Skip to main content
Acta Veterinaria Scandinavica logoLink to Acta Veterinaria Scandinavica
. 1995 Dec 1;36(4):475–487. doi: 10.1186/BF03547662

Staphylococcal and other Bacterial Species Associated with Intramammary Infections in Danish Dairy Herds

Stafylokokker og andre bakteriearter associeret med intramammære infektioner i danske malkekvægsbesætninger

FΜ Aarestrup 19,, ΗC Wegener 19, VT Rosdahl 29, ΝE Jensen 19
PMCID: PMC8095438  PMID: 8669375

Abstract

Four thousand six hundred forty– five quarter milk samples from 1179 cows from 20 commercial dairy herds were examined in order to determine the prevalence of bacterial species. A total of 859 isolates from 839 (18.1%) culture positive samples could be assigned to 34 different species and subspecies. Diagnostics of staphylococcal species was based on conventional procedures able to differentiate between all 36 species and subspecies presently acknowledged. Staphylococcus aureus was found in 10.2% of the samples and was the most common species isolated. Streptococcus dysgalactiae (1.6%) and Streptococcus uberis (1.4%) were the second and third most common species isolated. Seventeen different coagulase negative staphylococcal species (CNS) were found in 4.1% of the samples. The most frequently isolated CNS were S. epidermidis (1.3%), S. chromogenes (1.0%) and S. simulans (0.7%). Isolates of S. aureus were phage typed, and isolates of S. epidermidis were investigated by phage typing, antibiogram typing, and biotyping. A total of 378 (79.9%) isolates of S. aureus could be typed by phages, assigning them to 18 different phage types. However, 6 phage types accounted for 92.1% of the typable isolates. One to 2 phage types predominated within each herd. Eleven (18%) isolates of S. epidermidis could be typed by phages, assigning the isolates to 3 different types. Biotyping of S. epidermidis produced a total of 8 different types, the most common accounting for 29.5% of the isolates. A total of 6 different antibiogram types were observed among all isolates of S. epidermidis. Resistance towards penicillin (36.1%), tetracycline (9.8%) and streptomycin (9.8%), were recorded in the isolates of S. epidermidis. However, 35 (57.4%) of the isolates were susceptible to all 12 antibiotics tested.

Keywords: Mastitis, coagulase negative staphylococci, S. aureus, phage types

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Acknowledgments

We are very grateful to Mr. René Hendriksen for his effort to constantly keep track of all samples and records. We are greateful to Johannes Jensen, DVM for help in collecting the bacterial isolates. This work was supported by a grant from Danish Ministry of Agriculture (VEL 92–8).

References

  1. Anonymous . Bull. no. 187. International Dairy Federation. 1985. Progress in mastitis control. [Google Scholar]
  2. Anonymous . Definition and guidelines for diagnosis. Bull. no. 211. International Dairy Federation. 1987. Bovine mastitis. [Google Scholar]
  3. Barrow GI, Feltham RKA. Cowan and Steel’s manual for the identification of medical bacteria. 3th. Great Britain: Cambridge University Press; 1993. [Google Scholar]
  4. Birgersson A, Jonsson P, Holmberg Species identification and some characteristics of coagulase–negative staphylococci isolated from bovine udders. Vet. Microbiol. 1992;31:181–189. doi: 10.1016/0378-1135(92)90076-6. [DOI] [PubMed] [Google Scholar]
  5. Blair JW, Williams REO. Phagetyping of Staphylococci. Bull. Wld. Hlth. Org. 1961;24:771–784. [PMC free article] [PubMed] [Google Scholar]
  6. Bramley AJ. The effect of subclinical Staphylococ–cus epidermidis infection of the lactating bovine udder on its susceptibility to infection with Streptococcus agalactiae or Escherichia coli. Br. vet. J. 1978;134:146–151. doi: 10.1016/S0007-1935(17)33538-8. [DOI] [PubMed] [Google Scholar]
  7. Chesneau O, Morvan A, Grimont F, Labischinski H, El S N. Staphylococcus pasteuri sp. nov., isolated from human, animal, and food specimens. Int. J. syst. Bacteriol. 1993;43:237–244. doi: 10.1099/00207713-43-2-237. [DOI] [PubMed] [Google Scholar]
  8. Davidson TJ, Dohoo IR, Donald AW, Hariharan H, Collins K. A cohort study of coagulase–negative staphylococcal mastitis in selected dairy herds in Prince Edward Island. Can. J. vet. Res. 1992;56:275–280. [PMC free article] [PubMed] [Google Scholar]
  9. Devriese LA. Identification of clumping-factor-negative Staphylococci isolated from cow’s udders. Res. vet. Sci. 1979;27:313–320. doi: 10.1016/S0034-5288(18)32799-1. [DOI] [PubMed] [Google Scholar]
  10. Devriese LA, De Keyser Prevalence of different species of coagulase-negative staphylococci on teats and in milk samples from dairy cows. J. Dairy Res. 1980;47:155–158. doi: 10.1017/S0022029900020999. [DOI] [PubMed] [Google Scholar]
  11. Devriese LA, Schleifer KH, Adegoke GO. Identification of coagulase-negative staphylococci from farm animals. J. Appl. Bacteriol. 1985;58:45–55. doi: 10.1111/j.1365-2672.1985.tb01428.x. [DOI] [PubMed] [Google Scholar]
  12. Devriese LA. Coagulase–negative Staphylococci in animals. In: Mårdh PA, Schleifer KH, editors. Coagulase-negative Staphylococci. Almqvist & Wiksell International. 1986. pp. 51–58. [Google Scholar]
  13. Edwards SJ, Jones GW. The distribution and characters of coagulasenegative staphylococci of the bovine udder. J. Dairy Res. 1966;33:261–270. doi: 10.1017/S0022029900011948. [DOI] [Google Scholar]
  14. Faller A, Schleifer KH. Modified oxidase and benzi-dene tests for separation of Staphylococci from Micrococci. J. clin. Microbiol. 1981;13:1031–1035. doi: 10.1128/JCM.13.6.1031-1035.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gahrn-Hansen B, Heltberg O, Rosdahl VT, Søgaard Evaluation of a conventional routine method for identification of clinical isolates of coagulase-negative Staphylococcus and Micrococcus species. APMIS, sect. B. 1987;95:283–292. doi: 10.1111/j.1699-0463.1987.tb03126.x. [DOI] [PubMed] [Google Scholar]
  16. Hajek V, Ludwig W, Schleifer KH, Springer, Zitzel–berger W, Kroppenstedt RM, Kocur M. Staphylococcus muscae, a new species isolated from flies. Int. J. Syst. Bacteriol. 1992;42:97–101. doi: 10.1099/00207713-42-1-97. [DOI] [PubMed] [Google Scholar]
  17. Hogan JS, Smith KL, Todhunter DA, Schoenberger PS. Rate of enviromental mastitis in quarters infected with Corynebacterium bovis and Staphylococcus species. J. Dairy Sci. 1987;71:2520–2525. doi: 10.3168/jds.S0022-0302(88)79840-9. [DOI] [PubMed] [Google Scholar]
  18. Hugh R, Leifson E. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram–negative bacteria. J. Bacteriol. 1953;66:24–26. doi: 10.1128/JB.66.1.24-26.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jarløv JO, Nissen, Rosdahl VT, Espersen F. Identification of coagulase-negative staphylococci and typing of Staphylococcus epidermidis by a 4 h micromethod. APMIS. 1994;102:272–278. doi: 10.1111/j.1699-0463.1994.tb04875.x. [DOI] [PubMed] [Google Scholar]
  20. Jarp J. Classification of coagulase-negative staphylococci isolated from bovine clinical and subclinical mastitis. Vet. Microbiol. 1991;27:151–158. doi: 10.1016/0378-1135(91)90006-2. [DOI] [PubMed] [Google Scholar]
  21. Jelinkova J. Group Β Streptococci in the human population. Curr. topics Microbiol. Immunol. 1977;76:127–165. [PubMed] [Google Scholar]
  22. King JS. Streptococcus uberis: A review of its role as a causative organism of bovine mastitis I. Characteristics of the organism. Br. vet. J. 1981;137:36–52. doi: 10.1016/S0007-1935(17)31786-4. [DOI] [PubMed] [Google Scholar]
  23. Kloos WE, Schleifer KH. Isolation and characterization of staphylococci from human skin. II. Descriptions of four new species: Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis and Staphylococcus simulans. Int. J. Syst. Bacteriol. 1975;25:62–79. doi: 10.1099/00207713-25-1-62. [DOI] [Google Scholar]
  24. Kloos WE, George CG. Identification of Staphylococcus species and subspecies with the Micro–Scan Pos ID and Rapid Pos Id panel system. J. Clin. Microbiol. 1991;29:738–744. doi: 10.1128/JCM.29.4.738-744.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lachica RVF, Genigeorgis C, Hoeprechi PD. Meta–chromatic agar–diffusion methods for detecting staphylococcal nuclease activity. Appl. Microbiol. 1971;27:585–587. doi: 10.1128/AM.21.4.585-587.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Langlois BE, Harmon RJ, Akers Identification of Staphylococcus species of bovine origin with the API Staph–Ident system. J. Clin. Microbiol. 1983;18:1212–1219. doi: 10.1128/JCM.18.5.1212-1219.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mackie DP, Pollock DA, Rodgers SP, Logan EF. Phage typing of Staphylococcus aureus associat–ied with subclinical bovine mastitis. J. Dairy. Res. 1987;54:1–5. doi: 10.1017/S0022029900025139. [DOI] [PubMed] [Google Scholar]
  28. Maniatis T, Fritsch EF, SambrookJ . A laboratory manual. New York: Cold Spring Habor Laboratory; 1982. Molecular cloning. [Google Scholar]
  29. Matthews KR, Oliver SP, King SH. Comparison of Vitek gram–positive identification system with API Staph–Trac system for species identification of staphylococci of bovine origin. J. Clin. Micro–biol. 1990;25:1649–1651. doi: 10.1128/JCM.28.7.1649-1651.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Parisi JT, Baldwin J. The incidense and persistence of certain strains of Staphylococcus aureus in dairy herds. Amer. J. vet. Res. 1963;24:551–556. [PubMed] [Google Scholar]
  31. Parker MT. The significance of phage-typing patterns in Staphylococcus aureus. In: Easmon CSF, Adlam C, editors. Staphylococci and Staphylococ–cal infections. London: Academic Press; 1983. pp. 33–62. [Google Scholar]
  32. Price P, Neave FK, Rippon JE, Williams REO. The use of phage typing and penicillin sensitivity tests in studies of Staphylococci from bovine mastitis. J. Dairy Res. 1954;21:342–353. doi: 10.1017/S002202990000741X. [DOI] [Google Scholar]
  33. Rosdahl VT, Gahrn–Hansen B, Møller JK, Kjældgård Phage-typing of coagulase–negative staphylococci. Factors influencing typability. APMIS. 1990;98:299–304. doi: 10.1111/j.1699-0463.1990.tb01036.x. [DOI] [PubMed] [Google Scholar]
  34. Schleifer KH. Micrococcaceae. In: Sneath PHA, editor. Bergey’s Manual of Systematic Bacteriology. Baltimore: Williams and Wilkins; 1986. [Google Scholar]
  35. Schleifer KH, Kloos WE. Isolation and characterization of staphylococci from human skin. I. amended descriptions of Staphylococcus epider–midis and Staphylococcus saprophyticus and descriptions of three new species: Staphylococcus cohnii, Staphylococcus haemolyticus and Staphylococcus xylosus. Int. J. Syst. Bacteriol. 1975;25:50–61. doi: 10.1099/00207713-25-1-50. [DOI] [Google Scholar]
  36. Smith RE, Hagstad HV. Infection of the bovine udder with coagulase-negative staphylococci. Prev. Vet. Med. 1986;4:35–43. doi: 10.1016/0167-5877(86)90005-X. [DOI] [Google Scholar]
  37. Stuart CA, Stratum Ε v, Rustigian R. Further studies on urease production by Proteus and related organisms. J. Bacteriol. 1945;49:437. doi: 10.1128/JB.49.5.437-444.1945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tanasupawat S, Hashimoto Y, Ezaki T, Kozaki M, Ko–magata K. Staphylococcus piscifermentans sp. nov., from fermented fish in Thailand. Int. J. Syst. Bacteriol. 1992;42:577–581. doi: 10.1099/00207713-42-4-577. [DOI] [PubMed] [Google Scholar]
  39. Timms LL, Schultz LH. Dynamics and significance of coagulase–negative staphylococcal intramam–mary infections. J. Dairy Sci. 1987;70:2648–2657. doi: 10.3168/jds.S0022-0302(87)80335-1. [DOI] [PubMed] [Google Scholar]
  40. Todhunter DA, Cantwell LL, Smith KL, Hoblet KH, Hogan JS. Characteristics of coagulase–negative Staphylococci isolated from bovine intramam–mary infections. Vet. Microbiol. 1993;34:373–380. doi: 10.1016/0378-1135(93)90062-C. [DOI] [PubMed] [Google Scholar]
  41. Watts JL, Owens WE. Prevalence of staphylococcal species in four dairy herds. Res. Vet. Sci. 1989;46:1–4. doi: 10.1016/S0034-5288(18)31107-X. [DOI] [PubMed] [Google Scholar]
  42. Watts JL, Washburn PJ. Evaluation of the Staph–Zym system with staphylococci isolated from bovine intramammary infections. J. Clin. Microbiol. 1991;29:59–61. doi: 10.1128/JCM.29.1.59-61.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Watts JL, Yancey RJ. Identification of veterinary pathogens by use of commercial identification systems and new trends in antimicrobial susceptibility testing of veterinary pathogens. Clin. Microbiol. Rev. 1994;7:346–356. doi: 10.1128/CMR.7.3.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Watts JL, Pankey JW, Nickerson SC. Evaluation of the Staph-Ident and Staphase systems for identification of staphylococci from bovine intramammary infections. J. Clin. Microbiol. 1984;20:448–452. doi: 10.1128/JCM.20.3.448-452.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Webster JA, Bannerman TL, Hubner RJ, Ballard DN, Cole EM, Bruce JL, Fiedler F, Schubert K, Kloos WE. Identification of The Staphylococcus sciuri species group with EcoRl fragments containing rRNA sequences and description of Staphylococcus vitulus sp. nov. Int. J. Syst. Bacteriol. 1994;44:454–460. doi: 10.1099/00207713-44-3-454. [DOI] [PubMed] [Google Scholar]

Articles from Acta Veterinaria Scandinavica are provided here courtesy of BMC

RESOURCES