Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2021 Apr 30;38(7):1085–1100. doi: 10.1007/s00376-021-0317-6

Spatial and Temporal Distributions and Sources of Anthropogenic NMVOCs in the Atmosphere of China: A Review

Fanglin Wang 1, Wei Du 1, Shaojun Lv 1, Zhijian Ding 1, Gehui Wang 1,2,
PMCID: PMC8085794  PMID: 33948045

Abstract

As the key precursors of O3, anthropogenic non-methane volatile organic compounds (NMVOCs) have been studied intensively. This paper performed a meta-analysis on the spatial and temporal variations of NMVOCs, their roles in photochemical reactions, and their sources in China, based on published research. The results showed that both non-methane hydrocarbons (NMHCs) and oxygenated VOCs (OVOCs) in China have higher mixing ratios in the eastern developed cities compared to those in the central and western areas. Alkanes are the most abundant NMHCs species in all reported sites while formaldehyde is the most abundant among the OVOCs. OVOCs have the highest mixing ratios in summer and the lowest in winter, which is opposite to NMHCs. Among all NMVOCs, the top eight species account for 50%–70% of the total ozone formation potential (OFP) with different compositions and contributions in different areas. In devolved regions, OFP-NMHCs are the highest in winter while OFP-OVOCs are the highest in summer. Based on positive matrix factorization (PMF) analysis, vehicle exhaust, industrial emissions, and solvent usage in China are the main sources for NMHCs. However, the emission trend analysis showed that solvent usage and industrial emissions will exceed vehicle exhaust and become the two major sources of NMVOCs in near future. Based on the meta-analysis conducted in this work, we believe that the spatio-temporal variations and oxidation mechanisms of atmospheric OVOCs, as well as generating a higher spatial resolution of emission inventories of NMVOCs represent an area for future studies on NMVOCs in China.

Key words: NMVOCs, spatial-temporal distribution, photochemical activity, source analysis

Acknowledgements

This work was financially supported by the National Key R&D Plan programs (Grant No. 2017YFC0210005) and the National Natural Science Foundation of China (Grant No. 41773117).

Footnotes

Article Highlights

• Both NMHCs and OVOCs are more abundant in eastern developed cities than those in central and western areas.

• Among all measured NMVOCs species, OVOCs have become the second most abundant species in China.

• The top eight active NMVOCs species account for 50%–70% of OFP, and NMHCs have the highest OFP in winter while OVOCs have the highest OFP in summer.

• Vehicle exhaust, industrial emissions, and solvent usage are the main sources of NMVOCs.

References

  1. An J L, Zou J N, Wang J X, Lin X, Zhu B. Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings, Yangtze River Delta, China. Environmental Science and Pollution Research. 2015;22(24):19 607–19 617. doi: 10.1007/s11356-015-5177-0. [DOI] [PubMed] [Google Scholar]
  2. Atkinson R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000;34(12–14):2063–2101. doi: 10.1016/S1352-2310(99)00460-4. [DOI] [Google Scholar]
  3. Belis C A, Pernigotti D, Karagulian F, Pirovano G, Larsen B R, Gerboles M, Hopke P K. A new methodology to assess the performance and uncertainty of source apportionment models in intercomparison exercises. Atmos. Environ. 2015;119:35–44. doi: 10.1016/j.atmosenv.2015.08.002. [DOI] [Google Scholar]
  4. Blanchard C L. Methods for attributing ambient air pollutants to emission sources. Annual Review of Energy and the Environment. 2003;24:329–365. doi: 10.1146/annurev.energy.24.1.329. [DOI] [Google Scholar]
  5. Bo Y, Cai H, Xie S D. Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China. Atmospheric Chemistry and Physics. 2008;8(23):7297–7316. doi: 10.5194/acp-8-7297-2008. [DOI] [Google Scholar]
  6. Cai C J, Geng F H, Tie X X, Yu Q, An J L. Characteristics and source apportionment of VOCs measured in Shanghai, China. Atmos. Environ. 2010;44(38):5005–5014. doi: 10.1016/j.atmosenv.2010.07.059. [DOI] [Google Scholar]
  7. Chen T S. Volatile organic compounds and ozone air pollution in an oil production region in northern China. Atmospheric Chemistry and Physics. 2020;20(11):7069–7086. doi: 10.5194/acp-20-7069-2020. [DOI] [Google Scholar]
  8. Chen W T, Shao M, Lu S H, Wang M, Zeng L M, Yuan B, Liu Y. Understanding primary and secondary sources of ambient carbonyl compounds in Beijing using the PMF model. Atmospheric Chemistry and Physics. 2014;14(6):3047–3062. doi: 10.5194/acp-14-3047-2014. [DOI] [Google Scholar]
  9. Chi Y G, Li Z Y, Feng Y L, Wen S, Yu Z Q, Sheng G Y, Fu J M. Carbonyl compound concentrations in the air at Dinghu Mountain, Guangdong Province. Acta Scientiae Circumstantiae. 2008;28(11):2347–2353. [Google Scholar]
  10. de Gouw J A. Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study in 2002. Journal of Geophysical Research. 2005;110(D16):D16305. doi: 10.1029/2004JD005623. [DOI] [Google Scholar]
  11. Deng Y Y, Li J, Li Y Q, Wu R R, Xie S D. Characteristics of volatile organic compounds, NO2, and effects on ozone formation at a site with high ozone level in Chengdu. Journal of Environmental Science. 2019;75:334–345. doi: 10.1016/j.jes.2018.05.004. [DOI] [PubMed] [Google Scholar]
  12. Derwent R G, Jenkin M E, Saunders S M, Pilling M J. Characterization of the reactivities of volatile organic compounds using a master chemical mechanism. Journal of the Air & Waste Management Association. 2001;51(5):699–707. doi: 10.1080/10473289.2001.10464297. [DOI] [PubMed] [Google Scholar]
  13. Du W, Cohen A, Shen G F, Ru M Y, Shen H Z, Tao S. Fuel use trends for boiling water in rural China (1992–2012) and environmental health implications: A national cross-sectional study. Environ. Sci. Technol. 2018;52(21):12 886–12 894. doi: 10.1021/acs.est.8b02389. [DOI] [PubMed] [Google Scholar]
  14. Duan J C, Tan J H, Yang L, Wu S, Hao J M. Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmospheric Research. 2008;88(1):25–35. doi: 10.1016/j.atmosres.2007.09.004. [DOI] [Google Scholar]
  15. Dunne E, Galbally I E, Cheng M, Selleck P, Molloy S B, Lawson S J. Comparison of VOC measurements made by PTR-MS, adsorbent tubes-GC-FID-MS and DNPH derivatization-HPLC during the Sydney Particle Study. 2012. A contribution to the assessment of uncertainty in routine atmospheric VOC measurements. Atmospheric Measurement Techniques. 2018;11(1):141–159. [Google Scholar]
  16. Fu S. Improving VOCs control strategies based on source characteristics and chemical reactivity in a typical coastal city of South China through measurement and emission inventory. Science of the Total Environment. 2020;744:140825. doi: 10.1016/j.scitotenv.2020.140825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gao W, Tie X X, Xu J M, Huang R J, Mao X Q, Zhou G Q, Chang L Y. Long-term trend of O3 in a mega City (Shanghai), China: Characteristics, causes, and interactions with precursors. Science of the Total Environment. 2017;603–604:425–433. doi: 10.1016/j.scitotenv.2017.06.099. [DOI] [PubMed] [Google Scholar]
  18. Gaudel A. Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elementa: Science of the Anthropocene. 2018;6(1):39. [Google Scholar]
  19. Ge S S. Abundant NH3 in China enhances atmospheric HONO production by promoting the heterogeneous reaction of SO2 with NO2. Environ. Sci. Technol. 2019;53(24):14 339–14 347. doi: 10.1021/acs.est.9b04196. [DOI] [PubMed] [Google Scholar]
  20. Guo H, Wang T, Blake D R, Simpson I J, Kwok Y H, Li Y S. Regional and local contributions to ambient non-methane volatile organic compounds at a polluted rural/coastal site in Pearl River Delta, China. Atmos. Environ. 2006;40(13):2345–2359. doi: 10.1016/j.atmosenv.2005.12.011. [DOI] [Google Scholar]
  21. Guo S J, Chen M, Tan J H. Seasonal and diurnal characteristics of atmospheric carbonyls in Nanning, China. Atmospheric Research. 2016;169:46–53. doi: 10.1016/j.atmosres.2015.09.028. [DOI] [Google Scholar]
  22. Han T T, Ma Z Q, Xu W Y, Qiao L, Li Y R, He D, Wang Y. Characteristics and source implications of aromatic hydrocarbons at urban and background areas in Beijing, China. Science of the Total Environment. 2020;707:136083. doi: 10.1016/j.scitotenv.2019.136083. [DOI] [PubMed] [Google Scholar]
  23. Hang S. Nitrous acid (HONO) and its day-time sources at a rural site during the 2004 PRIDE-PRD experiment in China. J. Geophys. Res. 2008;113(D14):D14312. doi: 10.1029/2007JD009060. [DOI] [Google Scholar]
  24. He, L., 2018: Pollution charaterization and source apportionment of vocs in Chengdu urban air. M.S. thesis, Southwest Jiaotong University. (in Chinese)
  25. Ho K F, Ho S S H, Dai W T, Cao J J, Huang R-J, Tian L W, Deng W J. Seasonal variations of monocarbonyl and dicarbonyl in urban and sub-urban sites of Xi’an, China. Environmental Monitoring and Assessment. 2014;186(5):2835–2849. doi: 10.1007/s10661-013-3584-6. [DOI] [PubMed] [Google Scholar]
  26. Huang J. Characteristics of carbonyl compounds in ambient air of Shanghai, China. Journal of Atmospheric Chemistry. 2008;61(1):1–20. doi: 10.1007/s10874-009-9121-x. [DOI] [Google Scholar]
  27. Huang X-F, Zhang B, Xia S-Y, Han Y, Wang C, Yu G-H, Feng N. Sources of oxygenated volatile organic compounds (OVOCs) in urban atmospheres in North and South China. Environmental Pollution. 2020;261:114152. doi: 10.1016/j.envpol.2020.114152. [DOI] [PubMed] [Google Scholar]
  28. Hui L R. VOC characteristics, chemical reactivity and sources in urban Wuhan, central China. Atmos. Environ. 2020;224:117340. doi: 10.1016/j.atmosenv.2020.117340. [DOI] [Google Scholar]
  29. Jia, C. H., 2018: Characteristics and chemical behaviors of atmospheric non-methane hydrocarbons in Lanzhou valley, Western China. PhD dissertation, Lanzhou University. (in Chinese)
  30. Jia C H. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China. Atmospheric Research. 2016;169:225–236. doi: 10.1016/j.atmosres.2015.10.006. [DOI] [Google Scholar]
  31. Kaser L. Comparison of different real time VOC measurement techniques in a ponderosa pine forest. Atmospheric Chemistry and Physics. 2013;13(5):2893–2906. doi: 10.5194/acp-13-2893-2013. [DOI] [Google Scholar]
  32. Kurokawa J, Ohara T, Morikawa T, Hanayama S, Greet J-M, Fukui T, Kawashima K, Akimoto H. Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2. Atmospheric Chemistry and Physics Discussions. 2013;13(4):10 049–10 123. [Google Scholar]
  33. Le Breton M. Chlorine oxidation of VOCs at a semi-rural site in Beijing: Significant chlorine liberation from ClNO2 and subsequent gas- and particle-phase ClVOC production. Atmospheric Chemistry and Physics. 2018;18(17):13 013–13 030. doi: 10.5194/acp-18-13013-2018. [DOI] [Google Scholar]
  34. Li B W. Characterization of VOCs and their related atmospheric processes in a central Chinese city during severe ozone pollution periods. Atmospheric Chemistry and Physics. 2019;19(1):617–638. doi: 10.5194/acp-19-617-2019. [DOI] [Google Scholar]
  35. Li J, Xie S D, Zeng L M, Li L Y, Li Y Q, Wu R R. Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014. Atmospheric Chemistry and Physics. 2015;15(14):7945–7959. doi: 10.5194/acp-15-7945-2015. [DOI] [Google Scholar]
  36. Li K, Jacob D J, Liao H, Shen L, Zhang Q, Bates K H. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proceedings of the National Academy of Sciences of the United State of America. 2019;116(2):422–427. doi: 10.1073/pnas.1812168116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Li L. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Science of the Total Environment. 2020;732:139282. doi: 10.1016/j.scitotenv.2020.139282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Li L F, Wang X M. Seasonal and diurnal variations of atmospheric non-methane hydrocarbons in Guangzhou, China. International Journal of Environmental Research and Public Health. 2012;9(5):1859–1873. doi: 10.3390/ijerph9051859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Li M. MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmospheric Chemistry and Physics. 2017;17(2):935–963. doi: 10.5194/acp-17-935-2017. [DOI] [Google Scholar]
  40. Li M. Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990–2017: Drivers, speciation and ozone formation potential. Atmospheric Chemistry and Physics. 2019;19(13):8897–8913. doi: 10.5194/acp-19-8897-2019. [DOI] [Google Scholar]
  41. Liang X M, Chen X F, Zhang J N, Shi T L, Sun X B, Fan L Y, Wang L M, Ye D Q. Reactivity-based industrial volatile organic compounds emission inventory and its implications for ozone control strategies in China. Atmos. Environ. 2017;162:115–126. doi: 10.1016/j.atmosenv.2017.04.036. [DOI] [Google Scholar]
  42. Ling Z H, Guo H. Contribution of VOC sources to photochemical ozone formation and its control policy implication in Hong Kong. Environmental Science & Policy. 2014;38:180–191. doi: 10.1016/j.envsci.2013.12.004. [DOI] [Google Scholar]
  43. Liu B S. Characterization and source apportionment of volatile organic compounds based on 1-year of observational data in Tianjin, China. Environmental Pollution. 2016;218:757–769. doi: 10.1016/j.envpol.2016.07.072. [DOI] [PubMed] [Google Scholar]
  44. Liu H, Man H Y, Tschantz M, Wu Y, He K B, Hao J M. VOC from vehicular evaporation emissions: Status and control strategy. Environ. Sci. Technol. 2015;49(24):14 424–14 431. doi: 10.1021/acs.est.5b04064. [DOI] [PubMed] [Google Scholar]
  45. Liu S C, Trainer M, Fehsenfeld F C, Parrish D D, Williams E J, Fahey D W, Hübler G, Murphy P C. Ozone production in the rural troposphere and the implications for regional and global ozone distributions. J. Geophys. Res. 1987;92(D4):4191–4207. doi: 10.1029/JD092iD04p04191. [DOI] [Google Scholar]
  46. Liu Y, Shao M, Kuster W C, Goldan P D, Li X H, Lu S H, de Gouw J A. Source identification of reactive hydrocarbons and oxygenated VOCs in the summertime in Beijing. Environ. Sci. Technol. 2009;43(1):75–81. doi: 10.1021/es801716n. [DOI] [PubMed] [Google Scholar]
  47. Liu Y. Impact of pollution controls in Beijing on atmospheric oxygenated volatile organic compounds (OVOCs) during the 2008 Olympic Games: Observation and modeling implications. Atmospheric Chemistry and Physics. 2015;15(6):3045–3062. doi: 10.5194/acp-15-3045-2015. [DOI] [Google Scholar]
  48. Louie P K K. VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China. Atmos. Environ. 2013;76:125–135. doi: 10.1016/j.atmosenv.2012.08.058. [DOI] [Google Scholar]
  49. Lü H X, Cai Q-Y, Wen S, Chi Y G, Guo S J, Sheng G Y, Fu J M. Seasonal and diurnal variations of carbonyl compounds in the urban atmosphere of Guangzhou, China. Science of the Total Environment. 2010;408(17):3523–3529. doi: 10.1016/j.scitotenv.2010.05.013. [DOI] [PubMed] [Google Scholar]
  50. Lyu X P. Hazardous volatile organic compounds in ambient air of China. Chemosphere. 2020;246:125731. doi: 10.1016/j.chemosphere.2019.125731. [DOI] [PubMed] [Google Scholar]
  51. Ma Z B. The levels, sources and reactivity of volatile organic compounds in a typical urban area of Northeast China. Journal of Environmental Sciences. 2019;79:121–134. doi: 10.1016/j.jes.2018.11.015. [DOI] [PubMed] [Google Scholar]
  52. Mellouki A, Wallington T J, Chen J. Atmospheric chemistry of oxygenated volatile organic compounds: impacts on air quality and climate. Chemical Reviews. 2015;115(10):3984–4014. doi: 10.1021/cr500549n. [DOI] [PubMed] [Google Scholar]
  53. Morino Y, Ohara T, Yokouchi Y, Ooki A. Comprehensive source apportionment of volatile organic compounds using observational data, two receptor models, and an emission inventory in Tokyo metropolitan area. J. Geophys. Res. 2011;116(D2):D02311. [Google Scholar]
  54. Mozaffar A, Zhang Y-L, Fan M Y, Cao F, Lin Y-C. Characteristics of summertime ambient VOCs and their contributions to O3 and SOA formation in a suburban area of Nanjing, China. Atmospheric Research. 2020;240:104923. doi: 10.1016/j.atmosres.2020.104923. [DOI] [Google Scholar]
  55. Ou J M, Zheng J Y, Yuan Z B, Guan D B, Huang Z J, Yu F, Shao M, Louie P K K. Reconciling discrepancies in the source characterization of VOCs between emission inventories and receptor modeling. Science of the Total Environment. 2018;628–629:697–706. doi: 10.1016/j.scitotenv.2018.02.102. [DOI] [PubMed] [Google Scholar]
  56. Pang X B, Mu Y J. Seasonal and diurnal variations of carbonyl compounds in Beijing ambient air. Atmos. Environ. 2006;40(33):6313–6320. doi: 10.1016/j.atmosenv.2006.05.044. [DOI] [Google Scholar]
  57. Pang X B, Lee X Q. Temporal variations of atmospheric carbonyls in urban ambient air and street canyons of a Mountainous city in Southwest China. Atmos. Environ. 2010;44(17):2098–2106. doi: 10.1016/j.atmosenv.2010.03.006. [DOI] [Google Scholar]
  58. Riedel T P. An MCM modeling study of nitryl chloride (ClNO2) impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental outflow. Atmospheric Chemistry and Physics. 2014;14(8):3789–3800. doi: 10.5194/acp-14-3789-2014. [DOI] [Google Scholar]
  59. Sahu L K, Yadav R, Pal D. Source identification of VOCs at an urban site of western India: Effect of marathon events and anthropogenic emissions. J. Geophys. Res. 2016;121(5):2416–2433. doi: 10.1002/2015JD024454. [DOI] [Google Scholar]
  60. Seinfeld, J. H., and S. N. Pandis, 2006: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd ed. John Wiley & Sons, Inc., 429–443.
  61. Sheng J J, Zhao D L, Ding D P, Li X, Huang M Y, Gao Y, Quan J N, Zhang Q. Characterizing the level, photochemical reactivity, emission, and source contribution of the volatile organic compounds based on PTR-TOF-MS during winter haze period in Beijing, China. Atmospheric Research. 2018;212:54–63. doi: 10.1016/j.atmosres.2018.05.005. [DOI] [Google Scholar]
  62. Shirley T R. Atmospheric oxidation in the Mexico City Metropolitan Area (MCMA) during April 2003. Atmospheric Chemistry and Physics. 2006;6:2753–2765. doi: 10.5194/acp-6-2753-2006. [DOI] [Google Scholar]
  63. Simayi M, Hao Y F, Li J, Wu R R, Shi Y Q, Xi Z Y, Zhou Y, Xie S D. Establishment of county-level emission inventory for industrial NMVOCs in China and spatial-temporal characteristics for 2010–2016. Atmos. Environ. 2019;211:194–203. doi: 10.1016/j.atmosenv.2019.04.064. [DOI] [Google Scholar]
  64. Su, Y. L., 2012: A preliminary study on the variation characteristics and reactivity of atmospheric VOCs in Urban area of Shanghai. M.S. thesis, East China University of Science and Technology.
  65. Sun J, Wang Y S, Wu F K, Tang G Q, Wang L L, Wang Y H, Yang Y. Vertical characteristics of VOCs in the lower troposphere over the North China Plain during pollution periods. Environmental Pollution. 2018;236:907–915. doi: 10.1016/j.envpol.2017.10.051. [DOI] [PubMed] [Google Scholar]
  66. Sun W, Shao M, Granier C, Liu Y, Ye C S, Zheng J Y. Long-term trends of anthropogenic SO2, NOx, CO, and NMVOCs emissions in China. Earth’s Future. 2018;6(8):1112–1133. doi: 10.1029/2018EF000822. [DOI] [Google Scholar]
  67. Tang, X. Y., Y. H. Zhang, and M. Shao, 2006: Atmospheric Environmental Chemistry. 2nd ed., Higher Education Press, 739 pp. (in Chinese)
  68. Tham Y J. Significant concentrations of nitryl chloride sustained in the morning: Investigations of the causes and impacts on ozone production in a polluted region of northern China. Atmospheric Chemistry and Physics. 2016;16(23):14 959–14 977. doi: 10.5194/acp-16-14959-2016. [DOI] [Google Scholar]
  69. Thornton J A. A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. Nature. 2010;464(7286):271–274. doi: 10.1038/nature08905. [DOI] [PubMed] [Google Scholar]
  70. Uchiyama S, Hasegawa S. Investigation of a long-term sampling period for monitoring volatile organic compounds in ambient air. Environ. Sci. Technol. 2000;34(21):4656–4661. doi: 10.1021/es990843u. [DOI] [Google Scholar]
  71. Volkamer R, Sheehy P, Molina L T, Molina M J. Oxidative capacity of the Mexico City atmosphere-Part 1: A radical source perspective. Atmospheric Chemistry and Physics. 2010;10(14):6969–6991. doi: 10.5194/acp-10-6969-2010. [DOI] [Google Scholar]
  72. Wang G H. Persistent sulfate formation from London Fog to Chinese haze. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(48):1 3630–13 635. doi: 10.1073/pnas.1616540113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Wang M. Trends of non-methane hydrocarbons (NMHC) emissions in Beijing during 2002–2013. Atmospheric Chemistry and Physics. 2015;15(3):1489–1502. doi: 10.5194/acp-15-1489-2015. [DOI] [Google Scholar]
  74. Wang M, Shao M, Chen W, Yuan B, Lu S, Zhang Q, Zeng L, Wang Q. A temporally and spatially resolved validation of emission inventories by measurements of ambient volatile organic compounds in Beijing, China. Atmospheric Chemistry and Physics. 2014;14(12):5871–5891. doi: 10.5194/acp-14-5871-2014. [DOI] [Google Scholar]
  75. Wang N, Lyu X P, Deng X J, Huang X, Jiang F, Ding A J. Aggravating O3 pollution due to NOx emission control in eastern China. Science of the Total Environment. 2019;677:732–744. doi: 10.1016/j.scitotenv.2019.04.388. [DOI] [PubMed] [Google Scholar]
  76. Wang Q. Chemical characteristics and sources of volatile organic compounds in Shanghai during an ozone and particulate pollution episode in May 2019. Environmental Science. 2020;41(6):2555–2564. doi: 10.13227/j.hjkx.201907115. [DOI] [PubMed] [Google Scholar]
  77. Wang T. Observations of nitryl chloride and modeling its source and effect on ozone in the planetary boundary layer of southern China. J. Geophys. Res. 2016;121(5):2476–2489. doi: 10.1002/2015JD024556. [DOI] [Google Scholar]
  78. Wang T, Xue L K, Brimblecombe P, Lam Y F, Li L, Zhang L. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Science of the Total Environment. 2017;575:1582–1596. doi: 10.1016/j.scitotenv.2016.10.081. [DOI] [PubMed] [Google Scholar]
  79. Wang Y. Long-term O3-precursor relationships in Hong Kong: Field observation and model simulation. Atmospheric Chemistry and Physics. 2017;17(18):10 919–10 935. doi: 10.5194/acp-17-10919-2017. [DOI] [Google Scholar]
  80. Wang Y S, Ren X Y, Ji D S, Zhang J Q, Sun J, Wu F K. Characterization of volatile organic compounds in the urban area of Beijing from 2000 to 2007. Journal of Environmental Sciences. 2012;24(1):95–101. doi: 10.1016/S1001-0742(11)60732-8. [DOI] [PubMed] [Google Scholar]
  81. Warneke C, Karl T, Judmaier H, Hansel A, Jordan A, Lindinger W, Crutzen P J. Acetone, methanol, and other partially oxidized volatile organic emissions from dead plant matter by abiological processes: Significance for atmospheric HOx chemistry. Global Biogeochemical Cycles. 1999;13(1):9–17. doi: 10.1029/98GB02428. [DOI] [Google Scholar]
  82. Watson J G, Chow J C, Fujita E M. Review of volatile organic compound source apportionment by chemical mass balance. Atmos. Environ. 2001;35(9):1567–1584. doi: 10.1016/S1352-2310(00)00461-1. [DOI] [Google Scholar]
  83. Wei W, Wang S X, Chatani S, Klimont Z, Cofala J, Hao J M. Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China. Atmos. Environ. 2008;42(20):4976–4988. doi: 10.1016/j.atmosenv.2008.02.044. [DOI] [Google Scholar]
  84. Whalley L K. The chemistry of OH and HO2 radicals in the boundary layer over the tropical Atlantic Ocean. Atmospheric Chemistry and Physics Discussions. 2009;9(4):15 959–16 009. [Google Scholar]
  85. Wu R R, Xie S D. Spatial distribution of ozone formation in China derived from emissions of speciated volatile organic compounds. Environ. Sci. Technol. 2017;51(5):2574–2583. doi: 10.1021/acs.est.6b03634. [DOI] [PubMed] [Google Scholar]
  86. Wu R R, Bo Y, Li J, Li L Y, Li Y Q, Xie S D. Method to establish the emission inventory of anthropogenic volatile organic compounds in China and its application in the period 2008–2012. Atmos. Environ. 2016;127:244–254. doi: 10.1016/j.atmosenv.2015.12.015. [DOI] [Google Scholar]
  87. Wu R R, Li J, Hao Y F, Li Y Q, Zeng L M, Xie S D. Evolution process and sources of ambient volatile organic compounds during a severe haze event in Beijing, China. Science of the Total Environment. 2016;560–561:62–72. doi: 10.1016/j.scitotenv.2016.04.030. [DOI] [PubMed] [Google Scholar]
  88. Xing C Z. Identifying the wintertime sources of volatile organic compounds (VOCs) from MAXDOAS measured formaldehyde and glyoxal in Chongqing, southwest China. Science of the Total Environment. 2020;715:136258. doi: 10.1016/j.scitotenv.2019.136258. [DOI] [PubMed] [Google Scholar]
  89. Xu J M, Tie X X, Gao W, Lin Y F, Fu Q Y. Measurement and model analyses of the ozone variation during 2006 to 2015 and its response to emission change in megacity Shanghai, China. Atmospheric Chemistry and Physics. 2019;19(14):9017–9035. doi: 10.5194/acp-19-9017-2019. [DOI] [Google Scholar]
  90. Xu Z N, Huang X, Nie W, Chi X G, Xu Z, Zheng L F, Sun P, Ding A J. Influence of synoptic condition and holiday effects on VOCs and ozone production in the Yangtze River Delta region, China. Atmos. Environ. 2017;168:112–124. doi: 10.1016/j.atmosenv.2017.08.035. [DOI] [Google Scholar]
  91. Xue L K. Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region: Analysis of a severe photochemical smog episode. Atmospheric Chemistry and Physics. 2016;16(15):9891–9903. doi: 10.5194/acp-16-9891-2016. [DOI] [Google Scholar]
  92. Xue Y G, Huang Y, Ho S S H, Chen L, Wang L Q, Lee S C, Cao J J. Origin and transformation of ambient volatile organic compounds during a dust-to-haze episode in northwest China. Atmospheric Chemistry and Physics. 2020;20(9):5425–5436. doi: 10.5194/acp-20-5425-2020. [DOI] [Google Scholar]
  93. Yang X. Observations and explicit modeling of summertime carbonyl formation in Beijing: Identification of key precursor species and their impact on atmospheric oxidation chemistry. J. Geophys. Res. 2018;123(2):1426–1440. doi: 10.1002/2017JD027403. [DOI] [Google Scholar]
  94. Yang Y C, Liu X G, Zheng J, Tan Q W, Feng M, Qu Y, An J L, Cheng N L. Characteristics of one-year observation of VOCs, NOx, and O3 at an urban site in Wuhan, China. Journal of Environmental Sciences. 2019;79:297–310. doi: 10.1016/j.jes.2018.12.002. [DOI] [PubMed] [Google Scholar]
  95. Yang Z, Cheng H R, Wang Z W, Peng J, Zhu J X, Lyu X P, Guo H. Chemical characteristics of atmospheric carbonyl compounds and source identification of formaldehyde in Wuhan, Central China. Atmospheric Research. 2019;228:95–106. doi: 10.1016/j.atmosres.2019.05.020. [DOI] [Google Scholar]
  96. Yokelson R J. Emissions from biomass burning in the Yucatan. Atmospheric Chemistry and Physics. 2009;9(15):5785–5812. doi: 10.5194/acp-9-5785-2009. [DOI] [Google Scholar]
  97. Young C J. Vertically resolved measurements of nighttime radical reservoirs in Los Angeles and their contribution to the urban radical budget. Environ. Sci. Technol. 2012;46(20):10 965–10 973. doi: 10.1021/es302206a. [DOI] [PubMed] [Google Scholar]
  98. Yuan B. Measurements of ambient hydrocarbons and carbonyls in the Pearl River Delta (PRD), China. Atmospheric Research. 2012;116:93–104. doi: 10.1016/j.atmosres.2012.03.006. [DOI] [Google Scholar]
  99. Yuan B, Hu W W, Shao M, Wang M, Chen W T, Lu S H, Zeng L M, Hu M. VOC emissions, evolutions and contributions to SOA formation at a receptor site in Eastern China. Atmospheric Chemistry and Physics. 2013;13(3):6631–6679. [Google Scholar]
  100. Yuan B, Koss A R, Warneke C, Coggon M, Sekimoto K, de Gouw J A. Proton-transfer-reaction mass spectrometry: Applications in atmospheric sciences. Chemical Reviews. 2017;117(21):13 187–13 229. doi: 10.1021/acs.chemrev.7b00325. [DOI] [PubMed] [Google Scholar]
  101. Zhang K, Li L, Huang L, Wang Y J, Huo J T, Duan Y S, Wang Y H, Fu Q Y. The impact of volatile organic compounds on ozone formation in the suburban area of Shanghai. Atmos. Environ. 2020;232:117511. doi: 10.1016/j.atmosenv.2020.117511. [DOI] [Google Scholar]
  102. Zhang L H. Characteristics of atmospheric volatile organic compounds in urban area of Beijing: Variations, photochemical reactivity and source apportionment. Journal of Environmental Sciences. 2020;95:190–200. doi: 10.1016/j.jes.2020.03.023. [DOI] [PubMed] [Google Scholar]
  103. Zhang X M. Ambient volatile organic compounds pollution in China. Journal of Environmental Sciences. 2017;55:69–75. doi: 10.1016/j.jes.2016.05.036. [DOI] [PubMed] [Google Scholar]
  104. Zhang X X, Ding X, Wang X M, Talifu D, Wang G, Zhang Y L, Abulizi A. Volatile organic compounds in a petrochemical region in arid of NW China: Chemical reactivity and source apportionment. Atmosphere. 2019;10(11):641. doi: 10.3390/atmos10110641. [DOI] [Google Scholar]
  105. Zhang Y L, Wang X M, Barletta B, Simpson I J, Blake D R, Fu X X, Zhang Z, He Q F, Liu T Y, Zhao X Y. Source attributions of hazardous aromatic hydrocarbons in urban, suburban and rural areas in the Pearl River Delta (PRD) region. Journal of Hazardous Materials. 2013;250–251(2):403–411. doi: 10.1016/j.jhazmat.2013.02.023. [DOI] [PubMed] [Google Scholar]
  106. Zhang, Z., 2016: Spatiotemporal patterns of ambient non-methane hydrocarbons in China. PhD dissertation, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. (in Chinese)
  107. Zhao Q Y. Sources of volatile organic compounds and policy implications for regional ozone pollution control in an urban location of Nanjing, East China. Atmospheric Chemistry and Physics. 2020;20(6):3905–3919. doi: 10.5194/acp-20-3905-2020. [DOI] [Google Scholar]
  108. Zheng C H. Quantitative assessment of industrial VOC emissions in China: Historical trend, spatial distribution, uncertainties, and projection. Atmospheric Environment. 2017;150:116–125. doi: 10.1016/j.atmosenv.2016.11.023. [DOI] [Google Scholar]
  109. Zheng J Y, Yu Y, Mo Z, Zhang Z, Wang X, Yin S, Peng K, Yang Y, Feng X, Cai H. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China. Science of the Total Environment. 2013;456–457(7):127–136. doi: 10.1016/j.scitotenv.2013.03.055. [DOI] [PubMed] [Google Scholar]
  110. Zhou M M, Jiang W, Gao W D, Zhou B H, Liao X C. A high spatiotemporal resolution anthropogenic VOC emission inventory for Qingdao City in 2016 and its ozone formation potential analysis. Process Safety and Environmental Protection. 2020;139:147–160. doi: 10.1016/j.psep.2020.03.040. [DOI] [Google Scholar]
  111. Zhou X. Volatile organic compounds in a typical petrochemical industrialized valley city of northwest China based on high-resolution PTR-MS measurements: Characterization, sources and chemical effects. Science of the Total Environment. 2019;671:883–896. doi: 10.1016/j.scitotenv.2019.03.283. [DOI] [PubMed] [Google Scholar]
  112. Zhu J, Wang S S, Wang H L, Jing S G, Lou S R, Saiz-Lopez A, Zhou B. Observationally constrained modeling of atmospheric oxidation capacity and photochemical reactivity in Shanghai, China. Atmospheric Chemistry and Physics. 2020;20(3):1217–1232. doi: 10.5194/acp-20-1217-2020. [DOI] [Google Scholar]
  113. Zou Y. Characteristics of 1 year of observational data of VOCs, NOx and O3 at a suburban site in Guangzhou, China. Atmospheric Chemistry and Physics. 2015;15(12):6625–6636. doi: 10.5194/acp-15-6625-2015. [DOI] [Google Scholar]

Articles from Advances in Atmospheric Sciences are provided here courtesy of Nature Publishing Group

RESOURCES