Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2021 Mar 20;41(3):471–475, 封三. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2021.03.23

多糖调控糖脂代谢的作用及其机制研究进展

Research progress in the role and mechanism of polysaccharides in regulating glucose and lipid metabolism

丁 孟汝 1,2, 王 国栋 1,2,2, 袁 平川 1,2, 何 曙光 1, 邵 太丽 1,2, 柳 春燕 1,2, 孔 祥 2,3,*
PMCID: PMC8075797  PMID: 33849842

Abstract

多糖是由多个相同或不同结构的单糖通过糖苷键结合的化合物,广泛存在于动植物体内和微生物细胞壁中,具有安全性高、毒副作用小的特点。近年研究发现多糖在免疫调节、抗肿瘤、抗病毒、抗氧化、降低血糖与血脂等方面有着广泛的生物活性。其中,多糖改善胰岛素敏感性,调节糖、脂代谢的功效备受研究者的关注。很多多糖能够通过修护胰岛细胞,改善胰岛素抵抗、调节肠道菌群,增强抗氧化能力,调节糖脂代谢中关键酶的活性等作用机制来发挥降血糖降血脂作用。本文综述了多糖调控糖脂代谢的作用及其相关机制,如多糖调节糖代谢的作用机制包括修护胰岛细胞,增加胰岛素的含量; 增加胰岛素的敏感性,改善胰岛素抵抗; 调节糖代谢中关键酶的活性; 增加肝糖原的合成; 调节肠道菌群; 多糖还能够通过改善机体免疫调节,拮抗升高血糖素来调节糖代谢。多糖对脂代谢的作用机制包括:通过调节脂质的吸收分布代谢排泄; 调节体内PPAR-α等相关基因的表达; 调节脂代谢酶的活性; 提高抗氧化能力; 多糖还可以通过调节肠道菌群以及调节信号通路来调节脂代谢。

Keywords: 多糖, 糖代谢, 脂代谢, 胰岛素抵抗, 肥胖


糖代谢异常指调节葡萄糖、果糖等代谢的激素或酶异常,或组织、器官发生变化,而脂代谢异常指先天性或获得性因素造成体内脂质(脂类)及其代谢物的异常[1]。近年来,糖脂代谢相关疾病已经发展成为全球性慢性疾病[2],而且糖代谢和脂代谢两者密切相关,相互影响,易引起多种慢性疾病的发生,影响人类的健康。而目前,临床上治疗糖脂代谢疾病大都采用对症治疗,以缓解症状为主,且药物治疗后容易产生毒副作用,为患者带来痛苦。因此,从天然产物中寻找毒副作用小的有效物质来治疗糖脂代谢疾病已经成为研究热点。

多糖是由多个相同或不同的单糖分子通过糖苷键连接而成的聚合物,广泛存在于动植物体内和微生物细胞壁中,是自然界中最丰富聚合物[3]。它具有安全性高、毒性较小等特点,并在体内发挥重要作用。研究结果表明多糖具有免疫调节、改善胰岛素抵抗、降低血糖与血脂水平等方面的作用[4-5]。这些作用表明多糖在糖脂代谢等慢性疾病中有着重要的作用。近年来,关于多糖降血糖、降血脂作用的研究取得了巨大进展,已经从基本药理活性的研究发展到多糖降血脂、降血糖作用机制的研究,本文查阅近几年国内外文献并进行整理,对多糖在糖脂代谢中的作用以及其机制进行综述,为开发防治糖脂代谢相关疾病的活性多糖提供思路。

1. 多糖对糖代谢的影响及其机制

1.1. 多糖对糖代谢的影响

有研究从牛肝菌中提取了一种多糖并命名为SLPC-1S[6]发现该糖能在糖尿病小鼠中表现出较好的抗糖尿病特性,可以降低血糖以及减少丙二醛(MDA)的水平,并且抗氧化酶活性也有所增加,以此来发挥调节糖代谢作用。研究发现纳米山药多糖可以降血糖,改善大鼠的糖耐量以及三多一少的症状,提示该多糖能够改善糖尿病症状以及调节糖代谢[7]。有学者发现苦瓜多糖可降血糖,改善糖耐量,小鼠体质量下降也明显有了改变[8]。并且在小鼠的毒性评价中,苦瓜多糖并未表现出任何的毒性症状。Chen等[9]发现桑果多糖可降低小鼠血糖以及MDA的水平,增加抗氧化酶的活性,减轻小鼠器官损伤,说明桑果多糖对小鼠具有保护作用。

1.2. 多糖调节糖代谢的作用机制

1.2.1. 修护胰岛细胞,增加胰岛素的含量

胰岛细胞可以通过改变胰岛素含量来调节体内血糖。当体内血糖过高时,胰岛素水平增加,抑制机体葡萄糖的合成,从而降糖。因此,通过修复受到损伤的胰岛细胞,增加胰岛素的水平在调节糖代谢起到至关重要的作用。研究发现,桑叶多糖可以降低大鼠的炎症因子和游离脂肪酸的含量,以及缓解氧化应激损伤,并且改善线粒体功能,从而保护胰腺β细胞并发挥抗糖尿病的作用[10]。Ru等[11]发现采用不同剂量的三叶青多糖治疗糖尿病小鼠后,小鼠的血糖下降,体质量增加、胰岛素水平也有所提高,其机制可能是通过刺激胰岛细胞,从而增加胰岛素的分泌。Zhang等[12]发现苦瓜多糖可以使STZ致糖尿病小鼠的血糖水平明显降低,与糖尿病小鼠相比,服用该糖后,血清胰岛素浓度显著增加,并且减轻了胰腺病变,这可能是因为苦瓜多糖可以通过保护胰岛细胞并增加胰岛素含量,从而减轻糖尿病症状。

1.2.2. 增加胰岛素的敏感性,改善胰岛素抵抗

胰岛素抵抗指胰岛素对作用的靶器官敏感性降低,机体对葡萄糖的吸收和利用有所下降,无法维持正常的血糖水平,从而引起糖代谢紊乱[13]。研究发现黄芪多糖剂量依赖性方式增加前脂肪细胞的增殖,上调葡萄糖转运蛋白4,增加机体对葡萄糖的摄取[14]。这可能是黄芪多糖通过调节AMPK相关信号通路,增加葡萄糖的利用和胰岛素敏感性,从而来缓解胰岛素抵抗。有学者发现五味子酸性多糖(SCAP)能降血糖,升高空腹胰岛素的含量,改善糖耐量,降低炎症因子,以及调节JNK和NF-B蛋白表达,提示SCAP可能通过抑制炎症而改善2型糖尿病大鼠的胰岛素抵抗[15]。有文献研究知母多糖对糖尿病SD大鼠的影响[16],结果显示知母多糖可有效降低血糖,改善脂代谢紊乱; 降低血清胰岛素和胰岛抵抗指数,对胰岛素抵抗改善较为明显。

1.2.3. 调节糖代谢中关键酶的活性

α-葡萄糖苷酶是调节糖代谢的关键酶,通过抑制酶生物活性,减少葡萄糖吸收,从而达到调节糖代谢的作用[17]。有研究在绞股蓝的提取物中得到多糖(GPP),发现GPP抑制了α-葡萄糖苷酶活性,并且影响葡萄糖转运蛋白2,从而降低血糖[18]。研究发现桦褐孔菌子实体IOP30多糖组分具有降血糖活性,其降糖作用是通过抑制α-葡萄糖苷酶活性,减少餐后血糖,增加葡萄糖的代谢,并且增加了胰岛素的敏感性[19]

1.2.4. 增加肝糖原的合成

多糖可通过增加肝糖原的合成,减少糖异生,增加葡萄糖的利用,减少血糖含量。有研究从海参中提取的多糖被发现可以改善2型糖尿病大鼠的高血糖,降低炎症反应和缓解氧化应激损伤,并且促进肝糖原累积来调控糖代谢[20]。毛酸浆果中提取的一种多糖PP,发现在治疗糖尿病小鼠后,可以显著降低血糖含量以及增加肝糖原的水平[21]。有研究发现牛大力多糖可以显著降低糖尿病小鼠血糖水平,增加胰岛素及肝糖原含量,其作用机制可能是通过促进糖原合成以及增加胰岛素的分泌有关[22]

1.2.5. 调节肠道菌群

一些研究表明多糖可以通过调节肠道菌群,影响拟杆菌的含量,改善肠道功能,来调节糖代谢紊乱[23]。研究发现青钱柳多糖可以减轻2型糖尿病的症状,降低血糖以及胰岛素含量,改变了肠道菌群的组成结构[24]。其机制可能是增加SCFA细菌的产生,促进SCFA的生成来发挥作用。Chen等[25]观察到桑椹多糖可以对糖尿病小鼠起到很好的作用,能够降低血糖水平和改善葡萄糖耐量,并且能够通过调节肠道菌群发挥抗糖尿病的作用。有研究发现给予10%低聚果糖(OFS)治疗肥胖小鼠和糖尿病大鼠后,小鼠和大鼠的肠道菌群在厚壁菌门中富集且小鼠拟杆菌门的丰度更高[26]

1.2.6. 其他作用机制

多糖还能够通过改善机体免疫调节,拮抗升高血糖素来调节糖代谢。有研究注射STZ构建糖尿病小鼠模型,结果显示给药组小鼠的胸腺和脾脏功能损伤有所改善,提高了小鼠的免疫功能,从而调节脂代谢[27]。Kuang等[28]发现铁皮石斛多糖(DOPS)能显著降低STZ诱导的糖尿病大鼠血清胰岛素和胰高血糖素样肽-1(GLP-1)水平,提示DOPS可能是通过调节GLP-1的分泌来调节糖代谢。

2. 多糖对脂代谢的影响及其机制

2.1. 多糖对脂代谢的影响

大量的基础试验研究显示,大多数植物多糖对动物的甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、游离脂肪酸(FFA)等血脂代谢指标有效果[29]。有研究随机将雄性SD大鼠分为高脂饮食组作为对照组,以及高脂饮食组+ 灵芝多糖干预组,发现灵芝多糖能减少大鼠体质量的增加,食物利用率,改善粪便脂肪,以及降低TC和LDL-C的水平[30]。Dong等[31]发现从羊肚菌中提取的多糖能够降低小鼠的血清脂质水平,表现出优异的降低肝脂质水平的能力,增加抗氧化酶生物活性,减少脂质氧化,从而达到减轻高血脂以及保护肝的作用。研究证实口服刺梨多糖可以显着降低糖尿病db/db小鼠的体质量以及血糖,胰岛素和血脂水平[32]。保护胰腺,肝脏和附睾脂肪免受损害,并且下调过氧化物酶体增殖物激活受体-γ,乙酰辅酶A羧化酶-1等酶的表达发挥抗高血脂症的作用。

2.2. 多糖对脂代谢的作用机制

2.2.1. 通过调节脂质的吸收分布代谢排泄

多糖可通过影响脂质的吸收分布代谢排泄,调节脂代谢异常,降低体内胆固醇含量发挥降脂作用。有研究发现麦冬多糖可以抑制肥胖小鼠的体质量增加,并且降低血清以及肝脏总胆固醇含量[33]。此外,该糖还可在肠腔中吸收胆汁酸并减少其重吸收,抑制小鼠的肝肠循环,改变胆固醇的合成、分解和代谢,从而调节脂代谢。李良玉等[34]发现肝素类多糖可降低高脂血症大鼠的胆固醇含量,这可能是因为肝素使载脂蛋白A1的构象改变,促进了其与脂类的结合,激活卵磷脂胆固醇酰基转移酶,加快血液循环从而使胆固醇酯化,并且转运至肝脏,加速清除胆固醇,从而达到降低血脂的作用。有研究纯化得到酸性多糖WABM-Ab发现可以降低油酸诱导的HepG2细胞的TC和TG的水平,其降脂机制可能是激活胆固醇代谢途径[35]

2.2.2. 调节体内相关基因的表达

多糖可通过改变脂代谢相关的一些基因,来改善脂代谢紊乱,其中PPAR-α是调节脂肪代谢的关键因子,在过氧化物酶体及线粒体的脂肪酸氧化等其他代谢途径中发挥关键的基因调控作用[36]。有研究采用高脂饮食的方法诱导ICR小鼠构建高脂血症模型,发现米糠多糖可降低小鼠的体质量以及TC、TG和LDL-C的含量[37]。并且与脂代谢相关的PPAR-α、PPAR-γ、PPAR-δ等基因的mRNA水平显著改变。这表明米糠多糖能够调节脂代谢的相关基因从而发挥降脂作用。有研究采用腹腔注射75%新鲜蛋黄乳剂建立高脂血症小鼠模型,给予不同剂量的黄精多糖,发现治疗组的TC、TG、LDL-C的含量降低,PPAR-α、PPAR-β、PPAR-γ等基因的mRNA和蛋白表达量有所改变[35]。以上研究表明黄精多糖可以抑制肝脏脂质氧化,调节与脂代谢有关基因和蛋白。

2.2.3. 调节脂代谢酶的活性

脂肪酸合成酶是合成脂肪酸较为关键的酶,能够影响组织脂肪的合成。多糖可通过影响脂肪酶的活性,抑制脂肪的合成来调节脂质。研究发现,马尾藻提取物中得到硫酸多糖,在灌胃给予高血脂症大鼠6周后。发现该多糖能够有效降低体质量以及明显降低TC,TG,LDL-C的水平,提高HDL-C水平,并且能够降低大鼠血清和肠道脂肪酶活性。这表明该多糖能够抑制脂肪酶活性,明显调节脂质,抑制脂质过氧化[38]。有研究采用高脂乳液(HFE)诱导高脂血症大鼠,给予不同剂量的青钱柳多糖,结果表明青钱柳多糖能明显改变血脂指标[39]。其中,脂肪酸甘油三脂酶(ATGL)蛋白表达上调,脂肪酸合酶(FAS)以及羟甲基戊二酰辅酶A还原酶(HMG-CoA)蛋白水平有所降低。因此可能是通过调节ATGL、FAS、HMG-CoA的活性发挥降血脂作用。

2.2.4. 提高抗氧化能力

多糖可通过增加抗氧化酶的生物活性,降低MDA的含量以及减少体内自由基,改善脂质过度氧化,从而调节脂代谢。有研究发现采用高脂饮食(HFD)诱导小鼠后,松针多糖可提高小鼠的血脂水平,增加抗氧化酶水平,降低MDA含量[40]。这说明松针多糖能够通过增加抗氧化能力,达到降血脂的作用。不同剂量的金橘多糖喂养高脂血症大鼠,发现给药组中的血清脂肪酶的含量明显增加。并且金橘多糖可以增加总抗氧化能超氧化物歧化酶(SOD),谷胱甘肽过氧化物酶(GSH-Px)和谷胱甘肽S-转移酶的活性,降低MDA的含量。这说明金橘多糖可能是通过降低脂质含量以及增强抗氧化酶的活性来作用的[41]。研究发现灵芝多糖可以增加小鼠血清中的GSH-Px、SOD活性并降低肝脏中的MDA含量,表明可能是通过抗氧化途径来发挥作用,从而改善肝细胞脂质代谢紊乱[42]

2.2.5. 其他作用机制

多糖还可以通过调节肠道菌群以及调节信号通路来调节脂代谢。有研究从小球藻中提取一种活性多糖(CPP),发现该多糖能够善脂质代谢,并加速盲肠总胆汁酸和短链脂肪酸的代谢,以及肠道菌群的构成也有变化[43],说明CPP可以改善肠道菌群的组成来改善高脂血症大鼠的脂代谢。研究发现给予黄芪多糖喂养大鼠后,肠道甜味受体相关分子蛋白表达有所改变[44],提示黄芪多糖可能是调节了甜味受体的表达,促进肠激素分泌来实现对脂代谢紊乱的调节。

3. 小结

生物体内的糖脂代谢平衡对于维持基本生命活动起着至关重要的作用,发展天然药物治疗糖脂代谢疾病是当前趋势,研究发现,多糖具有良好的降血糖以及降血脂的作用,安全性高且毒副作用较小。目前已发现多糖调控糖脂代谢的作用机制可能与多糖能够增加胰岛素的敏感性、改善胰岛素抵抗、改善肠道微生态、调节糖脂代谢酶的活性、提高抗氧化能力等有关,但实际上不同来源多糖调控糖脂代谢作用机制不尽相同,具体作用靶点的研究更不明确。进一步研究多糖降血糖、降血脂作用的可能机制,可为开发防治肥胖、高血脂、2型糖尿病等糖脂代谢相关疾病的活性多糖提供依据。

Biographies

丁孟汝,硕士研究生,E-mail: dmrdrm@163.com

王国栋,博士,教授,硕士生导师,E-mail: guodong201@csu.edu.cn

Funding Statement

国家自然科学基金(81970699);安徽省自然科学基金(1908085MH248);安徽省高校优秀青年骨干人才国外访学研修项目(gxgwfx2018054);皖南医学院博士科研启动基金项目(WYRCQD201709)

Supported by National Natural Science Foundation of China (81970699)

Contributor Information

丁 孟汝 (Mengru DING), Email: dmrdrm@163.com.

王 国栋 (Guodong WANG), Email: guodong201@csu.edu.cn.

孔 祥 (Xiang KONG), Email: wnmcyaolikx@163.com.

References

  • 1.王 新苗, 张 海宇, 魏 秀秀, et al. 糖脂代谢紊乱机制研究及中医药防治的进展. https://www.cnki.com.cn/Article/CJFDTOTAL-LNZY202002071.htm. 辽宁中医杂志. 2020;47(2):214–7. [王新苗, 张海宇, 魏秀秀, 等. 糖脂代谢紊乱机制研究及中医药防治的进展[J]. 辽宁中医杂志, 2020, 47(2): 214-7.] [Google Scholar]
  • 2.Fu J, Zeng C, Zeng Z, et al. Cinnamomum camphora seed kernel oil ameliorates oxidative stress and inflammation in diet-induced obese rats. J Food Sci. 2016;81(5):H1295–300. doi: 10.1111/1750-3841.13271. [Fu J, Zeng C, Zeng Z, et al. Cinnamomum camphora seed kernel oil ameliorates oxidative stress and inflammation in diet-induced obese rats[J]. J Food Sci, 2016, 81(5): H1295-300.] [DOI] [PubMed] [Google Scholar]
  • 3.时 潇丽, 姚 春霞, 林 晓, et al. 多糖药物应用与研究进展. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXYZ201409016.htm. 中国新药杂志. 2014;23(9):1057–62. [时潇丽, 姚春霞, 林晓, 等. 多糖药物应用与研究进展[J]. 中国新药杂志, 2014, 23(9): 1057-62.] [Google Scholar]
  • 4.Chen L, Zhang Y, Sha O, et al. Hypolipidaemic and hypoglycaemic activities of polysaccharide from Pleurotus eryngii in Kunming mice. http://www.ncbi.nlm.nih.gov/pubmed/27693745. Int J Biol Macromol. 2016;93(pt a):1206–9. doi: 10.1016/j.ijbiomac.2016.09.094. [Chen L, Zhang Y, Sha O, et al. Hypolipidaemic and hypoglycaemic activities of polysaccharide from Pleurotus eryngii in Kunming mice [J]. Int J Biol Macromol, 2016, 93(pt a): 1206-9.] [DOI] [PubMed] [Google Scholar]
  • 5.Dong Z, Zhang M, Li H, et al. Structural characterization and immunomodulatory activity of a novel polysaccharide from Pueraria lobata (Willd.) Ohwi root. Int J Biol Macromol. 2020;154:1556–64. doi: 10.1016/j.ijbiomac.2019.11.040. [Dong Z, Zhang M, Li H, et al. Structural characterization and immunomodulatory activity of a novel polysaccharide from Pueraria lobata (Willd. ) Ohwi root[J]. Int J Biol Macromol, 2020, 154: 1556- 64.] [DOI] [PubMed] [Google Scholar]
  • 6.Liu Y, Liu Y, Zhang M, et al. Structural characterization of a polysaccharide from Suillellus luridus and its antidiabetic activity via Nrf2/HO-1 and NF-κB pathways. Int J Biol Macromol. 2020;162:935–45. doi: 10.1016/j.ijbiomac.2020.06.212. [Liu Y, Liu Y, Zhang M, et al. Structural characterization of a polysaccharide from Suillellus luridus and its antidiabetic activity via Nrf2/HO-1 and NF-κB pathways[J]. Int J Biol Macromol, 2020, 162: 935-45.] [DOI] [PubMed] [Google Scholar]
  • 7.Yu L, Zhang J, Jiao J, et al. Effect of nano yam polysaccharide on the blood glucose and blood lipid in rats. http://www.researchgate.net/publication/339984534_Effect_of_nano_yam_polysaccharide_on_the_blood_glucose_and_blood_lipid_in_rats. Pak J Pharm Sci. 2020;33(1):481–7. [Yu L, Zhang J, Jiao J, et al. Effect of nano yam polysaccharide on the blood glucose and blood lipid in rats[J]. Pak J Pharm Sci, 2020, 33 (1): 481-7.] [PubMed] [Google Scholar]
  • 8.Xu X, Shan B, Liao CH, et al. Anti-diabetic properties of Momordica charantia L. polysaccharide in alloxan-induced diabetic mice. Int J Biol Macromol. 2015;81:538–43. doi: 10.1016/j.ijbiomac.2015.08.049. [Xu X, Shan B, Liao CH, et al. Anti-diabetic properties of Momordica charantia L. polysaccharide in alloxan-induced diabetic mice[J]. Int J Biol Macromol, 2015, 81: 538-43.] [DOI] [PubMed] [Google Scholar]
  • 9.Chen C, Huang Q, Li C, et al. Hypoglycemic effects of a Fructus Mori polysaccharide in vitro and in vivo. Food Funct. 2017;8(7):2523–35. doi: 10.1039/C7FO00417F. [Chen C, Huang Q, Li C, et al. Hypoglycemic effects of a Fructus Mori polysaccharide in vitro and in vivo[J]. Food Funct, 2017, 8(7): 2523-35.] [DOI] [PubMed] [Google Scholar]
  • 10.Liu CG, Ma YP, Zhang XJ. Effects of mulberry leaf polysaccharide on oxidative stress in pancreatic β-cells of type 2 diabetic rats. http://www.ncbi.nlm.nih.gov/pubmed/28193094. Eur Rev Med Pharmacol Sci. 2017;21(10):2482–8. [Liu CG, Ma YP, Zhang XJ. Effects of mulberry leaf polysaccharide on oxidative stress in pancreatic β-cells of type 2 diabetic rats[J]. Eur Rev Med Pharmacol Sci, 2017, 21(10): 2482-8.] [PubMed] [Google Scholar]
  • 11.Ru Y, Chen X, Xu J, et al. Hypoglycemic effects of a polysaccharide from Tetrastigma hemsleyanum Diels & gilg in alloxan-induced diabetic mice. Chem Biodiversity. 2018;15(8):e1800070–8. doi: 10.1002/cbdv.201800070. [Ru Y, Chen X, Xu J, et al. Hypoglycemic effects of a polysaccharide from Tetrastigma hemsleyanum Diels & gilg in alloxan-induced diabetic mice[J]. Chem Biodiversity, 2018, 15(8): e1800070-8.] [DOI] [PubMed] [Google Scholar]
  • 12.Zhang C, Chen HM, Bai WQ. Characterization of Momordica charantia L. polysaccharide and its protective effect on pancreatic cells injury in STZ-induced diabetic mice. Int J Biol Macromol. 2018;115:45–52. doi: 10.1016/j.ijbiomac.2018.04.039. [Zhang C, Chen HM, Bai WQ. Characterization of Momordica charantia L. polysaccharide and its protective effect on pancreatic cells injury in STZ-induced diabetic mice[J]. Int J Biol Macromol, 2018, 115: 45-52.] [DOI] [PubMed] [Google Scholar]
  • 13.Artunc F, Schleicher E, Weigert C, et al. The impact of insulin resistance on the kidney and vasculature. Nat Rev Nephrol. 2016;12(12):721–37. doi: 10.1038/nrneph.2016.145. [Artunc F, Schleicher E, Weigert C, et al. The impact of insulin resistance on the kidney and vasculature[J]. Nat Rev Nephrol, 2016, 12(12): 721-37.] [DOI] [PubMed] [Google Scholar]
  • 14.Zhang R, Qin X, Zhang T, et al. Astragalus polysaccharide improves insulin sensitivity via AMPK activation in 3T3-L1 adipocytes. http://www.mdpi.com/1420-3049/23/10/2711. Molecules. 2018;23(10):711–20. doi: 10.3390/molecules23102711. [Zhang R, Qin X, Zhang T, et al. Astragalus polysaccharide improves insulin sensitivity via AMPK activation in 3T3-L1 adipocytes[J]. Molecules, 2018, 23(10): 711-20.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Qiao Z, Du X, Zhuang W, et al. Schisandra chinensis acidic polysaccharide improves the insulin resistance in type 2 diabetic rats by inhibiting inflammation. J Med Food. 2020;23(4):358–66. doi: 10.1089/jmf.2019.4469. [Qiao Z, Du X, Zhuang W, et al. Schisandra chinensis acidic polysaccharide improves the insulin resistance in type 2 diabetic rats by inhibiting inflammation[J]. J Med Food, 2020, 23(4): 358-66.] [DOI] [PubMed] [Google Scholar]
  • 16.侯 红瑞, 陈 玲, 孙 国勇, et al. 知母多糖对链脲佐菌素诱导糖尿病大鼠的降血糖作用. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201812013.htm. 食品工业科技. 2018;39(12):69–72, 78. [侯红瑞, 陈玲, 孙国勇, 等. 知母多糖对链脲佐菌素诱导糖尿病大鼠的降血糖作用[J]. 食品工业科技, 2018, 39(12): 69-72, 78.] [Google Scholar]
  • 17.Wu J, Shi S, Wang H, et al. Mechanisms underlying the effect of polysaccharides in the treatment of type 2 diabetes: a review. Carbohydr Polym. 2016;144:474–94. doi: 10.1016/j.carbpol.2016.02.040. [Wu J, Shi S, Wang H, et al. Mechanisms underlying the effect of polysaccharides in the treatment of type 2 diabetes: a review[J]. Carbohydr Polym, 2016, 144: 474-94.] [DOI] [PubMed] [Google Scholar]
  • 18.Wang Z, Zhao X, Liu X, et al. Anti-diabetic activity evaluation of a polysaccharide extracted from Gynostemma pentaphyllum. Int J Biol Macromol. 2019;126:209–14. doi: 10.1016/j.ijbiomac.2018.12.231. [Wang Z, Zhao X, Liu X, et al. Anti-diabetic activity evaluation of a polysaccharide extracted from Gynostemma pentaphyllum[J]. Int J Biol Macromol, 2019, 126: 209-14.] [DOI] [PubMed] [Google Scholar]
  • 19.於 雨碟, 张 酥, 张 佳妍, et al. 桦褐孔菌子实体多糖的提取及体外降血糖活性. 菌物学报. 2017;39(12):1–14. [於雨碟, 张酥, 张佳妍, 等. 桦褐孔菌子实体多糖的提取及体外降血糖活性[J]. 菌物学报, 2017, 39(12): 1-14.] [Google Scholar]
  • 20.Zhu Q, Lin L, Zhao M. Sulfated Fucan/fucosylated chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber ameliorates type 2 diabetes in rats: New prospects for sea cucumber polysaccharide based-hypoglycemic functional food. http://www.sciencedirect.com/science/article/pii/S0141813020331883. Int J Biol Macromol. 2020;159(13):34–45. doi: 10.1016/j.ijbiomac.2020.05.043. [Zhu Q, Lin L, Zhao M. Sulfated Fucan/fucosylated chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber ameliorates type 2 diabetes in rats: New prospects for sea cucumber polysaccharide based-hypoglycemic functional food [J]. Int J Biol Macromol, 2020, 159(13): 34-45.] [DOI] [PubMed] [Google Scholar]
  • 21.Chen X, Li X, Zhang X, et al. Antihyperglycemic and antihyperlipidemic activities of a polysaccharide from Physalis pubescens L. in streptozotocin (STZ)-induced diabetic mice. Food Funct. 2019;10(8):4868–76. doi: 10.1039/C9FO00687G. [Chen X, Li X, Zhang X, et al. Antihyperglycemic and antihyperlipidemic activities of a polysaccharide from Physalis pubescens L. in streptozotocin (STZ)-induced diabetic mice[J]. Food Funct, 2019, 10 (8): 4868-76.] [DOI] [PubMed] [Google Scholar]
  • 22.苏 芬丽, 丘 振文, 孙 旭, et al. 牛大力多糖对糖尿病小鼠降血糖作用的研究. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYX201911012.htm. 中南药学. 2019;17(11):1856–9. [苏芬丽, 丘振文, 孙旭, 等. 牛大力多糖对糖尿病小鼠降血糖作用的研究[J]. 中南药学, 2019, 17(11): 1856-9.] [Google Scholar]
  • 23.Yan H, Lu J, Wang Y, et al. Intake of total saponins and polysaccharides from Polygonatum kingianum affects the gut microbiota in diabetic rats. Phytomedicine. 2017;26:45–54. doi: 10.1016/j.phymed.2017.01.007. [Yan H, Lu J, Wang Y, et al. Intake of total saponins and polysaccharides from Polygonatum kingianum affects the gut microbiota in diabetic rats[J]. Phytomedicine, 2017, 26: 45-54.] [DOI] [PubMed] [Google Scholar]
  • 24.Yao Y, Yan L, Chen H, et al. Cyclocarya paliurus polysaccharides alleviate type 2 diabetic symptoms by modulating gut microbiota and short-chain fatty acids. Phytomedicine. 2020;77:153268–77. doi: 10.1016/j.phymed.2020.153268. [Yao Y, Yan L, Chen H, et al. Cyclocarya paliurus polysaccharides alleviate type 2 diabetic symptoms by modulating gut microbiota and short-chain fatty acids[J]. Phytomedicine, 2020, 77: 153268-77.] [DOI] [PubMed] [Google Scholar]
  • 25.Chen C, You LJ, Huang Q, et al. Modulation of gut microbiota by mulberry fruit polysaccharide treatment of obese diabetic db/db mice. Food Funct. 2018;9(7):3732–42. doi: 10.1039/C7FO01346A. [Chen C, You LJ, Huang Q, et al. Modulation of gut microbiota by mulberry fruit polysaccharide treatment of obese diabetic db/db mice [J]. Food Funct, 2018, 9(7): 3732-42.] [DOI] [PubMed] [Google Scholar]
  • 26.Rajpal DK, Klein JL, Mayhew D, et al. Selective spectrum antibiotic modulation of the gut microbiome in obesity and diabetes rodent models. PLoS One. 2015;10(12):e0145499–508. doi: 10.1371/journal.pone.0145499. [Rajpal DK, Klein JL, Mayhew D, et al. Selective spectrum antibiotic modulation of the gut microbiome in obesity and diabetes rodent models[J]. PLoS One, 2015, 10(12): e0145499-508.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.罗 旭艳, 杨 欣, 王 丽惠, et al. 杨桃根多糖片对糖尿病模型小鼠的降糖降脂作用. 医药导报. 2016;35(z1):1–3. doi: 10.3870/j.issn.1004-0781.2016.z1.001. [罗旭艳, 杨欣, 王丽惠, 等. 杨桃根多糖片对糖尿病模型小鼠的降糖降脂作用[J]. 医药导报, 2016, 35(z1): 1-3.] [DOI] [Google Scholar]
  • 28.Kuang MT, Li JY, Yang XB, et al. Structural characterization and hypoglycemic effect via stimulating glucagon-like peptide-1 secretion of two polysaccharides from Dendrobium officinale. Carbohydr Polym. 2020;241:116326–35. doi: 10.1016/j.carbpol.2020.116326. [Kuang MT, Li JY, Yang XB, et al. Structural characterization and hypoglycemic effect via stimulating glucagon-like peptide-1 secretion of two polysaccharides from Dendrobium officinale[J]. Carbohydr Polym, 2020, 241: 116326-35.] [DOI] [PubMed] [Google Scholar]
  • 29.韩 笑, 李 玉萍, 吴 光杰, et al. 植物活性多糖调控脂质代谢的研究进展. 江苏农业科学. 2014;42(5):15–9. doi: 10.3969/j.issn.1002-1302.2014.05.005. [韩笑, 李玉萍, 吴光杰, 等. 植物活性多糖调控脂质代谢的研究进展[J]. 江苏农业科学, 2014, 42(5): 15-9.] [DOI] [Google Scholar]
  • 30.Wu S. Hypolipidaemic and anti-lipidperoxidant activities of Ganoderma lucidum polysaccharide. http://www.sciencedirect.com/science/article/pii/S0141813018325984?via%3Dihub. Int J Biol Macromol. 2018;118(pt b):2001–5. doi: 10.1016/j.ijbiomac.2018.07.082. [Wu S. Hypolipidaemic and anti-lipidperoxidant activities of Ganoderma lucidum polysaccharide[J]. Int J Biol Macromol, 2018, 118 (pt b): 2001-5.] [DOI] [PubMed] [Google Scholar]
  • 31.Dong YH, Qi YR, Liu M, et al. Antioxidant, anti-hyperlipidemia and hepatic protection of enzyme-assisted Morehella esculenta polysaccharide. Int J Biol Macromol. 2018;120:1490–9. doi: 10.1016/j.ijbiomac.2018.09.134. [Dong YH, Qi YR, Liu M, et al. Antioxidant, anti-hyperlipidemia and hepatic protection of enzyme-assisted Morehella esculenta polysaccharide[J]. Int J Biol Macromol, 2018, 120: 1490-9.] [DOI] [PubMed] [Google Scholar]
  • 32.Wang L, Li C, Huang Q, et al. Polysaccharide from Rosa roxburghii tratt fruit attenuates hyperglycemia and hyperlipidemia and regulates colon microbiota in diabetic db/db mice. J Agric Food Chem. 2020;68(1):147–59. doi: 10.1021/acs.jafc.9b06247. [Wang L, Li C, Huang Q, et al. Polysaccharide from Rosa roxburghii tratt fruit attenuates hyperglycemia and hyperlipidemia and regulates colon microbiota in diabetic db/db mice[J]. J Agric Food Chem, 2020, 68(1): 147-59.] [DOI] [PubMed] [Google Scholar]
  • 33.Shi L, Wang J, Wang Y, et al. MDG-1, an Ophiopogon polysaccharide, alleviates hyperlipidemia in mice based on metabolic profile of bile acids. Carbohydr Polym. 2016;150:74–81. doi: 10.1016/j.carbpol.2016.05.008. [Shi L, Wang J, Wang Y, et al. MDG-1, an Ophiopogon polysaccharide, alleviates hyperlipidemia in mice based on metabolic profile of bile acids[J]. Carbohydr Polym, 2016, 150: 74-81.] [DOI] [PubMed] [Google Scholar]
  • 34.李 良玉, 刘 岩, 宋 大巍, et al. 肝素类多糖降血脂性能的初步研究. https://www.cnki.com.cn/Article/CJFDTOTAL-TRCW201512024.htm. 天然产物研究与开发. 2015;27(12):2124–7. [李良玉, 刘岩, 宋大巍, 等. 肝素类多糖降血脂性能的初步研究[J]. 天然产物研究与开发, 2015, 27(12): 2124-7.] [Google Scholar]
  • 35.Li Y, Sheng Y, Lu X, et al. Isolation and purification of acidic polysaccharides from Agaricus blazei Murill and evaluation of their lipid-lowering mechanism. Int J Biol Macromol. 2020;157:276–87. doi: 10.1016/j.ijbiomac.2020.04.190. [Li Y, Sheng Y, Lu X, et al. Isolation and purification of acidic polysaccharides from Agaricus blazei Murill and evaluation of their lipid-lowering mechanism[J]. Int J Biol Macromol, 2020, 157: 276- 87.] [DOI] [PubMed] [Google Scholar]
  • 36.Kersten S, Stienstra R. The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. http://www.sciencedirect.com/science/article/pii/S0300908416303613?via%3Dihub. Biochimie. 2017;136(5):75–84. doi: 10.1016/j.biochi.2016.12.019. [Kersten S, Stienstra R. The role and regulation of the peroxisome proliferator activated receptor alpha in human liver[J]. Biochimie, 2017, 136(5): 75-84.] [DOI] [PubMed] [Google Scholar]
  • 37.Nie Y, Luo FJ, Wang L, et al. Anti-hyperlipidemic effect of rice bran polysaccharide and its potential mechanism in high-fat diet mice. Food Funct. 2017;8(11):4028–41. doi: 10.1039/C7FO00654C. [Nie Y, Luo FJ, Wang L, et al. Anti-hyperlipidemic effect of rice bran polysaccharide and its potential mechanism in high-fat diet mice[J]. Food Funct, 2017, 8(11): 4028-41.] [DOI] [PubMed] [Google Scholar]
  • 38.Kolsi RBA, Salah HB, Jardak N, et al. Sulphated polysaccharide isolated from Sargassum vulgare: Characterization and hypolipidemic effects. http://www.sciencedirect.com/science/article/pii/S0144861717304824. Carbohydr Polym. 2017;170(12):148–59. doi: 10.1016/j.carbpol.2017.04.083. [Kolsi RBA, Salah HB, Jardak N, et al. Sulphated polysaccharide isolated from Sargassum vulgare: Characterization and hypolipidemic effects[J]. Carbohydr Polym, 2017, 170(12): 148-59.] [DOI] [PubMed] [Google Scholar]
  • 39.Yang ZW, Ouyang KH, Zhao J, et al. Structural characterization and hypolipidemic effect of Cyclocarya paliurus polysaccharide in rat. http://europepmc.org/abstract/MED/27343704. Int J Biol Macromol. 2016;91(20):1073–80. doi: 10.1016/j.ijbiomac.2016.06.063. [Yang ZW, Ouyang KH, Zhao J, et al. Structural characterization and hypolipidemic effect of Cyclocarya paliurus polysaccharide in rat [J]. Int J Biol Macromol, 2016, 91(20): 1073-80.] [DOI] [PubMed] [Google Scholar]
  • 40.Chu L, Yang L, Lin L, et al. Chemical composition, antioxidant activities of polysaccharide from Pine needle (Pinus massoniana) and hypolipidemic effect in high-fat diet-induced mice. http://www.ncbi.nlm.nih.gov/pubmed/30537499. Int J Biol Macromol. 2019;125(33):445–52. doi: 10.1016/j.ijbiomac.2018.12.082. [Chu L, Yang L, Lin L, et al. Chemical composition, antioxidant activities of polysaccharide from Pine needle (Pinus massoniana) and hypolipidemic effect in high-fat diet-induced mice[J]. Int J Biol Macromol, 2019, 125(33): 445-52.] [DOI] [PubMed] [Google Scholar]
  • 41.Zeng H, Chen P, Chang Q, et al. Hypolipidemic effect of polysaccharides from Fortunella margarita (Lour.) Swingle in hyperlipidemic rats. Food Chem Toxicol. 2019;132(10):110663–72. doi: 10.1016/j.fct.2019.110663. [Zeng H, Chen P, Chang Q, et al. Hypolipidemic effect of polysaccharides from Fortunella margarita (Lour. ) Swingle in hyperlipidemic rats[J]. Food Chem Toxicol, 2019, 132(10): 110663-72.] [DOI] [PubMed] [Google Scholar]
  • 42.Xu Y, Zhang X, Yan XH, et al. Characterization, hypolipidemic and antioxidant activities of degraded polysaccharides from Ganoderma lucidum. http://www.sciencedirect.com/science/article/pii/S0141813018373112. Int J Biol Macromol. 2019;135(3):706–16. doi: 10.1016/j.ijbiomac.2019.05.166. [Xu Y, Zhang X, Yan XH, et al. Characterization, hypolipidemic and antioxidant activities of degraded polysaccharides from Ganoderma lucidum[J]. Int J Biol Macromol, 2019, 135(3): 706-16.] [DOI] [PubMed] [Google Scholar]
  • 43.Wan XZ, Ai C, Chen YH, et al. Physicochemical characterization of a polysaccharide from green Microalga Chlorella pyrenoidosa and its hypolipidemic activity via gut microbiota regulation in rats. J Agric Food Chem. 2020;68(5):1186–97. doi: 10.1021/acs.jafc.9b06282. [Wan XZ, Ai C, Chen YH, et al. Physicochemical characterization of a polysaccharide from green Microalga Chlorella pyrenoidosa and its hypolipidemic activity via gut microbiota regulation in rats[J]. J Agric Food Chem, 2020, 68(5): 1186-97.] [DOI] [PubMed] [Google Scholar]
  • 44.王 颖, 陈 思羽, 杨 泽民. 黄芪多糖对高糖高脂饮食模型大鼠肠道甜味受体通路的影响. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201910010.htm. 中国实验方剂学杂志. 2019;25(10):64–8. [王颖, 陈思羽, 杨泽民. 黄芪多糖对高糖高脂饮食模型大鼠肠道甜味受体通路的影响[J]. 中国实验方剂学杂志, 2019, 25(10): 64-8.] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES