Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;15(1):1–16. doi: 10.1111/j.1750-3639.2005.tb00094.x

Gene and Protein Expression Profiling of the Microvascular Compartment in Experimental Autoimmune Encephalomyelitis in C57BI/6 and SJL Mice

Carsten Alt 1, Kristina Duvefelt 3,5, Bo Franzén 3, Yang Yang 4, Britta Engelhardt 1,2,
PMCID: PMC8095736  PMID: 15779231

Abstract

Dysfunction of the blood‐brain barrier (BBB) is a hallmark of inflammatory diseases of the central nervous system (CNS) such as multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). The molecular mechanisms leading to BBB breakdown are not well understood. In order to find molecules involved in this process, we used oligonucleotide microarrays and proteomics to analyze gene and protein expression of the microvascular compartment isolated from brains of C57BI/6 and SJL/N mice afflicted with EAE and the microvascular compartment isolated from healthy controls. Out of the 6500 known genes and expressed sequence tags (ESTs) studied, expression of 288 genes was found to be changed. Of these genes 128 were altered in the microvascular compartment in both EAE models. Six proteins were identified to be present at altered levels. In addition to the expected increased expression of genes coding for molecules involved in leukocyte recruitment, genes not yet ascribed to EAE pathogenesis were identified. Thus, proteomics and gene array screens of the microvascular compartment are valid approaches, that can be used to define novel candidate molecules involved in EAE pathogenesis at the level of the BBB.

Full Text

The Full Text of this article is available as a PDF (510.5 KB).

REFERENCES

  • 1. Adelmann M, Wood J, Benzel I, Fiori P, Lassmann H, Matthieu JM, Gardinier MV, Dornmair K and Linington C (1995) The N‐terminal domain of the myelin oligodendrocyte glycoprotein (MOG) induces acute demyelinating experimental autoimmune encephalomyelitis in the Lewis rat. J Neuroimmunol 63:17–27. [DOI] [PubMed] [Google Scholar]
  • 2. Akwa Y, Hassett DE, Eloranta ML, Sandberg K, Masliah E, Powell H, Whitton JL, Bloom FE and Campbell IL (1998) Transgenic expression of IFN‐alpha in the central nervous system of mice protects against lethal neurotropic viral infection but induces inflammation and neurodegeneration. J Immunol 161:5016–5026. [PubMed] [Google Scholar]
  • 3. Alt C, Laschinger M and Engelhardt B (2002) Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL 21 (SLC) at the blood‐brain barrier suggests their involvement in G‐protein‐dependent lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis. Eur J Immunol 32:2133–2144. [DOI] [PubMed] [Google Scholar]
  • 4. Anderson L and Seilhamer J (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18:533–537. [DOI] [PubMed] [Google Scholar]
  • 5. Archelos JJ, Jung S, Maurer M, Schmied M, Lassmann H, Tamatani T, Miyasaka M, Toyka KV and Hartung HP (1993) Inhibition of experimental autoimmune encephalomyelitis by an antibody to the intercellular adhesion molecule ICAM‐1. Ann Neurol 34:145–154. [DOI] [PubMed] [Google Scholar]
  • 6. Asensio VC, Lassmann S, Pagenstecher A, Steffensen SC, Henriksen SJ and Campbell IL (1999) C10 is a novel chemokine expressed in experimental inflammatory demyelinating disorders that promotes recruitment of macrophages to the central nervous system. Am J Pathol 154:1181–1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem 72:248–254. [DOI] [PubMed] [Google Scholar]
  • 8. Breier G (1999) In situ hybridization with RNA probes. Methods Mol Biol 96:107–117. [DOI] [PubMed] [Google Scholar]
  • 9. Cacalano G, Lee J, Kikly K, Ryan AM, Pitts‐Meek S, Hultgren B, Wood WI and Moore MW (1994) Neutrophil and B cell expansion in mice that lack the murine IL‐8 receptor homolog. Science 265:682–684. [DOI] [PubMed] [Google Scholar]
  • 10. Calida DM, Constantinescu C, Purev E, Zhang GX, Ventura ES, Lavi E and Rostami A (2001) Cutting edge: C3, a key component of complement activation, is not required for the development of myelin oligodendrocyte glycoprotein peptideinduced experimental autoimmune encephalomyelitis in mice. J Immunol 166:723–726. [DOI] [PubMed] [Google Scholar]
  • 11. Carmody RJ, Hilliard B, Maguschak K, Chodosh LA and Chen YH (2002) Genomic scale profiling of autoimmune inflammation in the central nervous system: the nervous response to inflammation. J Neuroimmunol 133:95–107. [DOI] [PubMed] [Google Scholar]
  • 12. Chan CW, Kay LS, Khadaroo RG, Chan MW, Lakatoo S, Young KJ, Zhang L, Gorczynski RM, Cattral M, Rotstein O and Levy GA (2003) Soluble fibrinogen‐like protein 2/fibroleukin exhibits immunosuppressive properties: suppressing T‐cell proliferation and inhibiting maturation of bone marrow‐derived dendritic cells. J Immunol 170:4036–4044. [DOI] [PubMed] [Google Scholar]
  • 13. Chen G, Gharib TG, Huang CC, Taylor JM, Misek DE, Kardia SL, Giordano TJ, Iannettoni MD, Orringer MB, Hanash SM and Beer DG (2002) Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics 1:304–313. [DOI] [PubMed] [Google Scholar]
  • 14. Cox EA, Bennin D, Doan AT, O'Toole T and Huttenlocher A (2003) RACK1 regulates integrinmediated adhesion, protrusion, and chemotactic cell migration via its Src‐binding site. Mol Biol Cell 14:658–669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Davoust N, Nataf S, Reiman R, Holers MV, Campbell IL and Barnum SR (1999) Central nervous system‐targeted expression of the complement inhibitor sCrry prevents experimental allergic encephalomyelitis. J Immunol 163:6551–6556. [PubMed] [Google Scholar]
  • 16. Deininger MH and Schluesener HJ (1999) Cyclooxygenases‐1 and ‐2 are differentially localized to microglia and endothelium in rat EAE and glioma. J Neuroimmunol 95:202–208. [DOI] [PubMed] [Google Scholar]
  • 17. Dell EJ, Connor J, Chen S, Stebbins EG, Skiba NP, Mochly‐Rosen D and Hamm HE (2002) The betagamma subunit of heterotrimeric G proteins interacts with RACK1 and two other WD repeat proteins. J Biol Chem 277:49888–49895. [DOI] [PubMed] [Google Scholar]
  • 18. Ellies LG, Ditto D, Levy GG, Wahrenbrock M, Ginsburg D, Varki A, Le DT and Marth JD (2002) Sialyltransferase ST3Gal‐IV operates as a dominant modifier of hemostasis by concealing asialoglycoprotein receptor ligands. Proc Natl Acad Sci U S A 99:10042–10047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Engelhardt B, Laschinger M, Schulz M, Samulowitz U, Vestweber D and Hoch G (1998) The development of experimental autoimmune encephalomyelitis in the mouse requires alpha4‐in‐tegrin but not alpha4beta7‐integrin. J Clin Invest 102:2096–2105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Engelhardt B, Vestweber D, Hallmann R and Schulz M (1997) E‐ and P‐selectin are not involved in the recruitment of inflammatory cells across the blood‐brain barrier in experimental autoimmune encephalomyelitis. Blood 90:4459–4472. [PubMed] [Google Scholar]
  • 21. Etienne‐Manneville S, Manneville JB, Adamson P, Wilbourn B, Greenwood J and Couraud PO (2000) ICAM‐1‐coupled cytoskeletal rearrangements and transendothelial lymphocyte migration involve intracellular calcium signaling in brain endothelial cell lines. J Immunol 165:3375–3383. [DOI] [PubMed] [Google Scholar]
  • 22. Fife BT, Huffnagle GB, Kuziel WA and Karpus WJ (2000) CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J Exp Med 192:899–905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Franzen B, Duvefelt K, Jonsson C, Engelhardt B, Ottervald J, Wickman M, Yang Y and Schuppe‐Koistinen I (2003) Gene and protein expression profiling of human cerebral endothelial cells activated with tumor necrosis factor‐alpha. Mol Brain Res 115:130–146. [DOI] [PubMed] [Google Scholar]
  • 24. Gorg A, Boguth G, Obermaier C, Posch A and Weiss W (1995) Two‐dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG‐Dalt): the state of the art and the controversy of vertical versus horizontal systems. Electrophoresis 16:1079–1086. [DOI] [PubMed] [Google Scholar]
  • 25. Gygi SP, Rochon Y, Franza BR and Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Hakomori S (2000) Traveling for the glycosphingolipid path. Glycoconj J 17:627–647. [DOI] [PubMed] [Google Scholar]
  • 27. Hancock WW, Lu B, Gao W, Csizmadia V, Faia K, King JA, Smiley ST, Ling M, Gerard NP and Gerard C (2000) Requirement of the chemokine receptor CXCR3 for acute allograft rejection. J Exp Med 192:1515–1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Hartenstein B, Teurich S, Hess J, Schenkel J, Schorpp‐Kistner M and Angel P (2002) Th2 cell‐specific cytokine expression and allergeninduced airway inflammation depend on JunB. Embo J 21:6321–6329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Hjelmstrom P, Juedes AE, Fjell J and Ruddle NH (1998) B‐cell‐deficient mice develop experimental allergic encephalomyelitis with demyelination after myelin oligodendrocyte glycoprotein sensitization. J Immunol 161:4480–4483. [PubMed] [Google Scholar]
  • 30. Huang DR, Wang J, Kivisakk P, Rollins BJ and Ransohoff RM (2001) Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen‐specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med 193:713–726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Ibrahim SM, Mix E, Bottcher T, Koczan D, Gold R, Rolfs A and Thiesen HJ (2001) Gene expression profiling of the nervous system in murine experimental autoimmune encephalomyelitis. Brain 124:1927–1938. [DOI] [PubMed] [Google Scholar]
  • 32. Ikezu T, Ueda H, Trapp BD, Nishiyama K, Sha JF, Volonte D, Galbiati F, Byrd AL, Bassell G, Serizawa H, Lane WS, Lisanti MP and Okamoto T (1998) Affinity‐purification and characterization of caveolins from the brain: differential expression of caveolin‐1, ‐2, and ‐3 in brain endothelial and astroglial cell types. Brain Res 804:177–192. [DOI] [PubMed] [Google Scholar]
  • 33. Izikson L, Klein RS, Charo IF, Weiner HL and Luster AD (2000) Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J Exp Med 192:1075–1080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Kanda T, Ariga T, Yamawaki M, Yoshino H, Gu XB and Yu RK (1997) Glycosyltransferase activities in cultured endothelial cells of bovine brain microvascular origin. Neurochem Res 22:463–466. [DOI] [PubMed] [Google Scholar]
  • 35. Kraus J, Ling AK, Hamm S, Voigt K, Oschmann P and Engelhardt B (2004) Interferon‐beta stabilizes blood‐brain barrier characteristics of cerebral endothelial cells in vitro. Ann Neurol in press. [DOI] [PubMed] [Google Scholar]
  • 36. Labrada L, Liang XH, Zheng W, Johnston C and Levine B (2002) Age‐dependent resistance to lethal alphavirus encephalitis in mice: analysis of gene expression in the central nervous system and identification of a novel interferon‐inducible protective gene, mouse ISG12. J Virol 76:11688–11703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Laschinger M, Vajkoczy P and Engelhardt B (2002) Encephalitogenic T‐cells use LFA‐1 for transendothelial migration but not during capture and initial adhesion strengthening in healthy spinal cord microvessels in vivo. Eur J Immunol 32:3598–3606. [DOI] [PubMed] [Google Scholar]
  • 38. Liu G, Loraine AE, Shigeta R, Cline M, Cheng J, Valmeekam V, Sun S, Kulp D and Siani‐Rose MA (2003) NetAffx: Affymetrix probesets and annotations. Nucleic Acids Res 31:82–86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Liu M, Leibowitz JL, Clark DA, Mendicino M, Ning Q, Ding JW, D'Abreo C, Fung L, Marsden PA and Levy GA (2003) Gene transcription of fgl2 in endothelial cells is controlled by Ets‐1 and Oct‐1 and requires the presence of both Sp1 and Sp3. Eur J Biochem 270:2274–2286. [DOI] [PubMed] [Google Scholar]
  • 40. Loeb KR and Haas AL (1992) The interferon‐inducible 15‐kDa ubiquitin homolog conjugates to intracellular proteins. J Biol Chem 267:7806–7813. [PubMed] [Google Scholar]
  • 41. Lyons JA, San M, Happ MP and Cross AH (1999) B cells are critical to induction of experimental allergic encephalomyelitis by protein but not by a short encephalitogenic peptide. Eur J Immunol 29:3432–3439. [DOI] [PubMed] [Google Scholar]
  • 42. Malakhov MP, Kim KI, Malakhova OA, Jacobs BS, Borden EC and Zhang DE (2003) High‐throughput immunoblotting. Ubiquitiin‐like protein ISG15 modifies key regulators of signal transduction. J Biol Chem 278:16608–16613. [DOI] [PubMed] [Google Scholar]
  • 43. Malakhova OA, Yan M, Malakhov MP, Yuan Y, Ritchie KJ, Kim KI, Peterson LF, Shuai K and Zhang DE (2003) Protein ISGylation modulates the JAKSTAT signaling pathway. Genes Dev 17:455–460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Mannion BA, Berditchevski F, Kraeft SK, Chen LB and Hemler ME (1996) Transmembrane‐4 superfamily proteins CD81 (TAPA‐1), CD82, CD63, and CD53 specifically associated with integrin alpha 4 beta 1 (CD49d/CD29). J Immunol 157:2039–2047. [PubMed] [Google Scholar]
  • 45. Martin R and McFarland HF (1995) Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis. Crit Rev Clin Lab Sci 32:121–182. [DOI] [PubMed] [Google Scholar]
  • 46. Meresse S, Dehouck MP, Delorme P, Bensaid M, Tauber JP, Delbart C, Fruchart JC and Cecchelli R (1989) Bovine brain endothelial cells express tight junctions and monoamine oxidase activity in long‐term culture. J Neurochem 53:1363–1371. [DOI] [PubMed] [Google Scholar]
  • 47. Nico B, Quondamatteo F, Herken R, Blumchen T, Defazio G, Giorelli M, Livrea P, Marzullo A, Russo G, Ribatti D and Roncali L (2000) Interferon beta‐1a prevents the effects of lipopolysaccharide on embryonic brain microvessels. Dev Brain Res 119:231–242. [DOI] [PubMed] [Google Scholar]
  • 48. Parr RL, Fung L, Reneker J, Myers‐Mason N, Leibowitz JL and Levy G (1995) Association of mouse fibrinogen‐like protein with murine hepatitis virus‐induced prothrombinase activity. J Virol 69:5033–5038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Rottman JB, Slavin AJ, Silva R, Weiner HL, Gerard CG and Hancock WW (2000) Leukocyte recruitment during onset of experimental allergic encephalomyelitis is CCR1 dependent. Eur J Immunol 30:2372–2377. [DOI] [PubMed] [Google Scholar]
  • 50. Schorpp‐Kistner M, Wang ZQ, Angel P and Wagner EF (1999) JunB is essential for mammalian placentation. Embo J 18:934–948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Steffen BJ, Breier G, Butcher EC, Schulz M and Engelhardt B (1996) ICAM‐1, VCAM‐1, and MAd‐CAM‐1 are expressed on choroid plexus epithelium but not endothelium and mediate binding of lymphocytes in vitro. Am J Pathol 148:1819–1838. [PMC free article] [PubMed] [Google Scholar]
  • 52. Steffen BJ, Butcher EC and Engelhardt B (1994) Evidence for involvement of ICAM‐1 and VCAM‐1 in lymphocyte interaction with endothelium in experimental autoimmune encephalomyelitis in the central nervous system in the SJL/J mouse. Am J Pathol 145:189–201. [PMC free article] [PubMed] [Google Scholar]
  • 53. Stoop JW, Zegers BJ, Hendrickx GF, van Heukelom LH, Staal GE, de Bree PK, Wadman SK and Ballieux RE (1977) Purine nucleoside phosphorylase deficiency associated with selective cellular immunodeficiency. N Engl J Med 296:651–655. [DOI] [PubMed] [Google Scholar]
  • 54. Teige I, Treschow A, Teige A, Mattsson R, Navikas V, Leanderson T, Holmdahl R and Issazadeh‐Navikas S (2003) IFN‐beta Gene Deletion Leads to Augmented and Chronic Demyelinating Experimental Autoimmune Encephalomyelitis. J Immunol 170:4776–4784. [DOI] [PubMed] [Google Scholar]
  • 55. Tran EH, Kuziel WA and Owens T (2000) Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein‐1alpha or its CCR5 receptor. Eur J Immunol 30:1410–1415. [DOI] [PubMed] [Google Scholar]
  • 56. Vajkoczy P, Laschinger M and Engelhardt B (2001) Alpha4‐integrin‐VCAM‐1 binding mediates G protein‐independent capture of encephalitogenic T‐cell blasts to CNS white matter microvessels. J Clin Invest 108:557–565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Wekerle H, Kojima K, Lannes‐Vieira J, Lassmann H and Linington C (1994) Animal models. Ann Neurol 36 Suppl: S47–53. [DOI] [PubMed] [Google Scholar]
  • 58. Wolburg H, Wolburg‐Buchholz K, Kraus J, Rascher‐Eggstein G, Liebner S, Hamm S, Duffner F, Grote EH, Risau W and Engelhardt B (2003) Localization of claudin‐3 in tight junctions of the blood‐brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol (Berl) 105:586–592. [DOI] [PubMed] [Google Scholar]
  • 59. Wolf SD, Dittel BN, Hardardottir F and Janeway CA, Jr. (1996) Experimental autoimmune encephalomyelitis induction in genetically B cell‐deficient mice. J Exp Med 184:2271–2278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Yednock TA, Cannon C, Fritz LC, Sanchez‐Madrid F, Steinman L and Karin N (1992) Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356:63–66. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES