • 19.李 欣欣, 柳 玉树, 孙 玉春, et al. 计算机辅助设计与制作一体化聚醚醚酮可摘局部义齿不同形态组件的适合性评价. 北京大学学报(医学版) 2019;51(2):335–339. [Google Scholar]
  • 20.Anadioti E, Aquilino SA, Gratton DG, et al. 3D and 2D marginal fit of pressed and CAD/CAM lithium disilicate crowns made from digital and conventional impressions. J Prosthodont. 2014;23(8):610–617. doi: 10.1111/jopr.12180. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Peking University (Health Sciences) are provided here courtesy of Editorial Office of Beijing Da Xue Xue Bao Yi Xue Ban, Peking University Health Science Center

RESOURCES