Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2021 Mar 20;41(3):358–369. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2021.03.07

2型糖尿病与肠道核心菌群的相关性

Correlation analysis between type 2 diabetes and core gut microbiota

Yao XIAO 1,2, Yue NIU 1,2, Minghui MAO 1, Han LIN 1, Baili WANG 2, Enqi WU 1, Huanhu ZHAO 1, shuchun LI 1,*
PMCID: PMC8075790  PMID: 33849826

Abstract

Objective

To analyze the species, abundance and structure differences of intestinal flora between patients with type 2 diabetes mellitus (T2D) and healthy individuals and explore the correlation between intestinal flora changes and T2D.

Methods

We collected a total of 133 clinical fecal samples from 78 healthy individuals and 55 patients with T2D. Hiseq2500 was used for high-throughput sequencing of the V3+V4 regions of the 16S rRNA gene. Usearch and QIIME were used for data splicing and filtering, classification and species annotation. The Alpha diversity index and Beta diversity index of the samples were analyzed using R language data packets to compare the richness and diversity of the sample flora. The flora differences were compared between the two groups and the disease marker flora was screened after correction of the relevant factors. PICRUST software was used to predict the function of different flora.

Results

There was significant difference in the intestinal flora diversity between the two groups. Cluster analysis showed that Fimicutes and Bacteroidetes were the dominant species at the phylum level. LefSe analysis showed that significant differences in the relative abundance between the two groups in 2 phyla, 3 classes, 3 orders, 4 families and 10 genera. After correction for the influence of related factors, the markers of T2Drelated bacteria groups were identified, including Bifidobacterium, Bifidobacteriales, Bifidobacteriaceae, Actinobacteria, Bacilli, Lactobacillales, Lactobacillaceae and Lactobacillus. On this basis, analysis of KEGG metabolic pathways of the differential flora revealed significant differences in 36 KEGG metabolic pathways between the two groups, and the citric acid cycle, lipopolysaccharide biosynthesis and other metabolic pathways were all up-regulated in T2D group.

Conclusion

The composition and abundance of intestinal flora were different between T2D group and the normal group, and T2D group showed the characteristics of ecological imbalance.

Keywords: type 2 diabetes mellitus, intestinal flora, 16S rRNA, metabolic pathways


流行病学调查结果显示全世界糖尿病患者人数达到4.25亿,糖尿病已成为全球的主要健康威胁。2型糖尿病(T2D)在糖尿病发病人数中高达90%[1]。T2D并发症导致的失明、肾衰竭、下肢坏疽等后果,严重影响患者健康,T2D的治疗和护理也给整个医疗体系带来非常大的压力。特别是T2D逐渐趋于年轻化[2],预示这种疾病频率和年龄的迅猛变化很难归因于传统遗传学,环境风险因素可能占有很大比例。

大量研究表明,肠道菌群和T2D有非常重要的关联。Sedighi等[3]研究了健康人群和T2D患者的菌群结构,观察到T2D患者的乳酸杆菌水平显著增加,而双歧杆菌水平显著下降。Fassatoui等[4]研究发现,T2D患者肠道中柔嫩梭菌和艾克曼菌与未患病人群相比丰度较低。另一项研究发现2型糖尿病患者粪便中乳酸杆菌的丰度比正常组低,提示了乳酸杆菌与2型糖尿病的相关性[5]。Chen收集了100例患者的粪便样本和血液样本,通过16s扩增子分析发现2型糖尿病患者粪中乳酸菌、C. leptum的含量与健康对照组相比有显著性差异[6]。在一项277个非糖尿病丹麦人和75个T2D患者的研究中发现,胰岛素抵抗个体的血清代谢组中支链氨基酸增加,相对应的有支链氨基酸合成潜力的肠道菌群增加,而普氏菌和拟杆菌是推动支链氨基酸生物合成和胰岛素抵抗的主要物种,在小鼠中,普氏菌可引起胰岛素抵抗,加重葡萄糖不耐受并增加支链氨基酸的外周循环[7]

综合当前研究可知,所有研究都提供了T2D患者肠道生态失调的证据。但是由于各种混杂因素,如不同的研究人群,使用不同的测序技术和分析方法,使用各种饮食和药物等,研究的结果差异很大,不能得到一致的结论。为了进一步深入探究肠道菌群在正常组和T2D组中的差异,我们利用正常组和T2D组志愿者样本的肠道菌群数据,在对肠道菌群生物信息分析基础上,控制了相关研究变量对肠道菌群的影响,进一步明确正常组和T2D组各自的核心菌群以及组间差异,以期最终确定可以作为诊断和治疗靶标的候选标志菌群。

1. 资料和方法

1.1. 临床资料

从中央民族大学校医院收集133例临床粪便样本(健康样本78例,T2D病例样本55例),样本均来源于北京市海淀区中央民族大学社区。经过中央民族大学生物与医学伦理委员会(ECMUC2019003CO)的许可,在知情同意的情况下,志愿者填写知情同意书后,按照人类遗传资源标准编码统一编号,加入粪便保存液,采集量5 g左右。收集样品时统计相应指标:如身高、体质量,年龄、民族及其他与糖尿病相关的指标。将筛选出的粪便样本立即放在冰上进行分装并标记。T2D诊断标准:根据美国糖尿病协会(ADA)标准,空腹血糖大于7 mmol/L,餐后血糖或随机血糖大于11.1 mmol/L,糖化血红蛋白HbA1c≥6.5%,三者中满足一项即诊断为T2D。健康入组标准:年龄40~90周岁,在过往病历及本次体检中没有任何疾病记录、肠道疾病筛查阴性。排除标准:患有1型糖尿病、特殊类型糖尿病和妊娠糖尿病人群,有精神病史,患有肠道疾病,滥用药物人群,有手术及其他应急情况人群,近1个月服用抗生素及益生菌人群。

1.2. 粪便菌群DNA提取

粪便菌群基因组DNA提取采用PowerSoil® DNA Isolation Kit,具体操作按其说明书进行。将0.25 g粪便样品加入PowerBead Tubes中,轻轻涡旋混匀。加入60 μL Solution C1,上下颠倒数次混匀。将PowerBcad Tubes 3200 r/min涡旋震荡10 min,室温10 000 g离心30 s。将上清液移至一个干净的2 mL收集管中,加入250 μL Solution C2到上清液中,涡旋混匀5 s,4 ℃孵育5 min,室温10 000 g离心1 min。转移上清液至新的收集管中,加入250 μL Solution C3到上清液中,涡旋混匀5 s,4 ℃孵育5 min,室温10 000 g离心1 min。转移上清液至新的收集管中,加入1000 μL Solution C4到上清液中,涡旋混匀5 s。加入约675 μL上清液到Spin Filter中,室温10 000 g离心1 min。弃去滤液,继续加入约675 μL上清液,室温10 000 g离心1 min。重复直至过滤完所有上清液。加入约500μL Solution C5到Spin Filter中,室温10 000 g离心30 s,弃去上清液,室温10 000 g离心1 min。小心转移Spin Filter到2 mL Collection Tube中,加入100 μL Solution C6到白色滤膜中心,室温10 000 g离心30 s。弃去Spin Filter,收集管中的DNA用于下一步实验。

1.3. PCR扩增及文库构建

PCR扩增体系为:10×PCR buffer 10 μL,上游引物1.5 μL,下游引物1.5 μL,基因组DNA 40~60 ng,dNTPs 1 μL,Q5 High-Fidelity DNA聚合酶0.2 μL,加无菌水至50 μL;PCR扩增条件为:95 ℃ 5 min;15个循环(95 ℃ 1 min,50 ℃1 min,72 ℃1 min);72 ℃7 min。根据细菌V3+V4区设计得到引物,上游引物为5'-ACTCCTACGGGAGGCAGCA-3',下游引物5'-GGACTACHVGGGTWTCTAAT-3'。接着是粪便样品DNA目标区域产物纯化,Solexa PCR,磁珠纯化和Nanodrop定量及混样。

1.4. Illumina高通量测序

质检合格的文库用HiSeq2500 PE250进行测序,按照测序上机操作流程进行。

1.5. 生物信息分析及统计分析

双端Reads拼接使用FLASH [8]软件,使用Trimmomatic[9]对拼接序列进行过滤;FastQC[10]软件对测序样本产生的序列质量进行评估;再使用UCHIME[11]去除嵌合体。利用软件USEARCH[12],将拼接好的Tags聚类为OTU,通过与数据库进行比对[13]。Calypso作热图[14],系统进化树、Alpha多样性分析、Beta多样性分析都在QIIME上完成。分析得到133个样品的Alpha多样性指数后,根据样品的分组信息进行组间的Alpha多样性指数差异分析,利用Anosim相似性分析进行非参数检验,用来检验组间的差异是否显著大于组内差异,从而判断分组是否有意义。对于方差不齐数据我们采用Adonis检验组间Beta多样性。Anosim相似性分析、Adonis分析通过R语言的vegan包来实现。

肠道菌群变化受到多种混杂因素的影响,如GLU,HDLC,HCY等,为了校正这些混杂因素,我们在R语言中采取倾向评分匹配方法(PSM)。倾向性评分匹配完成后,利用R语言的DEseq包对两组进行差异分析。

在DESeq分析的基础上,采用Negative Binominal distribution(DESeq2)统计方法,初步筛选出属水平上样本组间丰度差异OTU,并通过ggplot2包绘制火山图展示这些差异OTU的丰度、差异倍数、差异显著性等信息。

在组间丰度比较中筛选出具有统计学差异的物种基础上,使用线性判别分析(LDA)效应大小法(LefSe)进一步鉴定与T2D相关的菌群标志物。利用KruskalWallis秩和检验检测所有的特征物种,检测不同组间的物种丰度差异,并获得显著差异物种;再利用Wilcoxon秩和检验检查在显著差异物种类中的所有亚种比较是否都趋同于同一分类级别;最后对生成的向量集建立一个线性判别分析模型,最终得到特定分类水平下的差异物种列表及效应大小,从而筛选出各组的生物标志物。

1.6. PICRUSt功能预测分析

将OTU表与KEGG数据库进行比对,获得各OTU代谢通路信息。利用PICRUSt[15]软件构建古菌和细菌域全谱系的基因功能预测谱。利用STAMP[16]软件在P < 0.05显著性水平对PICRUSt预测结果进行分析,获得具有显著性差异的代谢通路信息,并对结果进行可视化。

2. 结果

2.1. 测试人群特征

共筛选合格样本133例,每管样品300 mg。其中符合标准的T2D人群55例,健康人群78例(表 1)。通过Pearson卡方检验分析可以看出,正常组男女比例为27/ 51,T2D组为28/27,组间差异都无统计学意义(P= 0.06);正常组年龄为69.08±10.14(44~86)岁,T2D组年龄为69.22±10.04(51~88)岁,组间差异都无统计学意义(P=0.69);两组在生化指标LBP,HBP,BMI,ALT,CHO,CRE,HDLC,TG,BUN,UA上两组差异都无统计学意义(P>0.05);在GLU,LDLC,HCY指标上差异有统计学意义(P < 0.05)。

1.

133例样本临床资料统计

Clinical data of the 133 participants (Mean±SD)

Description of characteristic Healthy group T2D P
0.06
Male (n=27) Female (n=51) Male (n=28) Female (n=27)
LBP: Low blood pressure; HBP: High blood pressure; GLU: Glucose; BMI: Body mass index; ALT: Alanine transaminase; CHO: Cholesterol; CRE: Creatinine; HDLC: High-density lipoprotein cholesterol; TG: Triglyceride; LDLC: Low-density lipoprotein cholesterol; BUN: Blood urea nitrogen; UA: Uric acid; HCY: Homocysteine.
Age(year) 69.08±10.14 69.22±10.04 0.69
LBP(mmHg) 80.77±10.94 78.16±10.07 0.2
HBP(mmHg) 140.24±20.17 135.63±17.22 0.56
GLU(mmol/L) 7.76±1.66 5.40±0.49 0.001
BMI(kg/m2) 25.50±3.31 26.25±3.02 0.20
ALT(U/L) 22.78±13.68 25.58±15.79 0.3
CHO(mmol/L) 5.21±1.05 5.17±1.15 0.97
CRE(μmol/L) 71.99±16.44 74.05±20.39 0.78
HDLC(mmol/L) 1.48±0.38 1.36±0.27 0.84
TG(mmol/L) 1.91±1.12 1.90±1.38 0.24
LDLC(mmol/L) 3.23±0.78 3.31±0.99 0.001
BUN(mmol/L) 5.45±1.19 5.84±1.60 0.23
UA(μmol/L) 339.13±91.49 360.71±71.05 0.74
HCY(μmol/L) 14.03±5.68 13.03±3.57 0.04

2.2. 测序数据质量评估和物种注释

133例样品初始数据共包含25 375 243条PEreads。双端Reads拼接、过滤后共产生19 911 450条Clean tags,平均每个样品产生149 710条Clean tags。在使用UCHIME过滤去除chimera后,得到17 371 759条reads用做后续分析,最少reads数60 073,最大reads数193 353(图 1A),有效率为87.2%。通过测序深度指数goods_coverage的稀释曲线可以看出,所有样品的goods_coverage在50 000条序列时均已接近极限值1,表明所有样品在60 381条时有足够的测序深度,即已经基本覆盖到样品中所有的物种(图 1B)。

1.

1

133份样品测序数据和物种注释聚类分类树

Sequencing data and species annotated in the phylogenetic tree of 133 samples. A: Description of the number of reads of the 133 samples after chimera removal. B: Goods_coverage dilution curve of the 133 samples. C: Species abundance heat map. D: Species annotated phylogenetic tree (0=healthy group, 1=T2D group).

将过滤得到的测序序列,通过聚类分析,相似性水平高于97%的序列定义为一个OTU。取物种丰度较高的前20个OTU画聚类热图,从图中可以看出T2D组(1组)和正常组(0组)在前20个OTU中的物种丰度分布情况(图 1C)。将OTU代表序列与微生物Greengenes v13_8参考数据库进行比对,对代表序列进行物种分类注释,筛选优势物种,画出物种注释分类树,从整个物种分类系统上了解样品中物种的进化关系,通过分类树中的柱形图可以看出T2D组(1组)和正常组(0组)优势物种的丰度差异(图 1D)。综合来看,Fimicutes和Bacteroidetes是门分类上的优势物种,它们分类下的Bacteroidales、Clostridiales纲类是优势物种;Bacteroidaceae、Lachnospiraceae、Ruminococcaceae、Prevotellaceae、Veillonellaceae、Lactobacillaceae是科分类下的优势物种;BacteroidesPrevotellaFaecalibacterium等是属分类下的优势物种。

2.3. 物种多样性

从Alpha多样性指数绘制盒形图,得到两组间的Alpha多样性指数没有差异(P>0.05,Wilcoxon RankSum Test)(图 2A~D)。Anosim相似性分析结果图中,横坐标表示所有样品(Between)以及每个分组(abnormal/normal),纵坐标表示基于unweighted_unifrac矩阵的秩。R介于(-1, 1)之间,R大于0,说明组间差异显著;R小于0,说明组内差异大于组间差异,如图 3E所示,左图R=0.044,右图R=0.092,均大于0,说明组间差异显著,统计分析的可信度用P值表示,左右图P值均小于0.05,表示统计具有显著性(图 2E)。

2.

2

正常组和T2D组Alpha、Beta多样性分析

Alpha and beta diversity analysis of the healthy and T2D groups. A Chaol index of the healthy and T2D groups. B: Observed_species index of the healthy and T2D groups. C: Shannon index of the healthy and T2D groups. D: Simpson index of the healthy and T2D groups (0=healthy group, 1=T2D group). E: Anosim analysis graph (left graph shows the unweighted Unifrac distance, right graph shows the weighted Unifrac distance).

3.

3

正常组与T2D组的核心菌群构成

The core flora composition of the healthy and T2D groups. A: Histogram of core flora at phylum level of the healthy and T2D groups. B: Analysis plot of components of the healthy group at the genus level. C: Analysis plot of components of T2D group at the genus level.

从Hellinger距离矩阵结果来看,总体差异的2.17% 可由是否患糖尿病解释;weighted-unifrac距离矩阵结果说明如果考虑丰度差异,两组菌群具有差异(P= 0.001);如果不考虑丰度差异,只考虑种类即unweighted-unifrac,两组菌群没有差异(P=0.120)。总结以上内容可知Beta多样性在考虑丰度情况下两组间存在显著差异。

2.4. 正常组与T2D组的核心菌群构成

在门分类水平下,Fimicutes和Bacteroidetes是两组最主要的门类,在两组中两者之和占比均高达80%以上。在T2D组,菌群门类主要为Fimicutes(47.6%),Bacteroidetes(39.0%),Proteobacteria(7.8%),Actinobacteria(4.8%);在正常组,Fimicutes(47.0%),Bacteroidetes(37.9%),Proteobacteria(9.9%),Actinobacteria(4.5%)(图 3A)。

在属分类水平下,我们选取了两组中主要的属水平菌做成分构成图,从图中可以看出属水平上主要的菌成分及其所占的比例。结果显示,正常组的主要菌属为Bacteroides(32%),Escherichia Shigella(9%),Faecalibacterium(8%),Prevotella(4%),Bifidobacterium(4%)(图 3B)。T2D组的主要菌属为Bacteroides(24%),Lactobacillus(13%),Prevotella(10%),Bifidobacterium(9%),Escherichia Shigella(6%)(图 3C)。

2.5. 组间差异物种和Biomarker筛选

通过DESeq2方法,我们得到了正常组与T2D组之间的差异OTU。以P值(P value)为纵坐标,以倍数变化指数(log2 FoldChange)为横坐标,绘制差异火山图(图 4A)。图中的每个点代表一个OTU,平行于Y轴的两条线分别是FC=2和FC=-2,在FC=-2左侧的点是T2D组中与正常组相比下调2倍以上的OTU,在FC=2右侧的点是T2D组中与正常组相比上调2倍以上的OTU。同时,平行于X轴有一条虚线代表-log10(0.05),在虚线以上的点表示显著性 < 0.05的OTU。对于每个OTU,若P < 0.05,FC≥2,则表明该OTU为组间差异OTU。以OTU的平均丰度(Abundance)为纵坐标,倍数变化指数(log2 FoldChange)为横坐标绘制丰度火山图(图 4B),直观的体现差异OTU的丰度分布。

4.

4

组间差异OTU比较及生物标志物的筛选

Comparison of OTUs between groups and screening of the biomarkers. A: Differential volcano map (The xaxis coordinate is log2FoldChange, and the y-axis coordinate is padj). B: Differential volcano map(The x-axis coordinate is log2 Fold Change, and the y-axis coordinate is mean abundance. C: LDA distribution histogram (0= healthy group, 1=T2D group). D: LDA cladogram (0=healthy group, 1=T2D group)

我们对各环境变量的差异OTU筛选后,得到矫正了的只与血糖相关的OTU,排除了其它因素的干扰,尽可能的降低偏倚,最后得到OTU102(Sutterella)、OTU295(Bacteroidia)、OTU298(Lactobacillaceae)、OTU232(Bifidobacteriaceae)等共37个与血糖有关联的OTU(表 2)。

2.

各环境变量的差异OTU筛选

Differential OTU screening for every environmental variable

OTU ID Taxa P q
OTU102 Sutterella 0.0000 0.0000
OTU295 Bacteroidia 0.0000 0.0000
OTU298 Lactobacillaceae 0.0000 0.0000
OTU232 Bifidobacteriaceae 0.0000 0.0000
OTU363 Lachnospiracea_incertae_sedis 0.0000 0.0000
OTU33 Actinobacteria 0.0000 0.0000
OTU282 Lactobacillales 0.0000 0.0000
OTU227 Prevotella 0.0000 0.0000
OTU193 Vampirovibrio 0.0000 0.0000
OTU181 Olsenella 0.0000 0.0000
OTU230 Barnesiella 0.0000 0.0000
OTU251 Succinivibrio 0.0000 0.0000
OTU55 Parasutterella 0.0000 0.0000
OTU222 Eggerthella 0.0000 0.0000
OTU268 Clostridium_Ⅲ 0.0000 0.0000
OTU114 Alistipes 0.0000 0.0000
OTU8 Bifidobacterium 0.0000 0.0000
OTU17 Eubacterium 0.0000 0.0000
OTU189 Bacilli 0.0000 0.0000
OTU305 Roseburia 0.0000 0.0001
OTU185 Lachnospiraceae 0.0000 0.0001
OTU337 Bacteroidales 0.0000 0.0001
OTU132 Clostridium_XⅧ 0.0000 0.0001
OTU240 Victivallis 0.0000 0.0002
OTU48 Lactobacillus 0.0000 0.0002
OTU9 Bifidobacteriales 0.0000 0.0005
OTU153 Oscillibacter 0.0001 0.0007
OTU381 Comamonas 0.0001 0.0007
OTU264 Bacteroides 0.0001 0.0014
OTU82 Coprococcus 0.0001 0.0014
OTU166 Clostridium_XlVa 0.0002 0.0019
OTU63 Acetanaerobacterium 0.0003 0.0026
OTU266 Megamonas 0.0004 0.0037
OTU190 Butyricimonas 0.0005 0.0043
OTU364 Bacteroidetes 0.0005 0.0043
OTU214 Paenibacillus 0.0005 0.0044
OTU319 Bacteroidaceae 0.0006 0.0047

在筛选出具有统计学差异的OTU基础上,使用LefSe方法进一步鉴定与T2D相关的菌群标志物。LDA值分布柱状图展示了LDA score大于设定值有差异的物种,即具有统计学差异的生物标志物。展现不同组中丰度有显著差异的物种,柱状图的长度代表显著差异物种的影响大小(图 4C)。进化分支图由内至外辐射的圆圈代表了由门至属(或种)的分类级别。在不同分类级别上的每一个小圆圈代表该水平下的一个分类,小圆圈直径大小与相对丰度大小呈正比。无显著差异的物种统一着色为黄色,差异物种Biomarker跟随组进行着色,绿色节点表示在绿色组别(T2D组)中起到重要作用的微生物类群(图 4D)。通过LefSe分析得出两组在2个门3个纲3个目4个科10个属的相对丰度间有显著差异。正常组的候选生物标志物包括:Clostridium_XVIIIRoseburiaEggerthellaLachnospiracea_incertae_sedisClostridium_XlVaMegamonasComamonasLachnospiraceaeBacteroidesBacteroidaceaeBacteroidetesBacteroidiaBacteroidales;T2D组的候选生物标志物包括:BifidobacteriumBifidobacterialesBifidobacteriaceaeActinobacteriaBacilliLactobacillalesLactobacillaceaeLactobacillus

2.6. PICRUSt功能预测分析

为了预测并比较正常组与T2D组肠道菌群功能,本研究采用PICRUS软件基于KEGG数据库进行菌群功能预测,采用STAMP软件在P < 0.05显著性水平对预测结果进行分析。结果发现共有36个代谢通路有显著差异(图 5)。其中正常组显著高于T2D组的代谢通路有7个,包括脂多糖生物合成蛋白质代谢通路、蛋白质折叠和相关处理代谢通路等。T2D组显著高于正常组的代谢通路有29个,包括肾细胞癌代谢通路、苯乙烯降解代谢通路等(表 3)。

5.

5

肠道菌群PICRUSt功能预测

Gut microbiota PICRUSt functional prediction (0=healthy group, 1=T2D group).

3.

KEGG代谢途径差异

Differential metabolic pathways between diabetic and healthy groups

KEGG metabolic pathway 0: mean proportion (%) 1: mean proportion (%) P(corrected)
Renal cell carcinoma 0.0055 0.0085 0.0003
Styrene degradation 0.0152 0.0215 0.0006
Lipopolysaccharide biosynthesis 0.2471 0.3076 0.0009
Lipopolysaccharide biosynthesis proteins 0.3472 0.4145 0.0012
Tetracycline biosynthesis 0.1490 0.1320 0.0015
Cell motility and secretion 0.1595 0.1756 0.0021
Glycosyltransferases 0.3340 0.3577 0.0039
Arachidonic acid metabolism 0.0282 0.0347 0.0056
Sulfur metabolism 0.2594 0.2742 0.0059
Pathways in cancer 0.0478 0.0512 0.0063
Protein folding and associated processing 0.6069 0.6296 0.0084
Methane metabolism 1.3025 1.2490 0.0087
Metabolism of cofactors and vitamins 0.1021 0.1108 0.0092
Glycerophospholipid metabolism 0.5505 0.5283 0.0117
Prenyltransferases 0.3206 0.3329 0.0119
Phenylalanine metabolism 0.1913 0.2022 0.0140
Isoquinoline alkaloid biosynthesis 0.0614 0.0658 0.0146
Protein processing in endoplasmic reticulum 0.0650 0.0710 0.0149
Glyoxylate and dicarboxylate metabolism 0.4932 0.5146 0.0159
Mineral absorption 0.0053 0.0069 0.0166
RNA transport 0.1420 0.1318 0.0186
Nitrogen metabolism 0.6962 0.7196 0.0190
N-Glycan biosynthesis 0.0250 0.0283 0.0194
D-Arginine and D-ornithine metabolism 0.0021 0.0031 0.0249
Polycyclic aromatic hydrocarbon degradation 0.1150 0.1097 0.0257
Glutathione metabolism 0.2033 0.2142 0.0281
Transporters 6.4913 6.1660 0.0306
Pantothenate and CoA biosynthesis 0.6276 0.6426 0.0321
Cysteine and methionine metabolism 0.9269 0.9424 0.0324
Carbohydrate digestion and absorption 0.0144 0.0173 0.0332
Tropane, piperidine and pyridine alkaloid biosynthesis 0.1211 0.1258 0.0359
Novobiocin biosynthesis 0.1344 0.1386 0.0371
Streptomycin biosynthesis 0.3026 0.3177 0.0439
Plant-pathogen interaction 0.1549 0.1487 0.0443
Citrate cycle 0.5965 0.6258 0.0443
Butirosin and neomycin biosynthesis 0.0593 0.0602 0.0494

3. 讨论

随着对糖尿病发病机制研究的逐步深入,包括人体致病基因和信号通路等传统研究路径越发显示出局限性,使得全世界研究者转而关注其它可能与T2D发病相关的因素。肠道菌群在人体的生理和病理中发挥着人体基因组不可代替的作用。之前的研究已经证实了肠道菌群与T2D的发病有密切的关系,但是由于研究人群,测序技术,分析方法的不同,每个研究都有自己不同的结论。因此我们使用16s rRNA高通量测序技术分析了T2D组和正常组两组临床病例样本肠道菌群的组成和核心菌群情况,并通过对两组样本可能对肠道菌群影响因素的校正,排出干扰因素的分析,更好的探究肠道菌群与T2D的关系。

在本次研究中,我们分析了正常组和T2D组临床病例的肠道菌群。分析的数据显示,从总体来看,厚壁菌门、拟杆菌门、变形菌门、放线菌门是门分类水平上的主要核心物种,BacteroidesEscherichia ShigellaPrevotellaBifidobacteriumLactobacillus是属分类水平上的主要核心物种。为了更好地研究肠道菌群与T2D的关联性,更精确地筛选出T2D的菌群标志物,我们通过倾向评分匹配法(PSM)校正了相关混杂因素。PSM是一种用于处理研究数据的统计学方法。计算研究对象在多种背景因素(如年龄、性别等)下成为T2D患者的概率(即倾向评分),匹配概率相等或相近的个体, 组成新的正常组和T2D组,此两组可近似为随机分组,组间相关因素可达到均衡。其优势是组间分配不均衡的多个变量被“倾向评分”一个综合指标所代替,消除组别之间的干扰因素,以便对实验组和对照组进行更合理的比较。倾向性评分匹配完成后,利用R语言的DEseq包对两组进行差异分析,并通过LefSe方法进一步鉴定出与T2D相关的菌群标志物。最终筛选出的正常组的候选生物标志物包括:Clostridium_XVIIIRoseburiaEggerthellaLachnospiracea_incertae_sedisClostridium_XlVaMegamonasComamonasLachnospiraceaeBacteroidesBacteroidaceaeBacteroidetesBacteroidiaBacteroidales;T2D组的候选生物标志物包括:BifidobacteriumBifidobacterialesBifidobacteriaceaeActinobacteriaBacilliLactobacillalesLactobacillaceaeLactobacillus。这些结果表明,正常组与T2D组肠道菌群结构存在差异,部分微生物与T2D有密切的关系,它们可能是T2D的致病因素亦或保护因素。

此前有文献报道Ruminococcaceae和Lachnospiraceae在高脂饮食喂养组老鼠中被大量发现[17],在我们的T2D组中也发现这两种菌群成分。有文献报道厚壁菌门与拟杆菌门的比值不仅仅会影响了碳水化合物的代谢,同时改变了短链脂肪酸的产生,诱发胰岛素抵抗[18-20]。我们在结果中也得到T2D组的厚壁菌门与拟杆菌门的比值低于正常组,这可能与T2D的发病有密切联系。

本研究结果显示T2D受试者肠道菌群中乳酸杆菌的比例增加,拟杆菌目与毛螺菌科的比例减少,这和Horie[21]的基于2型糖尿病和非糖尿病小鼠肠道菌群的对比分析结果相同;Hartstra等人发现T2D患者的肠道微生物群中产生丁酸盐的细菌,即Roseburia和Faecalibacterium减少[22],我们的研究结果支持该结论。在一项关于中国维吾尔族和哈萨克族的T2D肠道菌群研究中,正常组和T2D组从科分类水平上,Ruminococcaceae、Lachnospiraceae和Enterobacteriaceae是两组的主要核心菌群[23],我们的研究也得到相同的结果。比较有趣的是,与当前研究结果不同,我们发现双歧杆菌在T2D组中丰度高于正常组,双歧杆菌与T2D组有非常密切的关系,它也是我们通过统计筛选出来的能够鉴别正常组与T2D组的具有显著丰度差异的菌。一直以来,相关研究都证实双歧杆菌是一种有益菌,并给它贴上“促进肠道健康”或“保持肠道菌群的平衡”类似的标签[24]。Koutnikova等[25]综合相关文献分析指出,Bifidobacterium的摄入对糖尿病有着轻微但持续的改善作用。但是在我们筛选比较得到的结果中,Bifidobacterium出现在T2D组中比正常组更多,同时,Bifidobacterium也是我们通过LefSe方法鉴定出的与T2D相关的潜在菌群标志物之一。这与之前文献报道的Bifidobacterium作为一种有益菌较多的出现在正常组而非病例组恰恰相反。在之前的文献报道中,关于双歧杆菌的地位也众说纷纭,有所争议。Lin等[26]研究指出长双歧杆菌可以通过富集硒起到延缓糖尿病发作的作用。在一项随机安慰剂对照试验中,研究者将60例患者随机分成2组,分别服用益生菌补充剂或安慰剂6周,益生菌补充剂由7种活菌株Lactobacillus,和Streptococcus组成,结果发现多菌株益生菌补充剂使患者血糖水平显著降低[27]。Babadi等[28]研究发现Bifidobacterium对妊娠期糖尿病患者相关的基因表达具有有益调节作用。Kobyliak等[29]研究发现Bifidobacterium可适度改善T2D患者的胰岛素抵抗。在一项基于16S rRNA基因片段测序的T2D患者肠道微生物群特征研究中,T2D组的双歧杆菌水平和高密度脂蛋白胆固醇水平呈正相关,间接说明双歧杆菌对2型糖尿病的治疗起作用[30]。Bagarolli等[31]用双歧杆菌喂养高脂肪饮食老鼠,发现其对于胰岛素调节起着重要的作用。以上文章都支持双歧杆菌作为有益菌比较少的出现在糖尿病组的病人和老鼠中,或者证实利用双歧杆菌能够缓解胰岛素抵抗和糖尿病的症状。

但是也并非所有的文献都支持Bifidobacterium作为有益菌更多的出现在正常组而较少的出现在糖尿病组中这一说法。在澳大利亚的一项研究中,研究者以妊娠期糖尿病高风险人群,即超重和肥胖的孕妇为研究对象,定期给予含有Bifidobacterium的益生菌补充剂,结果发现益生菌补充剂并未对妊娠期糖尿病起到预防作用[32];在另一项研究中发现,双歧杆菌在饮食和血糖水平之间任何转换途径中作用都不明显[33]。另外一项研究采用定量宏基因组学对292位丹麦人进行了肠道菌群的分析中,根据个体肠道微生物基因的数量,肠道微生物的丰富程度可将人群分为低微生物丰富度群体和高微生物丰富度群体,在低微生物丰富度群体中肥胖个体所占的比例要显著高于高丰富度群体的。低微生物丰富度的个体往往携带更多的促炎症的细菌,而高微生物丰富度的个体则包含更多的抗炎症细菌如Bifidobacterium,低微生物丰富度的人群患上前期糖尿病、2型糖尿病、缺血性心血管疾病等肥胖相关的疾病的风险更高,这篇文章虽然间接说明Bifidobacterium在正常人群中的丰度更高[34],但是在另一篇综述中,作者特别提到,低微生物丰富度群体不都是肥胖,或者表现出胰岛素抗性,血清瘦蛋白增加,高血清胰岛素,高甘油三脂和游离脂肪酸,低血清高密度脂蛋白胆固醇等现象并且还伴有其他的炎症表征,高微生物丰富度群体也不都是健康人群,因此不能下定论某些菌就是疾病或正常的代表[35]。在Suez等[36]的研究中,提到了很多肠道菌群在正常以及异常的血糖反应表现中不同的丰度水平,他们认为在糖尿病小鼠体内增加的双歧杆菌可以对血糖控制有所改善,但是他们无法确定在人群实验中Bifidobacterium是否能像在小鼠体内实验得到相同的结果和作用。

我们认为双歧杆菌对于研究T2D的发病原因和发病进程非常重要。由于研究当中研究对象的选择和分析方法的不同,关于双歧杆菌的地位和作用众说纷纭,双歧杆菌与T2D或着某种肠型的关联是否是因果关系还是不得而知,双歧杆菌究竟是致病因素还是保护因素也需要更多的微生物动物和临床实验才能证实。

此外,我们发现三羧酸循环、脂多糖生物合成等代谢途径在糖尿病患者中上调。存在于这些途径的因子包括参与将碳水化合物降解为短链脂肪酸(SCFA)的酶,例如己糖激酶,磷酸烯醇丙酮酸羧激酶和乙酰辅酶A合成酶等[37]。因此,这些发现可能意味着糖尿病患者肠道中SCFAs谱的病理生理改变,Inoue等[38]的研究也支持该观点。其他一些代谢途径,如苯乙烯降解,花生四烯酸代谢等,虽然目前并无研究可以明确指出其与糖尿病间的联系,但仍能模糊地与2型糖尿病联系起来,需要进一步的研究来阐明这些途径在2型糖尿病中的作用。

综上所述,本研究通过DESeq2方法找出正常组与T2D组之间的差异OTU,进而在属水平上选择有丰度差异的物种。不足之处在于,研究对象年龄有一定的偏倚,由于临床所限,没有纳入年轻患者和相应的对照人群。特别是该次研究为横断面研究,无法具体得出肠道菌群和糖尿病发病的因果关系,在接下来的研究中,课题组将建立相应的研究队列,力求阐明肠道菌群和糖尿病发病的因果关系。

Biographies

肖瑶,在读硕士研究生,E-mail: xiaoyao167717@163.com

牛玥,在读硕士研究生,E-mail: 13473695187@163.com

Funding Statement

中央民族大学自主科研项目(MDYY060)

Contributor Information

肖 瑶 (Yao XIAO), Email: xiaoyao167717@163.com.

牛 玥 (Yue NIU), Email: 13473695187@163.com.

李 树春 (shuchun LI), Email: jason@muc.edu.cn.

References

  • 1.Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017;389(10085):2239–51. doi: 10.1016/S0140-6736(17)30058-2. [Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes[J]. Lancet, 2017, 389(10085): 2239-51.] [DOI] [PubMed] [Google Scholar]
  • 2.Svane J, Lynge TH, Pedersen-Bjergaard U, et al. Cause-specific mortality in children and young adults with diabetes mellitus: a Danish nationwide cohort study. http://www.ncbi.nlm.nih.gov/pubmed/30862235. Eur J Prev Cardiol. 2019;2019:2047487319836550. doi: 10.1177/2047487319836550. [Svane J, Lynge TH, Pedersen-Bjergaard U, et al. Cause-specific mortality in children and young adults with diabetes mellitus: a Danish nationwide cohort study[J]. Eur J Prev Cardiol, 2019, 2019: 2047487319836550.] [DOI] [PubMed] [Google Scholar]
  • 3.Sedighi M, Razavi S, Navab-Moghadam F, et al. Comparison of gut microbiota in adult patients with type 2 diabetes and healthy individuals. Microb Pathog. 2017;111:362–9. doi: 10.1016/j.micpath.2017.08.038. [Sedighi M, Razavi S, Navab-Moghadam F, et al. Comparison of gut microbiota in adult patients with type 2 diabetes and healthy individuals[J]. Microb Pathog, 2017, 111: 362-9.] [DOI] [PubMed] [Google Scholar]
  • 4.Fassatoui M, Lopez-Siles M, Díaz-Rizzolo DA, et al. Gut microbiota imbalances in Tunisian participants with type 1 and type 2 diabetes mellitus. Biosci Rep. 2019;39(6):BSR20182348. doi: 10.1042/BSR20182348. [Fassatoui M, Lopez-Siles M, Díaz-Rizzolo DA, et al. Gut microbiota imbalances in Tunisian participants with type 1 and type 2 diabetes mellitus[J]. Biosci Rep, 2019, 39(6): BSR20182348.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Halawa MR, El-Salam MA, Mostafa BM, et al. The gut microbiome, Lactobacillus acidophilus; relation with type 2 diabetes mellitus. Curr Diabetes Rev. 2019;15(6):480–5. doi: 10.2174/1573399815666190206162143. [Halawa MR, El-Salam MA, Mostafa BM, et al. The gut microbiome, Lactobacillus acidophilus; relation with type 2 diabetes mellitus[J]. Curr Diabetes Rev, 2019, 15(6): 480-5.] [DOI] [PubMed] [Google Scholar]
  • 6.Chen PC, Chien YW, Yang SC. The alteration of gut microbiota in newly diagnosed type 2 diabetic patients. Nutrition. 2019;63/64:51–6. doi: 10.1016/j.nut.2018.11.019. [Chen PC, Chien YW, Yang SC. The alteration of gut microbiota in newly diagnosed type 2 diabetic patients[J]. Nutrition, 2019, 63/64: 51-6.] [DOI] [PubMed] [Google Scholar]
  • 7.Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376–81. doi: 10.1038/nature18646. [Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity[J]. Nature, 2016, 535(7612): 376-81.] [DOI] [PubMed] [Google Scholar]
  • 8.Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957–63. doi: 10.1093/bioinformatics/btr507. [Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-63.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinform Oxf Engl. 2014;30(15):2114–20. doi: 10.1093/bioinformatics/btu170. [Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinform Oxf Engl, 2014, 30(15): 2114-20.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Kroll KW, Mokaram NE, Pelletier AR, et al. Quality control for RNA-seq (QuaCRS): an integrated quality control pipeline. http://europepmc.org/articles/PMC4214596/ Cancer Inform. 2014;13(Suppl 3):7–14. doi: 10.4137/CIN.S14022. [Kroll KW, Mokaram NE, Pelletier AR, et al. Quality control for RNA-seq (QuaCRS): an integrated quality control pipeline[J]. Cancer Inform, 2014, 13(Suppl 3): 7-14.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27(16):2194–200. doi: 10.1093/bioinformatics/btr381. [Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2194-200.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Cole JR, Wang Q, Fish JA, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42(Database issue):D633–42. doi: 10.1093/nar/gkt1244. [Cole JR, Wang Q, Fish JA, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis[J]. Nucleic Acids Res, 2014, 42(Database issue): D633-42.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. http://pubmedcentralcanada.ca/pmcc/articles/PMC3531112/ NucleicAcids Res. 2013;41(Database issue):D590–6. doi: 10.1093/nar/gks1219. [Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. NucleicAcids Res, 2013, 41(Database issue): D590-6.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Zakrzewski M, Proietti C, Ellis JJ, et al. Calypso: a user-friendly webserver for mining and visualizing microbiome-environment interactions. http://bioinformatics.oxfordjournals.org/content/early/2016/12/24/bioinformatics.btw725.long. Bioinformatics. 2017;33(5):782–3. doi: 10.1093/bioinformatics/btw725. [Zakrzewski M, Proietti C, Ellis JJ, et al. Calypso: a user-friendly webserver for mining and visualizing microbiome-environment interactions[J]. Bioinformatics, 2017, 33(5): 782-3.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Langille MG, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–21. doi: 10.1038/nbt.2676. [Langille MG, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nat Biotechnol, 2013, 31(9): 814-21.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Parks DH, Tyson GW, Hugenholtz P, et al. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30(21):3123–4. doi: 10.1093/bioinformatics/btu494. [Parks DH, Tyson GW, Hugenholtz P, et al. STAMP: statistical analysis of taxonomic and functional profiles[J]. Bioinformatics, 2014, 30(21): 3123-4.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Daniel H, Gholami AM, Berry D, et al. High- fat diet alters gut microbiota physiology in mice. Isme J. 2014;8(2):295–308. doi: 10.1038/ismej.2013.155. [Daniel H, Gholami AM, Berry D, et al. High- fat diet alters gut microbiota physiology in mice[J]. Isme J, 2014, 8(2): 295-308.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature. 2016;534(7606):213–7. doi: 10.1038/nature18309. [Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome[J]. Nature, 2016, 534(7606): 213-7.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Leustean AM, Ciocoiu M, Sava A, et al. Implications of the intestinal microbiota in diagnosing the progression of diabetes and the presence of cardiovascular complications. http://www.researchgate.net/publication/328909840_Implications_of_the_Intestinal_Microbiota_in_Diagnosing_the_Progression_of_Diabetes_and_the_Presence_of_Cardiovascular_Complications. J Diabetes Res. 2018;2018:5205126. doi: 10.1155/2018/5205126. [Leustean AM, Ciocoiu M, Sava A, et al. Implications of the intestinal microbiota in diagnosing the progression of diabetes and the presence of cardiovascular complications[J]. J Diabetes Res, 2018, 2018: 5205126.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.van Olden C, Groen AK, Nieuwdorp M. Role of intestinal microbiome in lipid and glucose metabolism in diabetes mellitus. Clin Ther. 2015;37(6):1172–7. doi: 10.1016/j.clinthera.2015.03.008. [van Olden C, Groen AK, Nieuwdorp M. Role of intestinal microbiome in lipid and glucose metabolism in diabetes mellitus[J]. Clin Ther, 2015, 37(6): 1172-7.] [DOI] [PubMed] [Google Scholar]
  • 21.Horie M, Miura T, Hirakata S, et al. Comparative analysis of the intestinal flora in type 2 diabetes and nondiabetic mice. Exp Anim. 2017;66(4):405–16. doi: 10.1538/expanim.17-0021. [Horie M, Miura T, Hirakata S, et al. Comparative analysis of the intestinal flora in type 2 diabetes and nondiabetic mice[J]. Exp Anim, 2017, 66(4): 405-16.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Hartstra AV, Bouter KE, Bäckhed F, et al. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care. 2015;38(1):159–65. doi: 10.2337/dc14-0769. [Hartstra AV, Bouter KE, Bäckhed F, et al. Insights into the role of the microbiome in obesity and type 2 diabetes[J]. Diabetes Care, 2015, 38(1): 159-65.] [DOI] [PubMed] [Google Scholar]
  • 23.Wang Y, Luo X, Mao XM, et al. Gut microbiome analysis of type 2 diabetic patients from the Chinese minority ethnic groups the Uygurs and Kazaks. PLoS One. 2017;12(3):e0172774. doi: 10.1371/journal.pone.0172774. [Wang Y, Luo X, Mao XM, et al. Gut microbiome analysis of type 2 diabetic patients from the Chinese minority ethnic groups the Uygurs and Kazaks[J]. PLoS One, 2017, 12(3): e0172774.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Ong TG, Gordon M, Banks SS, et al. Probiotics to prevent infantile colic. Cochrane Database Syst Rev. 2019;Mar 13(3):CD012473. doi: 10.1002/14651858.CD012473.pub2. [Ong TG, Gordon M, Banks SS, et al. Probiotics to prevent infantile colic[J]. Cochrane Database Syst Rev, 2019, Mar 13, 3(3): CD012473.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Koutnikova H, Genser B, Monteiro-Sepulveda M, et al. Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2019;9(3):e017995. doi: 10.1136/bmjopen-2017-017995. [Koutnikova H, Genser B, Monteiro-Sepulveda M, et al. Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: a systematic review and meta-analysis of randomised controlled trials[J]. BMJ Open, 2019, 9(3): e017995.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Lin Y, Ren YZ, Zhang Y, et al. Protective role of nano-seleniumenriched Bifidobacterium longum in delaying the onset of streptozotocin-induced diabetes. R Soc Open Sci. 2018;5(12):181156. doi: 10.1098/rsos.181156. [Lin Y, Ren YZ, Zhang Y, et al. Protective role of nano-seleniumenriched Bifidobacterium longum in delaying the onset of streptozotocin-induced diabetes[J]. R Soc Open Sci, 2018, 5(12): 181156.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Razmpoosh E, Javadi A, Ejtahed HS, et al. The effect of probiotic supplementation on glycemic control and lipid profile in patients with type 2 diabetes: a randomized placebo controlled trial. Diabetes Metab Syndr. 2019;13(1):175–82. doi: 10.1016/j.dsx.2018.08.008. [Razmpoosh E, Javadi A, Ejtahed HS, et al. The effect of probiotic supplementation on glycemic control and lipid profile in patients with type 2 diabetes: a randomized placebo controlled trial[J]. Diabetes Metab Syndr, 2019, 13(1): 175-82.] [DOI] [PubMed] [Google Scholar]
  • 28.Babadi M, Khorshidi A, Aghadavood E, et al. The effects of probiotic supplementation on genetic and metabolic profiles in patients with gestational diabetes mellitus: a randomized, double-blind, placebocontrolled trial. Probiotics Antimicrob Proteins. 2019;11(4):1227–35. doi: 10.1007/s12602-018-9490-z. [Babadi M, Khorshidi A, Aghadavood E, et al. The effects of probiotic supplementation on genetic and metabolic profiles in patients with gestational diabetes mellitus: a randomized, double-blind, placebocontrolled trial[J]. Probiotics Antimicrob Proteins, 2019, 11(4): 1227-35.] [DOI] [PubMed] [Google Scholar]
  • 29.Kobyliak N, Falalyeyeva T, Mykhalchyshyn G, et al. Effect of alive probiotic on insulin resistance in type 2 diabetes patients: Randomized clinical trial. Diabetes Metab Syndr. 2018;12(5):617–24. doi: 10.1016/j.dsx.2018.04.015. [Kobyliak N, Falalyeyeva T, Mykhalchyshyn G, et al. Effect of alive probiotic on insulin resistance in type 2 diabetes patients: Randomized clinical trial[J]. Diabetes Metab Syndr, 2018, 12(5): 617-24.] [DOI] [PubMed] [Google Scholar]
  • 30.Salamon D, Sroka-Oleksiak A, Kapusta P, et al. Characteristics of gut microbiota in adult patients with type 1 and type 2 diabetes based on next-generation sequencing of the 16S rRNA gene fragment. http://www.ncbi.nlm.nih.gov/pubmed/29657308. Pol Arch Intern Med. 2018;128(6):336–43. doi: 10.20452/pamw.4246. [Salamon D, Sroka-Oleksiak A, Kapusta P, et al. Characteristics of gut microbiota in adult patients with type 1 and type 2 diabetes based on next-generation sequencing of the 16S rRNA gene fragment[J]. Pol Arch Intern Med, 2018, 128(6): 336-43.] [DOI] [PubMed] [Google Scholar]
  • 31.Bagarolli RA, Tobar N, Oliveira AG, et al. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J Nutr Biochem. 2017;50:16–25. doi: 10.1016/j.jnutbio.2017.08.006. [Bagarolli RA, Tobar N, Oliveira AG, et al. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice[J]. J Nutr Biochem, 2017, 50: 16-25.] [DOI] [PubMed] [Google Scholar]
  • 32.Callaway LK, McIntyre HD, Barrett HL, et al. Probiotics for the prevention of gestational diabetes mellitus in overweight and obese women: findings from the SPRING double-blind randomized controlled trial. http://www.researchgate.net/publication/330498522_Probiotics_for_the_Prevention_of_Gestational_Diabetes_Mellitus_in_Overweight_and_Obese_Women_Findings_From_the_SPRING_Double-Blind_Randomized_Controlled_Trial. Diabetes Care. 2019;42(3):364–71. doi: 10.2337/dc18-2248. [Callaway LK, McIntyre HD, Barrett HL, et al. Probiotics for the prevention of gestational diabetes mellitus in overweight and obese women: findings from the SPRING double-blind randomized controlled trial[J]. Diabetes Care, 2019, 42(3): 364-71.] [DOI] [PubMed] [Google Scholar]
  • 33.Stefani S, Ngatidjan S, Paotiana M, et al. Dietary quality of predominantly traditional diets is associated with blood glucose profiles, but not with total fecal Bifidobacterium in Indonesian women. PLoS One. 2018;13(12):e0208815. doi: 10.1371/journal.pone.0208815. [Stefani S, Ngatidjan S, Paotiana M, et al. Dietary quality of predominantly traditional diets is associated with blood glucose profiles, but not with total fecal Bifidobacterium in Indonesian women[J]. PLoS One, 2018, 13(12): e0208815.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Le Chatelier E, Nielsen T, Qin JJ, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–6. doi: 10.1038/nature12506. [Le Chatelier E, Nielsen T, Qin JJ, et al. Richness of human gut microbiome correlates with metabolic markers[J]. Nature, 2013, 500 (7464): 541-6.] [DOI] [PubMed] [Google Scholar]
  • 35.Gholizadeh P, Mahallei M, Pormohammad A, et al. Microbial balance in the intestinal microbiota and its association with diabetes, obesity and allergic disease. Microb Pathog. 2019;127:48–55. doi: 10.1016/j.micpath.2018.11.031. [Gholizadeh P, Mahallei M, Pormohammad A, et al. Microbial balance in the intestinal microbiota and its association with diabetes, obesity and allergic disease[J]. Microb Pathog, 2019, 127: 48-55.] [DOI] [PubMed] [Google Scholar]
  • 36.Suez J, Shapiro H, Elinav E. Role of the microbiome in the normal and aberrant glycemic response. Clin Nutr Exp. 2016;6:59–73. doi: 10.1016/j.yclnex.2016.01.001. [Suez J, Shapiro H, Elinav E. Role of the microbiome in the normal and aberrant glycemic response[J]. Clin Nutr Exp, 2016, 6: 59-73.] [DOI] [Google Scholar]
  • 37.Hohnholt MC, Blumrich EM, Waagepetersen HS, et al. The tricarboxylic acid cycle activity in cultured primary astrocytes is strongly accelerated by the protein tyrosine kinase inhibitor tyrphostin 23. Neurochem Int. 2017;102:13–21. doi: 10.1016/j.neuint.2016.11.008. [Hohnholt MC, Blumrich EM, Waagepetersen HS, et al. The tricarboxylic acid cycle activity in cultured primary astrocytes is strongly accelerated by the protein tyrosine kinase inhibitor tyrphostin 23[J]. Neurochem Int, 2017, 102: 13-21.] [DOI] [PubMed] [Google Scholar]
  • 38.Inoue R, Ohue-Kitano R, Tsukahara T, et al. Prediction of functional profiles of gut microbiota from 16S rRNA metagenomic data provides a more robust evaluation of gut dysbiosis occurring in Japanese type 2 diabetic patients. J Clin Biochem Nutr. 2017;61(3):217–21. doi: 10.3164/jcbn.17-44. [Inoue R, Ohue-Kitano R, Tsukahara T, et al. Prediction of functional profiles of gut microbiota from 16S rRNA metagenomic data provides a more robust evaluation of gut dysbiosis occurring in Japanese type 2 diabetic patients[J]. J Clin Biochem Nutr, 2017, 61 (3): 217-21.] [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES