Skip to main content
Journal of Analytical Methods in Chemistry logoLink to Journal of Analytical Methods in Chemistry
. 2021 Apr 21;2021:5546446. doi: 10.1155/2021/5546446

Quality Evaluation of Artemisia capillaris Thunb. Based on Qualitative Analysis of the HPLC Fingerprint and UFLC-Q-TOF-MS/MS Combined with Quantitative Analysis of Multicomponents

Ying Dai 1, Zhihua Dou 1,2,3, Rongrong Zhou 2,, Lin Luo 3, Li Bian 2, Yufeng Chen 2, Jinhua Tao 3, Zhixian Chen 4,
PMCID: PMC8081635  PMID: 33968459

Abstract

In this study, a new method was developed for the comprehensive quality evaluation (QE) of Artemisia capillaris Thunb. (A. capillaris, named Yinchenhao in Chinese), which is one of the most commonly used herbal medicines (HMs). First, fingerprints of 31 batch samples of A. capillaris were determined by HPLC, the reference fingerprint was established, and the common peaks were assigned. Second, the components of common peaks in the HPLC fingerprints were identified by ultrafast liquid chromatography- (UFLC-) Q-TOF-MS/MS. Finally, the contents of the components unambiguously confirmed by reference substances were determined, and the correlation between the contents of chlorogenic acid and the contents of others was analyzed. The results showed that there were 20 common peaks in the HPLC fingerprints of 31 batch samples. The components of these 20 common peaks were identified as ten organic acids, eight flavonoids, and two others. Among nine organic acids such as 1-caffeoylquinic acid, neochlorogenic acid, chlorogenic acid, caffeic acid, cryptochlorogenic acid, 1,3-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid, three flavonoids such as rutin, hyperoside, and isoquercetin, and one other p-hydroxyacetophenone, a total of 13 ones were unambiguously identified by comparison with reference substances; one caffeoylquinic acid glucoside and one flavone di-C-glucoside were detected in A. capillaris for the first time. There were some differences in the contents of 13 components in different samples; chlorogenic acid could be regarded as the quality marker of A. capillaris. The current established method in this study can be used for the comprehensive QE of A. capillaris and can also provide reference for the QE of the other HMs.

1. Introduction

The quality and quality evaluation (QE) method is crucial in the effectiveness and safety assessment of herbal medicines (HMs) [1]. The method for the QE of TCMs must be based on the holistic principle, and fingerprint describes integral characterization and reflects interactive aspects of complex components; therefore, it can offer the possibility of evaluating quality of HMs following the overall principle [2]. HPLC fingerprint has become the most widely used method due to its high reproducibility and sensitivity [3]. The HPLC fingerprint method applied to QE of HMs is mainly based on the similarity of fingerprints and the presence or absence of chromatographic peaks among samples [4, 5]; however, this method cannot identify what these peaks are. Q-TOF-MS/MS is a kind of tandem mass spectrometry providing a high mass resolution and accurate mass measurement for the structural elucidation of unknown chemicals [6] and can be used in the identification of common peaks in HPLC fingerprints. Based on the qualitative analysis of fingerprint, the quantitative analysis of multiple components is the key step of QE of HMs [5].

Artemisia capillaris Thunb. (A. capillaris, named Yinchenhao in Chinese) is one of the most commonly used HMs [7], which has been used in China, Korea, and Japan for a long time to treat liver and choleretic disorders, such as cholestasis, jaundice, liver fibrosis, and hepatitis [79]. The major components contained in A. capillaris include organic acids, flavonoids, coumarins, essential oil, and others, such as p-hydroxyacetophenone [7]. A characteristic fingerprint was developed to determine the volatile constituents in essential oil of A. capillaris by GC-MS [10], but the systematic study on the HPLC fingerprint of A. capillaris and the identification of common peaks by Q-TOF-MS have not been reported so far. In recent years, QE of A. capillaris based on multicomponents quantitative analysis has made some progress. Yu et al. developed a method to determine eight organic acids in A. capillaris extract by HPLC, including chlorogenic acid (CA), neochlorogenic acid (NCA), cryptochlorogenic acid (CCA), 1,3-dicaffeoylquinic acid (1,3-diCQA), 3,4-dicaffeoylquinic acid (3,4-diCQA), 3,5-dicaffeoylquinic acid (3,5-diCQA), 4,5-dicaffeoylquinic acid (4,5-diCQA), and caffeic acid [11]. Tian et al. established a quantitative analysis method of six organic acids of NCA, CA, CCA, 1,3-diCQA, 3,4-diCQA, and 4,5-diCQA in A. capillaris and its decoction by HPLC [12]. Thirteen components including four organic acids, four flavonoids, four coumarins, and one other of p-hydroxyacetophenone and ten components including four organic acids, five flavonoids, and one coumarin of scoparone in A. capillaris were determined by the same method, respectively [13, 14]. However, a comprehensive QE method for A. capillaris has not been established so far. Therefore, the aim of this work was to establish a new method for the QE of A. capillaris comprehensively based on qualitative analysis of the HPLC fingerprint and ultrafast liquid chromatography- (UFLC-) Q-TOF-MS/MS combined with quantitative analysis of multicomponents.

2. Experimental

2.1. Chemicals and Reagents

Reference substance of p-hydroxyacetophenone (no. 111897–201602, with purity ≥99.9%) was purchased from the National Institutes for Food and Drug Control (Beijing, China). 1-caffeoylquinic acid (1-CQA, no. CHB170525), NCA (no. CHB170914), CA (no. CHB170713), caffeic acid (no. CHB160907), CCA (no. CHB170828), 1,3-diCQA (no. CHB160620), rutin (no. CHB170303), hyperoside (no. CHB160904), isoquercetin (no. CHB160912), 3,4-diCQA (no. CHB160725), 3,5-diCQA (no. CHB171013), and 4,5-diCQA (No. CHB160726) were purchased from the Chengdu Chroma Biotechnology Co., Ltd. (Chengdu, China) (all with purity ≥98%). Methanol (HPLC grade) and acetonitrile (LC/MS grade) were purchased from Fisher Scientific (Fair Lawn, NJ, USA). Purified water was purchased from Wahaha Group Co., Ltd. (Hangzhou, China). Formic acid (HPLC grade) was supplied by Nanjing Chemical Reagent Co. Ltd. (Nanjing, China).

2.2. Apparatus

Determination of the HPLC fingerprint and the contents of 13 components were performed on a HPLC system (Waters Corp., Milford, MA, USA), equipped with a Waters e2695 separation unit, a Waters 2998 PDA detector, and an Empower 3 data processing system. Chromatographic separation was performed on a Symmetry C18 column (4.6 mm × 250 mm, 5 μm, Waters Corp., USA). Acetonitrile (A) and 0.1% (v/v) formic acid (B) were used as mobile phases with the following gradient elution: 0−35 min, 5−10% A; 35−65 min, 10−25% A; 65−67 min, 25−90% A; and 67−80 min, 90% A. The flow rate was set at 1.0 mL/min, and the column temperature was maintained at 30°C. The injection volume of sample solution was 30 µL. The detection wavelength of fingerprint and content of p-hydroxyacetophenone, rutin, hyperoside, and isoquercetin was set at 254 nm and that of content of nine organic acids was set at 324 nm.

Identification of the common peaks in the HPLC fingerprint was performed on a UFLC-Q-TOF-MS/MS system. Separation was performed on a UFLC system (Shimadzu, Kyoto, Japan) by using a Symmetry C18 column (250 mm × 4.6 mm, 5 μm); with the same mobile phases and the same gradient conditions abovementioned, the injection volume of the mixed reference substances solution for qualitative analysis and sample solution was all 20 µL. After separation, mass spectra were acquired on the AB Triple TOF 4600 plus system (AB SCIEX, Framingham, USA) with the following mass spectrometric parameters: ion source, DuoSpray; ESI mode, negative; ion source temperature, 550°C; ion spray voltage, −4500 V; nebulizer gas (gas 1), 60 psi; heater gas (gas 2), 60 psi; and curtain gas (CUR), 35 psi. The TOFMS-IDA-10MS/MS information acquisition method was used to obtain mass spectrometry information, and the parameters were set as follows: decluster potential (DP) of −80 V, collision energy (CE) of −10 eV, accumulation time of 250 ms, mass range of 105–1500 Da for the TOF-MS scan, collision energy (CE) of −35 eV, collision energy spread (CES) of 15 eV, and mass range of 50–1500 Da for the TOF-MS/MS detection. LC-MS/MS data were analyzed using PeakView mass spectrometry analysis software (Version 1.6, AB SCIEX, USA).

2.3. Samples and Sample Preparation

Information on all 31 batches of samples is given in Table 1, among which, 30 batches of A. capillaris (S1–S30) were purchased from different large TCM hospitals in China and authenticated as the dried aerial part of A. capillaris by the chief Chinese pharmacist Xudong Gong, the director of the Nantong Food and Drug Supervision and Inspection Centre. Herbal reference substance of A. capillaris (S31) was purchased from the National Institutes for Food and Drug Control (Beijing, China) in 2018.

Table 1.

Samples information and similarities.

Sample no. Manufacturers Batch no. Origins of herb Similarity
S1 Nantong Sanyue Herbal Pieces Co., Ltd. 171208 Henan 0.949
S2 Nantong Sanyue Herbal Pieces Co., Ltd. 180109 Henan 0.993
S3 Nantong Sanyue Herbal Pieces Co., Ltd. 151110 Henan 0.996
S4 Nantong Sanyue Herbal Pieces Co., Ltd. 180308 Henan 0.905
S5 Suzhou Tianling Herbal Pieces Co., Ltd. 180205 Jiangsu 0.958
S6 Suzhou Tianling Herbal Pieces Co., Ltd. 180205010 Jiangsu 0.963
S7 Suzhou Tianling Herbal Pieces Co., Ltd. 170902010 Jiangsu 0.980
S8 Suzhou Tianling Herbal Pieces Co., Ltd. 180205015 Jiangsu 0.969
S9 Suzhou Tianling Herbal Pieces Co., Ltd. 160309010 Jiangsu 0.963
S10 Suzhou Tianling Herbal Pieces Co., Ltd. 160122010 Jiangsu 0.990
S11 Yancheng Herbal Pieces Co., Ltd. 2017091402 Jiangsu 0.986
S12 Anhui Bozhou Qiancao Guoyao Co., Ltd. 1712176 Shanxi 0.991
S13 Anhui Wansheng Herbal Pieces Co., Ltd. 171201 Shanxi 0.994
S14 Anhui Wansheng Herbal Pieces Co., Ltd. 180302 Shanxi 0.928
S15 Anhui Mengshi Herbal Pieces Co., Ltd. 170401 Anhui 0.961
S16 Bozhou Qiaocheng Wanshixiang Herbal Pieces Co., Ltd. 170901 Shanxi 0.970
S17 Anhui Xiehecheng Pharmaceutical Herbal Pieces Co., Ltd. 17051814 Shanxi 0.986
S18 Anhui Shenghaitang Herbal Pieces Co., Ltd. 2017080421 Shanxi 0.991
S19 Hebei Kaida Pharmaceutical Co., Ltd. 20171201 Hebei 0.987
S20 Zhejiang Tongjuntang Herbal Pieces Co., Ltd. 170921 Shaanxi 0.996
S21 Zhengzhou Ruilong Pharmaceutical Co., Ltd. 17110102 Henan 0.990
S22 Hebei Renxin Pharmaceutical Co., Ltd. 21118001 Hebei 0.983
S23 Shaohuatang Guoyao Co., Ltd. 171010 Shanxi 0.975
S24 Shanghai Wanshicheng Guoyao Products Co., Ltd. 180418-1 Shandong 0.934
S25 Shanghai Kangqiao Herbal Pieces Co., Ltd. 171125 Shaanxi 0.972
S26 Yancheng Herbal Pieces Co., Ltd. 2016030202 Jiangsu 0.994
S27 Hangzhou Huadong Herbal Pieces Co., Ltd. 1601118 Shandong 0.953
S28 Bozhou Yonggang Herbal Pieces Co., Ltd. 15113001 Shanxi 0.991
S29 Bozhou Yonggang Herbal Pieces Co., Ltd. 15070901 Shanxi 0.994
S30 Yunnan Baiyao Herbal Medicine Branch of Yunnan Group Co., Ltd. YP20140601 Hubei 0.983
S31 National Institutes for Food and Drug Control 121555-201101 Unknown 0.968

The samples were dried at 40°C, ground into powder, and then sieved through a 40-mesh screen. Approximately 0.2 g of sample powder was accurately weighed and placed in a 50 mL dark brown volumetric flask. Approximately 49 mL of 50% (v/v) methanol was added and extracted by ultrasonication (200 W, 53 kHz) for 30 min. After cooling to room temperature, 50% (v/v) methanol was added for calibration of the volumetric flask and shaken well. The extract was filtered through a 0.22 μm filter membrane, and the filtrate was taken as the sample solution.

2.4. Preparation of Reference Substance Solutions

Appropriate amounts (5–20 mg) of 13 reference substances were accurately weighted, dissolved with 50% (v/v) methanol, respectively, and 13 reference substance stock solutions were prepared.

The mixed reference substances solution for qualitative analysis with a concentration range of 0.4–50 μg/mL of each compound was prepared by accurately absorbing appropriate volume of 13 reference substance stock solutions, mixing them, and diluting the mixture with 50% (v/v) methanol.

Working solution A for quantitative analysis was prepared by the same method as the mixed reference substances solution for qualitative analysis, and the final concentrations of 13 reference substances were at the range of 3.1–193 μg/mL. Working solution A was diluted two, five, and ten times with 50% (v/v) methanol to prepare working solutions B, C, and D, respectively.

2.5. Method Validation of the HPLC Fingerprint Analysis

The method of HPLC fingerprint determination was validated with precision, stability, and repeatability tests, by using peak 5 (CA) as the reference peak and the relative standard deviation (RSD) value of the average relative retention time (RRT) and relative peak area (RPA) of the 20 common peaks as measure values. In the precision test, six consecutive injections of the same sample (S1) solution were analyzed. Stability was examined by analyzing the sample solution (S1) at 0, 6, 12, 18, 24, and 36 h after preparation. Repeatability was examined by determination of six sample solutions prepared in parallel from S1.

2.6. Method Validation of the Quantitative Analysis

The method of quantitative analysis was validated with investigation of linear relationships, limit of quantitation (LOQ), limit of detection (LOD), precision, stability, repeatability, and the recovery test of 13 components. Investigation of linear relationships was performed by precisely injecting working solutions B, C, and D 10 μL and working solution A 10, 20, 30, and 40 μL into the HPLC systems for the calculation of the regression equations, correlation coefficients, and linear ranges of 13 components. Working solution D was successively diluted with 50% (v/v) methanol to give different concentrations of reference substance solutions. The LOQ and LOD values were determined by using signal-to-noise ratios of 3 : 1 and 10 : 1 and injecting 10 μL of above different concentrations of reference substance solutions. By using the RSDs of the peak areas of the 13 components as the measurement values, intraday precision, interday precision, and stability tests were performed, respectively. In the intraday precision test, six consecutive injections of 30 μL working solution A were analyzed, and in the interday precision test, six injections of 30 μL working solution A were analyzed twice a day over three consecutive days. Stability was examined by analyzing the peak areas of nine organic acids at 324 nm and four others at 254 nm detected in Section 2.5 of the stability test. Repeatability was examined by calculating the contents of 13 components according to the peak areas of nine organic acids at 324 nm and four others at 254 nm detected in Section 2.5 of the repeatability test and using the RSDs of the contents as the measured values. In the recovery test, approximately 0.1 g of S1 powder was weighed precisely, and then, 13 reference substance stock solutions were added to the sample in a certain volume according to the approximate proportion of the sample content to the reference substance (1 : 1) to prepare six sample solutions in parallel. The six sample solutions were injected into HPLC, and the average recovery rates and RSDs of the 13 components were calculated.

We followed the methods of Author links open overlay panel [15].

3. Results and Discussion

3.1. Method Validation of the HPLC Fingerprint Analysis

The RSDs of RRT and RPA for precision were less than 0.10% and 4.4%, those of stability were no more than 0.08% and 4.7%, and those of repeatability did not exceed 0.08% and 4.8%, respectively. The results met the national standards of TCM fingerprinting [16].

3.2. Method Validation of the Quantitative Analysis

As given in Table 2, the high correlation coefficient values (R2 > 0.9998) displayed good linearity over a wide range of injected amounts, and as given in Table 3, the RSDs of the intraday precision, interday precision, stability, and repeatability were all less than 5%, and the average recovery rates were in the range of 95.49%–103.20% with RSD values ranging 0.90–4.95%. The above results met the requirements of drug quality standard analysis method in Chinese Pharmacopoeia [17].

Table 2.

Results of the investigation of the linear relationship, LOD, and LOQ.

Reference substance Regression equation R 2 Linear range (ng) LOD (ng) LOQ (ng)
1-CQA Y = 2231204X − 8098 0.9999 13.35 ∼ 534 1.60 5.34
NCA Y = 2830658X − 5170 0.9999 5.15 ∼ 206 0.34 1.72
CA Y = 2870573X − 117405 0.9999 192.3 ∼ 7692 1.54 7.69
Caffeic acid Y = 4958993X − 7629 0.9998 1.90 ∼ 76.05 0.30 1.52
CCA Y = 2656572X − 12630 0.9998 7.66 ∼ 306.24 0.51 2.55
p-Hydroxyacetophenone Y = 2885362X − 7875 0.9999 3.05 ∼ 121.92 0.41 1.63
1,3-DiCQA Y = 2995412X − 1885 0.9999 1.77 ∼ 70.84 0.24 1.18
Rutin Y = 1638734X − 1384 0.9999 2.53 ∼ 101 0.40 1.68
Hyperoside Y = 2406676X − 5708 0.9999 8.31 ∼ 332.4 0.33 1.66
Isoquercetin Y = 1973858X − 1855 0.9999 2.90 ∼ 116 0.23 1.74
3,4-DiCQA Y = 2669900X − 7344 0.9999 5.04 ∼ 201.6 0.67 2.69
3,5-DiCQA Y = 3267110X + 5860 0.9999 122.30 ∼ 4892 1.73 3.46
4,5-DiCQA Y = 2863719X − 7095 0.9999 13.65 ∼ 546 1.09 5.46

Table 3.

Results of precision, stability, repeatability, and recovery tests (n = 6).

Components Precision RSD (%) Stability RSD (%) Repeatability (RSD, %) Recovery
Intraday Interday Mean (%) RSD (%)
1-CQA 0.51 0.37 0.71 2.16 101.23 2.11
NCA 0.66 0.69 2.26 3.82 97.68 0.90
CA 0.53 0.52 0.26 4.17 96.19 3.09
Caffeic acid 0.73 0.78 1.14 1.17 97.41 2.59
CCA 0.58 0.49 1.03 3.93 99.66 4.89
p-Hydroxyacetophenone 0.67 0.70 1.20 1.83 97.15 3.00
1,3-DiCQA 0.72 0.76 2.30 3.64 95.49 4.78
Rutin 2.84 0.92 3.59 2.22 96.68 4.32
Hyperoside 0.65 0.56 0.35 3.97 95.75 4.77
Isoquercetin 0.86 0.78 2.85 4.06 98.47 4.95
3,4-DiCQA 0.62 0.62 4.69 1.16 103.20 4.85
3,5-DiCQA 0.62 0.65 0.71 4.02 98.96 3.75
4,5-DiCQA 0.60 0.61 0.53 3.81 96.83 4.82

3.3. Establishment of the HPLC Fingerprint and Similarity Analysis

31 batches of A. capillaris samples were determined (chromatograms are shown in Figure 1). The chromatographic data of the samples were imported into the software of Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine (version 2012, Chinese Pharmacopoeia Commission, Beijing, China). Using the chromatogram of S1 as a reference, the reference chromatogram was generated, and 20 peaks were extracted to be the common peaks (shown in Figure 1). The similarities between sample chromatograms and reference chromatogram were calculated by the above software, and the results showed that the similarities of 31 batches of A. capillaris were all greater than 0.9 (Table 3).

Figure 1.

Figure 1

Chromatograms of 31 batches of A. capillaris (S1–S31) and the reference chromatogram (R).

3.4. Identification of the Common Peaks by UFLC-Q-TOF-MS/MS

Since more information and higher identifiability of fragmentation was observed in the negative ion mode, it was chosen for MS analysis rather than the positive ion mode. First, total ion chromatograms of the A. capillaris sample and mixed reference substances (Figure 2) were extracted using PeakView mass spectrometry analysis software. Second, the mass spectral data and dissociative rules of the reference substances were summarized, and the law of the quasimolecular ion [M − H] and/or [M + Cl] that could be selected as the precursor ion for collision-induced dissociation fragmentation to produce MS/MS product ions spectra was revealed. Finally, the components of the total 20 common peaks in the HPLC fingerprint were identified by comparing the retention time, m/z of [M − H] and/or [M + Cl] and MS/MS fragmentation patterns with those of the reference substances or previous literature reports, combining with online retrieval of two compound database of PubChem (http://pubchem.ncbi.nlm.nih.gov) and ChemSpider (http://www.chemsipider. com). The mass spectral data are given in Table 4.

Figure 2.

Figure 2

Total ion chromatogram of A. capillaris sample (a) and mixed reference substances (b) (negative ion mode).

Table 4.

Identification of the common peaks in the A. capillaris fingerprint by UHLC-Q-TOF-MS/MS.

Peak no. t R (min) Formula MS MS/MSc Identification Types of compounds
Measured Theoretical Error (ppm)
1 13.525 C16H18O9 353.0885a 353.0878 2.0 191.0573 1-CQAd Organic acids

2 16.933 C16H18O9 353.0885a 353.0878 2.0 191.0572, 179.0350, 135.0441, 353.0906 NCAd Organic acids
389.0631b 389.0645 -3.6 353.090

3 20.198 C19H26O11 465.1162b 465.1169 -1.5 465.1170, 135.0455, 429.1407, 329.0680, 293.0897 6′-O-Xylosyl-p-hydroxyacetophenone-4-O-β-D-glucoside Others

4 22.909 C22H28O14 515.1409a 515.1406 0.5 191.0561, 323.0768, 515.1426, 161.0241, 353.0868, 179.0343 1-O-(4′-O-β-D-Glucosyl caffeoyl) quinic acid or 1-O-(3′-O-β-D-glucosyl caffeoyl) quinic acid Organic acids

5 27.281 C16H18O9 353.0886a 353.0878 2.2 191.0577 CAd Organic acids

6 30.533 C9H8O4 179.0358a 179.0350 4.6 135.0456, 107.0505, 179.0348, 117.0340 Caffeic acidd Organic acids

7 32.916 C16H18O9 353.0883a 353.0878 1.4 173.0462, 191.0568, 179.0355, 135.0461, 353.0901 CCAd Organic acids
389.0647b 389.0645 0.3 173.0457, 179.0354, 191.0568, 353.0885, 135.0456

8 39.703 C8H8O2 135.0457a 135.0452 4.0 93.0354, 135.0457 p-Hydroxyacetophenonea Others

9 45.515 C27H30O15 593.1535a 593.1512 3.9 593.1553, 353.0674, 473.1101, 383.0784, 503.1209, 413.0927 Apigenin 6, 8-di-C-β-D-glucoside Flavonoids

10 46.316 C25H24O12 515.1201a 515.1195 1.2 191.0566, 179.0356, 335.0887, 515.1225, 135.0461, 173.0463, 161.0243 1, 3-DiCQAd Organic acids
551.0970b 551.0962 1.5 353.0893, 515.1234, 191.0568, 179.0357, 335.0785, 173.0443, 135.0461

11 48.753 C27H30O16 609.1456a 609.1461 -0.8 609.1480, 463.0192, 447.0915, 301.0339 Isomer of rutin Flavonoids
645.1207b 645.1228 -3.2 609.1482, 463.0906, 447.0931, 301.0316

12 55.161 C27H30O16 609.1475a 609.1461 2.3 609.1516, 301.0362 Rutind Flavonoids

13 55.657 C21H20O12 463.0890a 463.0882 1.7 463.0914, 301.0359 Hyperosided Flavonoids

14 56.590 C21H20O12 463.0896a 463.0882 3.0 463.0937, 301.0373, 179.0010 Isoquercetind Flavonoids

15 57.238 C21H20O11 447.0945a 447.0933 2.7 285.0404, 447.0940 Kaempferol-3-O-glucoside Flavonoids

16 57.638 C27H30O15 593.1510a 593.1512 -0.3 593.1525, 285.0469 Kaempferol-3-O-rutinoside Flavonoids

17 61.037 C21H20O11 447.0939a 447.0933 1.4 447.0974, 285.0420 Quercetin-3-O-rhamnoside Flavonoids
483.0705b 483.0700 1.1 447.0954, 285.0406

18 61.495 C25H24O12 515.1220a 515.1195 4.9 191.0579, 353.0917, 179.0364 515.1287 3, 4-DiCQAd Organic acids

19 61.913 C25H24O12 515.1212a 515.1195 3.3 191.0572, 353.0909, 179.0353, 173.0456, 135.0454, 515.1298 3, 5-DiCQAd Organic acids

20 64.996 C25H24O12 515.1215a 515.1195 3.9 173.0462, 353.0913, 179.0356, 515.1294, 191.0572, 135.0448 4, 5-DiCQAd Organic acids

Quasimolecular ion was [M-H]. bQuasimolecular ion was [M+Cl]. cSequencing according to the abundance. dConfirmed by comparison with reference substances.

Among 20 components, 13 ones were unambiguously identified by comparison with the reference substances, including nine organic acids such as 1-CQA (peak 1), NCA (peak 2), CA (peak 5), caffeic acid (peak 6), CCA (peak 7), 1,3-diCQA (peak 10), 3,4-diCQA (peak 18), 3,5-diCQA (peak 19), and 4,5-diCQA (peak 20), three flavonoids such as rutin (peak 12), hyperoside (peak 13), and isoquercetin (peak 14), and one other p-hydroxyacetophenone (peak 8).

For peak 3, the molecular formula of C19H26O11 was speculated by software, and its quasimolecular ion was at an m/z of 465.1162 ([M+Cl]). No literature reported the compounds with the molecular formula of C19H26O11 in A. capillaris so far. Sixty-nine and twenty-seven compounds consistent with this formula were retrieved from PubChem and ChemSpider, respectively. The structures of these compounds were analyzed one by one by the exclusion method, combined with p-hydroxyacetophenone and 6′-O-dicaffeoyl-p- hydroxyacetophenone-4-O-β-D-glucoside, and another compound with same parent nucleus [18], existed in A. capillaris; peak 3 was temporarily identified as 4-acetylphenyl 6-O-β-D-xylosyl-β-D-glucoside (6′-O-xylosyl-p-hydroxyacetophenone-4-O-β-D-glucoside), the first compound in both databases. In MS/MS spectrum of this compound, m/z of 465.1170, 429.1407, 329.0680, 293.0897, and 135.0455 were determined, which was corresponded to [M+Cl], [M-H], [M+Cl] loss of p-hydroxyacetophenone (C8H8O2), [MH] loss of C8H8O2, and [MH] loss of xylose-glucosyl (C11H18O9), respectively.

According to literature [19], the component of peak 4 was identified as a caffeoylquinic acid glucoside. The quasimolecular ion of this component was at an m/z of 515.1409 ([MH]), and the MS/MS fragment ions were determined as an m/z of 515.1426 corresponding to [M-H], an m/z of 353.0868 corresponding to [515-C6H10O5 (glucosyl)], an m/z of 323.0768 corresponding to [515-C7H12O6 (quinic acid)], an m/z of 191.0561 corresponding to [353-C9H6O3 (caffeyl)], an m/z of 179.0343 corresponding to [353-C7H10O5 (residue of quinic acid)], and an m/z of 161.0241 [353-C7H12O6]. The linkage position between caffeoyl and quinic acid could be distinguished based on the MS2 fragmentation; when this position was at 1-OH, 3-OH, or 5-OH, the m/z of 191 was the base peak; while linkage position was at 4-OH, the m/z of 173 was the base peak [19]. An m/z of 191 was determined as the base peak of peak 4, so the connection position of 4-OH was excluded. The relative intensity of m/z 179 fragment ion could also be used to determine the linkage position between caffeoyl and quinic acid [19]. The relative intensity of m/z 179 fragment ion of peak 4 was determined as 5.62%, the one of 1-CQA (peak 1) and NCA (peak 2, linkage position was at 5-OH) was determined as 6.06% and 55.28%, respectively, and fragment ion of m/z 179 was not detected in CA (peak 5, linkage position was at 3-OH). Therefore, the component of peak 4 was temporarily identified as 1-O-(4′-O-β-D-glucosyl caffeoyl) quinic acid or 1-O-(3′-O-β-D-glucosyl caffeoyl) quinic acid, which was first detected in A. capillaris, to the best of our knowledge.

The component of peak 9 was a typical flavone di-C-glucoside, according to the analysis of detected mass spectrometry data and literature [20]. The quasimolecular ion of this component was determined as an m/z of 593.1535 ([M-H]), and the MS/MS fragment ions were m/z of 593.1553, 503.1209, 473.1101, 413.0927, 383.0784, and 353.0674, which were consistent with the mass spectrum data of apigenin 6,8-di-C-β-D-glucoside reported in the literature [20], and its possible dissociation pathway is shown in Figure 3. To the best of our knowledge, this component was also first detected in A. capillaris.

Figure 3.

Figure 3

The possible dissociation pathway of the component of peak 9.

The component of peak 11 was identified as the isomer of rutin according to literature [21]. Its quasimolecular ion was determined as an m/z of 609.1456 ([M-H]) and an m/z of 645.1207 ([M + Cl]), and its MS/MS fragment ions were m/z of 609.1480, 447.0915, and 301.0339, which correspond to [M-H], [609-glucosyl], and [609-C12H20O9 (rutinose)], respectively.

The components of peak 15, 16, and 17 were temporarily identified as three flavonoids of kaempferol-3-O-glucoside, kaempferol-3-O-rutinoside (nicotiflorin), and quercetin-3-O-rhamnoside [22, 23], respectively. The quasimolecular ions of peak 15 were at m/z of 447.0945 ([M-H]), the ones of peak 16 were determined as m/z of 593.1510 ([M-H]), and the ones of peak 17 were determined as m/z as 447.0939 ([M-H]) and 483.0705 ([M + Cl]). The MS/MS fragment ions of peak 15 were m/z of 447.0940 due to [M-H] and 285.0404 due to [M-H-glucosyl], the ones of peak 16 were m/z of 593.1525 and 285.0469, and the ones of peak 17 were m/z of 447.0954 and 285.0420.

The structures or possible structures of the components of peaks 1–8 and peaks 10–20 are shown in Figure 4.

Figure 4.

Figure 4

Structures or possible structures of the components of peaks 1–8 and peaks 10–20.

3.5. Wavelength Selection for Quantitative Analysis of 13 Components

It was found that all 13 components could be detected at 254 nm, but the peak of 3,4-diCQA (peak 18) has not been completely separated from the nearby ones; organic acids had strong absorption near 324 nm, but there was almost no absorption of p-hydroxyacetophenone (peak 8) at this wavelength. Therefore, 324 nm was selected as the detection wavelength for nine organic acids, and 254 nm was selected for other four components. The chromatograms of the mixed reference substances and sample are shown in Figure 5.

Figure 5.

Figure 5

HPLC chromatograms of the mixed reference substances (a) and A. capillaris sample (b). The number of peaks is the same as Table 4.

3.6. Contents of 13 Components in 31 Batches of A. capillaris

As given in Table 5 and Figure 6, there were some differences in the contents of 13 components in different samples, which is basically consistent with the previous literature reports [1214]; however, the content of CA seems to have a certain correlation with the other 12 components and the total of 13 components. Therefore, the bivariate correlation analysis method in SPSS 20 statistical software was used to analyze the correlation between the contents of CA and the contents of 12 other components and the total content of all 13 components in 31 batches of A. capillaris. As the results given in Table 6, the contents of 10 components and the total content of 13 components were significantly correlated with the content of CA (P < 0.01 or P < 0.05), except for the content of caffeic acid and 1,3-diCQA, which had poor correlation with the content of CA (P > 0.05). According to the data in Table 5, the average contents of caffeic acid and 1,3-diCQA in 31 batches of samples only account for 1.10% and 0.92% of the average contents of all 13 components, respectively, so these two components can be ignored to a certain extent. According to the above analysis, the content of other components in different batches of A. capillaris is obviously related to the content of CA, that is to say, the content of CA largely reflects the quality of A. capillaris. Therefore, CA can be regard as the quality marker of A. capillaris. CA is the content determination component of A. capillaris in Chinese Pharmacopoeia. It is suggested that hospitals, pharmacies, and pharmaceutical manufacturers purchase multiple batches of A. capillaris and mix the high and low CA content batches before use according to the CA detection report provided by the supplier, so as to ensure clinical safety and effectiveness.

Table 5.

The contents of the 13 components in 31 batches of A. capillaris (mg/g).

No. 1-CQA NCA CA Caffeic acid CCA p-Hydroxyacetophenone 1, 3-DiCQA Rutin Hyperoside Isoquercetin 3, 4-DiCQA 3, 5-DiCQA 4, 5-DiCQA Total
S1 1.357 0.197 8.575 0.236 0.358 0.389 0.130 0.150 0.556 0.299 0.279 5.857 1.564 19.946
S2 1.175 0.248 7.646 0.216 0.430 0.337 0.153 0.099 0.390 0.274 0.451 5.038 1.743 18.199
S3 1.076 0.247 7.601 0.242 0.396 0.367 0.124 0.132 0.506 0.364 0.390 6.015 2.023 19.482
S4 1.007 0.259 5.369 0.194 0.417 0.709 0.398 0.086 0.200 0.101 0.348 4.575 1.986 15.649
S5 0.632 0.144 3.124 0.202 0.259 0.174 0.180 0.071 0.126 0.103 0.241 2.834 1.153 9.242
S6 0.600 0.150 3.177 0.199 0.266 0.186 0.169 0.065 0.124 0.100 0.173 2.655 1.170 9.036
S7 0.861 0.153 4.258 0.207 0.269 0.301 0.074 0.092 0.279 0.225 0.181 2.778 1.155 10.832
S8 0.680 0.161 3.463 0.214 0.287 0.165 0.191 0.078 0.133 0.103 0.258 3.139 1.353 10.225
S9 0.446 0.154 3.535 0.232 0.255 0.147 0.056 0.062 0.242 0.170 0.203 2.880 1.132 9.515
S10 0.990 0.223 7.134 0.251 0.373 0.330 0.059 0.085 0.453 0.334 0.298 4.335 1.522 16.388
S11 1.271 0.268 6.936 0.190 0.444 0.827 0.332 0.106 0.259 0.108 0.417 5.561 1.929 18.647
S12 1.043 0.246 5.317 0.189 0.435 0.511 0.117 0.078 0.282 0.150 0.343 4.370 1.910 14.992
S13 0.658 0.140 5.505 0.086 0.284 0.236 0.059 0.136 0.276 0.122 0.254 3.952 0.948 12.656
S14 0.897 0.229 7.479 0.103 0.510 0.317 0.103 0.108 0.351 0.114 0.289 5.095 1.645 17.241
S15 0.647 0.129 3.402 0.113 0.225 0.365 0.105 0.085 0.130 0.075 0.186 2.407 0.952 8.820
S16 0.555 0.101 3.704 0.095 0.217 0.246 0.056 0.097 0.158 0.085 0.109 2.462 0.674 8.556
S17 1.189 0.150 7.572 0.112 0.262 0.379 0.057 0.122 0.561 0.251 0.257 4.794 1.013 16.718
S18 0.630 0.145 4.387 0.086 0.271 0.259 0.106 0.126 0.178 0.081 0.243 3.825 1.202 11.536
S19 1.072 0.150 4.875 0.208 0.282 0.151 0.069 0.063 0.150 0.099 0.269 4.574 1.178 13.139
S20 0.962 0.205 6.458 0.099 0.380 0.510 0.132 0.090 0.267 0.110 0.343 5.388 1.548 16.493
S21 1.065 0.245 6.018 0.188 0.426 0.338 0.093 0.116 0.361 0.179 0.527 6.191 2.155 17.902
S22 0.929 0.283 7.567 0.085 0.502 0.265 0.078 0.108 0.217 0.106 0.558 7.919 2.066 20.683
S23 0.550 0.171 4.541 0.096 0.265 0.296 0.060 0.106 0.273 0.142 0.129 2.844 0.803 10.276
S24 1.028 0.195 6.168 0.132 0.345 0.521 0.170 0.120 0.311 0.146 0.340 5.419 1.521 16.416
S25 1.272 0.164 6.073 0.139 0.278 0.125 0.333 0.079 0.205 0.151 0.459 4.780 1.299 15.356
S26 0.810 0.177 5.326 0.123 0.356 0.307 0.098 0.133 0.246 0.100 0.269 4.962 1.426 14.334
S27 0.783 0.117 3.359 0.157 0.210 0.104 0.173 0.090 0.145 0.090 0.246 3.141 0.952 9.568
S28 0.879 0.296 6.849 0.206 0.476 0.437 0.104 0.167 0.532 0.211 0.502 6.732 2.456 19.847
S29 0.796 0.203 5.721 0.135 0.261 0.273 0.099 0.132 0.509 0.227 0.297 4.595 1.162 14.411
S30 0.862 0.159 4.057 0.141 0.239 0.352 0.245 0.066 0.176 0.093 0.246 3.280 1.208 11.123
S31 1.379 0.171 11.377 0.079 0.381 0.341 0.017 0.060 0.288 0.144 0.285 6.786 0.815 22.124
Average 0.907 0.190 5.696 0.160 0.334 0.331 0.134 0.100 0.287 0.157 0.303 4.490 1.408 14.495

Figure 6.

Figure 6

The bar graph of contents of 13 components in 31 batches of A. capillaris.

Table 6.

Bivariate correlation analysis results of the correlation between the contents of CA and 12 other components and the total of all 13 components in 31 batches of A. capillaris.

Component Correlation coefficient of Spearson P
1-CQA 0.748 0.0001
NCA 0.665 0.0001
Caffeic acid −0.340 0.856
CCA 0.698 0.0001
p-Hydroxyacetophenone 0.529 0.002
1,3-DiCQA −0.160 0.390
Rutin 0.444 0.012
Hyperoside 0.797 0.0001
Isoquercetin 0.650 0.0001
3,4-diCQA 0.696 0.0001
3,5-diCQA 0.861 0.0001
4,5-diCQA 0.498 0.005
Total of 13 0.942 0.0001

4. Conclusion

In this study, a new method was developed for the comprehensive QE of A. capillaris based on qualitative analysis of the HPLC fingerprint and UFLC-Q-TOF-MS/MS combined with quantitative analysis of multicomponents. The results showed that there were 20 common peaks in the HPLC fingerprints of A. capillaris. The similarities between the sample chromatograms and reference chromatogram were good. The components of the 20 common peaks were identified as ten organic acids, eight flavonoids, and two others. Among nine organic acids such as 1-CQA, NCA, CA, caffeic acid, CCA, 1,3-diCQA, 3,4-diCQA, 3,5-diCQA, and 4,5-diCQA, three flavonoids such as rutin, hyperoside, and isoquercetin, and one other p-hydroxyacetophenone, a total of 13 components were unambiguously identified by comparison with reference substances; one caffeoylquinic acid glucoside of 1-O-(4′-O-β-D-glucosyl caffeoyl) quinic acid or 1-O-(3′-O-β-D-glucosyl caffeoyl) quinic acid and one flavone di-C-glucoside of apigenin 6,8-di-C-β-D-glucoside were detected in A. capillaris for the first time. There were some differences in the contents of 13 components in different samples; chlorogenic acid could be regarded as the quality marker of A. capillaris. In summary, the method established in the present study can be used for the comprehensive QE of A. capillaris and can also provide reference for QE of other HMs.

Acknowledgments

The authors would like to acknowledge KeyResearch and Development (Social Development) Fund Project of Jiangsu Province, China (BE2018674), Traditional Chinese Medicine Science and Technology Plan Project of Jiangsu Province, China (YB201836), and Nantong Basic Research Project, Nantong, Jiangsu Province, China (JCZ20168).

Contributor Information

Rongrong Zhou, Email: zhourongrong824@163.com.

Zhixian Chen, Email: zxchen81@163.com.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors' Contributions

Rongrong Zhou and Zhihua Dou contributed equally to this work.

References

  • 1.Wu X., Zhang H., Fan S., et al. Quality markers based on biological activity: A new strategy for the quality control of traditional Chinese medicine. Phytomedicine. 2018;44:103–108. doi: 10.1016/j.phymed.2018.01.016. [DOI] [PubMed] [Google Scholar]
  • 2.Liu X., Jiang W., Su M., et al. Quality evaluation of traditional Chinese medicines based on fingerprinting. Journal of Separation Science. 2020;43(1):6–17. doi: 10.1002/jssc.201900365. [DOI] [PubMed] [Google Scholar]
  • 3.Zhang Y. J., Wang C., Yang L. F., Sun G. X. A strategy for qualitative and quantitative profiling of glycyrrhiza extract and discovery of potential markers by fingerprint-activity relationship modeling. Scientific Reports. 2019;9(1) doi: 10.1038/s41598-019-38601-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Yang B., Wang Y., Shan L. L., et al. A Novel and practical chromatographic “fingerprint-ROC-SVM” strategy applied to quality analysis of traditional Chinese medicine Injections: using KuDieZi Injection as a case study. Molecules. 2017;22(7) doi: 10.3390/molecules22071237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Jia L., Fu L. L., Wang X. Y., et al. Systematic profiling of the multicomponents and authentication of Erzhi Pill by UHPLC/Q-Orbitrap-MS oriented rapid polarity-switching data-dependent acquisition and selective monitoring of the chemical markers deduced from fingerprint analysis. Molecules. 2018;23(12) doi: 10.3390/molecules23123143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Zhu T., Liu X., Wang X., et al. Profiling and analysis of multiple compounds in rhubarb decoction after processing by wine steaming using UHPLC-Q-TOF-MS coupled with multiple statistical strategies. Journal of Separation Science. 2016;39(15):3081–3090. doi: 10.1002/jssc.201600256. [DOI] [PubMed] [Google Scholar]
  • 7.Cai Y. J., Zheng Q., Sun R., et al. Recent progress in the study of Artemisiae Scopariae Herba (Yin Chen), a promising medicinal herb for liver diseases. Biomedicine & Pharmacotherapy. 2020;130 doi: 10.1016/j.biopha.2020.110513. [DOI] [PubMed] [Google Scholar]
  • 8.Han J.-M., Kim H.-G., Choi M.-K., et al. Artemisia capillaris extract protects against bile duct ligation-induced liver fibrosis in rats. Experimental and Toxicologic Pathology. 2013;65(6):837–844. doi: 10.1016/j.etp.2012.12.002. [DOI] [PubMed] [Google Scholar]
  • 9.He C.-S., Yue H.-Y., Xu J., et al. Protective effects of capillary artemisia polysaccharide on oxidative injury to the liver in rats with obstructive jaundice. Experimental and Therapeutic Medicine. 2012;4(4):645–648. doi: 10.3892/etm.2012.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Guo F. Q., Liang Y. Z., Xu C. J., Huang L. F., Li X. N. Comparison of the volatile constituents of Artemisia capillaris from different locations by gas chromatography-mass spectrometry and projection method. Journal of Chromatography A. 2004;1054(1-2):73–79. doi: 10.1016/s0021-9673(04)01473-6. [DOI] [PubMed] [Google Scholar]
  • 11.Yu F., Qian H., Zhang J., Sun J., Ma Z. Simultaneous quantification of eight organic acid components in Artemisia capillaris Thunb (Yinchen) extract using high-performance liquid chromatography coupled with diode array detection and high-resolution mass spectrometry. Journal of Food and Drug Analysis. 2018;26(2):788–795. doi: 10.1016/j.jfda.2017.04.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Tian F., Ruan Q. J., Zhang Y., et al. Quantitative analysis of six phenolic acids in Artemisia capillaris (Yinchen) by HPLC-DAD and their transformation pathways in decoction preparation process. Journal of Analytical Methods in Chemistry. 2020;2020 doi: 10.1155/2020/8950324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Tan X. J., Li Q., Chen X. H., et al. Simultaneous determination of 13 bioactive compounds in Herba Artemisiae Scopariae (Yin Chen) from different harvest seasons by HPLC-DAD. Journal of Pharmaceutical and Biomedical Analysis. 2008;47(4-5):847–853. doi: 10.1016/j.jpba.2008.04.010. [DOI] [PubMed] [Google Scholar]
  • 14.Park K. M., Li Y., Kim B., et al. High-performance liquid chromatographic analysis for quantitation of marker compounds of Artemisia capillaris Thunb. Archives of Pharmacal Research. 2012;35(12):2153–2162. doi: 10.1007/s12272-012-1213-5. [DOI] [PubMed] [Google Scholar]
  • 15.Dou Z. H., Dai Y., Zhou Y. Z., et al. Quality evaluation of rhubarb based on qualitative analysis of the HPLC fingerprint and UFLC-Q-TOF-MS/MS combined with quantitative analysis of eight anthraquinone glycosides by QAMS. Biomedical Chromatography. 2021;35 doi: 10.1002/bmc.5074.e5074 [DOI] [PubMed] [Google Scholar]
  • 16.SFDA (State Food and Drug Administration of China) Technical Requirements for the Development of Fingerprints of TCM Injections. Beijing, China: SFDA (State Food and Drug Administration of China); 2000. [Google Scholar]
  • 17.China Medical Science Press. Pharmacopoeia of China, 2020. Part 4. Beijing, China: China Medical Science Press; 2020. [Google Scholar]
  • 18.Ma H.-Y., Sun Y., Zhou Y.-Z., Hong M., Pei Y.-H. Two new constituents from Artemisia Capillaris Thunb. Molecules. 2008;13(2):267–271. doi: 10.3390/molecules13020267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Zhang J.-Y., Zhang Q., Li N., Wang Z.-J., Lu J.-Q., Qiao Y.-J. Diagnostic fragment-ion-based and extension strategy coupled to DFIs intensity analysis for identification of chlorogenic acids isomers in Flos Lonicerae Japonicae by HPLC-ESI-MSn. Talanta. 2013;104:1–9. doi: 10.1016/j.talanta.2012.11.012. [DOI] [PubMed] [Google Scholar]
  • 20.Cao J., Yin C., Qin Y., Cheng Z., Chen D. Approach to the study of flavone di-C-glycosides by high performance liquid chromatography-tandem ion trap mass spectrometry and its application to characterization of flavonoid composition inViola yedoensis. Journal of Mass Spectrometry. 2014;49(10):1010–1024. doi: 10.1002/jms.3413. [DOI] [PubMed] [Google Scholar]
  • 21.Cao Y., Li T., Xu X., et al. Rapid chemical profiling of Artemisiae Scopariae Herba using reversed phase liquid chromatography-hydrophilic interaction liquid chromatography-predictive multiple reaction monitoring. China Journal of Chinese Materia Medica. 2019;44(13):2667–2674. doi: 10.19540/j.cnki.cjcmm.20190327.001. [DOI] [PubMed] [Google Scholar]
  • 22.Ouyang W. Z., Shang Z. P., Wang W. J., et al. Rapid characterization of chemical constituents in capillary wormwood extract based on UHPLC-LTQ-Orbitrap. China Journal of Chinese Materia Medica. 2017;42(3):523–530. doi: 10.19540/j.cnki.cjcmm.2017.0010. [DOI] [PubMed] [Google Scholar]
  • 23.Fu Z., Ling Y., Li Z., Chen M., Sun Z., Huang C. HPLC-Q-TOF-MS/MS for analysis of major chemical constituents of Yinchen-Zhizi herb pair extract. Biomedical Chromatography. 2014;28(4):475–485. doi: 10.1002/bmc.3057. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The data used to support the findings of this study are included within the article.


Articles from Journal of Analytical Methods in Chemistry are provided here courtesy of Wiley

RESOURCES