Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;15(4):327–341. doi: 10.1111/j.1750-3639.2005.tb00118.x

Proteases and Glioma Angiogenesis

Sajani S Lakka 1, Christopher S Gondi 1, Jasti S Rao 1,2,
PMCID: PMC8095795  PMID: 16389945

Abstract

Angiogenesis, the process by which new branches sprout from existing vessels, requires the degradation of the vascular basement membrane and remodeling of the ECM in order to allow endothelial cells to migrate and invade into the surrounding tissues. Serine, metallo, and cysteine proteinases are 3 types of a family of enzymes that proteolytically degrade various components of extracellular matrix. These proteases release various growth factors and also increase adhesive molecules and signaling pathway molecules upon their activation, which plays a significant role in angiogenesis. Downregulation of these molecules by antisense/siRNA or synthetic inhibitors decreases the levels of these molecules, inhibits the release of growth factors, and decreases the levels of various signaling pathway molecules, thereby leading to the inhibition of angiogenesis. Furthermore, MMPs degrade specific substrates and release angiogenic inhibitors which inhibit angiogenesis. Downregulation of 2 molecules, such as uPA and uPAR, uPAR and MMP‐9, or Cathepsin B and MMP‐9, are more effective to inhibit angiogenesis rather than downregulation of single molecules. However, careful testing of these combinations are most important because multiple effects of these combinations play a significant role in angiogenesis.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

References

  • 1. Abe T, Mori T, Kohno K, Seiki M, Hayakawa T, Welgus HG, Hori S, Kuwano M (1994) Exprsession of 72 kDa type IV collagenase and invasion activity of human glioma cells. Clin Exp Metastasis 12:296–304. [DOI] [PubMed] [Google Scholar]
  • 2. Adachi Y, Chandrasekar N, Kin Y, Lakka SS, Mohanam S, Yanamandra N, Mohan PM, Fuller GN, Fang B, Fueyo J, Dinh DH, Olivero WC, Tamiya T, Ohmoto T, Kyritsis AP, Rao JS (2002) Suppression of glioma invasion and growth by adenovirus‐mediated delivery of a bicistronic construct containing antisense uPAR and sense p16 gene sequences. Oncogene 21:87–95. [DOI] [PubMed] [Google Scholar]
  • 3. Adachi Y, Lakka SS, Chandrasekar N, Yanamandra N, Gondi CS, Mohanam S, Dinh DH, Olivero WC, Gujrati M, Tamiya T, Ohmoto T, Kouraklis G, Aggarwal B, Rao JS (2001) Down‐regulation of integrin alpha(v)beta(3) expression and integrin‐mediated signaling in glioma cells by adeno virus‐mediated transfer of antisense urokinasetype plasminogen activator receptor (uPAR) and sen se p16 genes. J Biol Chem 276:47171–47177. [DOI] [PubMed] [Google Scholar]
  • 4. Aguirre Ghiso JA, Kovalski K, Ossowski L (1999) Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol 147:89–104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Andreasen PA, Kjoller L, Christensen L, Duffy MJ (1997) The urokinase‐type plasminogen activator system in cancer metastasis: a review. Int J Cancer 72:1–22. [DOI] [PubMed] [Google Scholar]
  • 6. Bajou K, Masson V, Gerard RD, Schmitt PM, Albert V, Praus M, Lund LR, Frandsen TL, Brunner N, Dano K, Fusenig NE, Weidle U, Carmeliet G, Los‐kutoff D, Collen D, Carmeliet P, Foidart JM, Noel A (2001) The plasminogen activator inhibitor PAI‐1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. Implications for antiangiogenic strategies. J Cell Biol 152:777–784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Bello L, Francolini M, Marthyn P, Zhang J, Carroll RS, Nikas DC, Strasser JF, Villani R, Cheresh DA, Black PM (2001) Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neuro-surgery 49:380–389. [DOI] [PubMed] [Google Scholar]
  • 8. Belotti D, Paganoni P, Manenti L, Garofalo A, Marchini S, Taraboletti G, Giavazzi R (2003) Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res 63:5224–5229. [PubMed] [Google Scholar]
  • 9. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000) Matrix metalloproteinase‐9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Bhattacharya A, Lakka SS, Mohanam S, Boyd D, Rao JS (2001) Regulation of the urokinase‐type plasminogen activator receptor gene in different grades of human glioma cell lines. Clin Cancer Res 7:267–276. [PubMed] [Google Scholar]
  • 11. Bindal AK, Hammoud M, Shi WM, Wu SZ, Sawaya R, Rao JS (1994) Prognostic significance of proteolytic enzymes in human brain tumors. J Neurooncol 22:101–110. [DOI] [PubMed] [Google Scholar]
  • 12. Blasi F, Carmeliet P (2002) uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 3:932–943. [DOI] [PubMed] [Google Scholar]
  • 13. Brat DJ, van Meir EG (2001) Glomeruloid microvascular proliferation orchestrated by VPF/VEGF: a new world of angiogenesis research. Am J Pathol 158:789–796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Brooks PC (1996) Cell adhesion molecules in angiogenesis. Cancer Metastasis Rev 15:187–194. [DOI] [PubMed] [Google Scholar]
  • 15. Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571. [DOI] [PubMed] [Google Scholar]
  • 16. Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164. [DOI] [PubMed] [Google Scholar]
  • 17. Brunner G, Simon MM, Kramer MD (1990) Activation of pro‐urokinase by the human T cell associated serine proteinase HuTSP‐1. FEBS Lett 260:141–144. [DOI] [PubMed] [Google Scholar]
  • 18. Bu X, Khankaldyyan V, Gonzales‐Gomez I, Groshen S, Ye W, Zhuo S, Pons J, Stratton JR, Rosenberg S, Laug WE (2004) Species‐specific urokinase receptor ligands reduce glioma growth and increase survival primarily by an antiangiogenesis mechanism. Lab Invest 84:667–678. [DOI] [PubMed] [Google Scholar]
  • 19. Bugge TH, Kombrinck KW, Xiao Q, Holmback K, Daugherty CC, Witte DP, Degen JL (1997) Growth and dissemination of Lewis lung carcinoma in plasminogen‐deficient mice. Blood 90:4522–4531. [PubMed] [Google Scholar]
  • 20. Bugge TH, Lund LR, Kombrinck KK, Nielsen BS, Holmback K, Drew AF, Flick MJ, Witte DP, Dano K, Degen JL (1998) Reduced metastasis of Polyoma virus middle T antigen‐induced mammary cancer in plasminogen‐deficient mice. Oncogene 16:3097–3104. [DOI] [PubMed] [Google Scholar]
  • 21. Cal S, Obaya AJ, Llamazares M, Garabaya C, Quesada V, Lopez‐Otin C (2002) Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombos‐pondin‐1 domains. Gene 283:49–62. [DOI] [PubMed] [Google Scholar]
  • 22. Calkins CC, Sloane BF (1995) Mammalian cys‐teine protease inhibitors: biochemical properties and possible roles in tumor progression. Biol Chem Hoppe-Seyler 376:71–80. [PubMed] [Google Scholar]
  • 23. Carey DJ (1991) Control of growth and differentiation of vascular cells by extracellular matrix proteins. Annu Rev Physiol 53:161–77: 161–177. [DOI] [PubMed] [Google Scholar]
  • 24. Castino R, Pace D, Demoz M, Gargiulo M, Ariatta C, Raiteri E, Isidoro C (2002) Lysosomal proteases as potential targets for the induction of apoptotic cell death in human neuroblastomas. Int J Cancer 97:775–779. [DOI] [PubMed] [Google Scholar]
  • 25. Chandrasekar N, Jasti S, Alfred‐Yung WK, AliOsman F, Dinh DH, Olivero WC, Gujrati M, Kyritsis AP, Nicolson GL, Rao JS, Mohanam S (2000) Modulation of endothelial cell morphogenesis in vitro by MMP‐9 during glial‐endothelial cell interactions. Clin Exp Metastasis 18:337–342. [DOI] [PubMed] [Google Scholar]
  • 26. Chantrain CF, Shimada H, Jodele S, Groshen S, Ye W, Shalinsky DR, Werb Z, Coussens LM, De‐Clerck YA (2004) Stromal matrix metalloproteinase‐9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res 64:1675–1686. [DOI] [PubMed] [Google Scholar]
  • 27. Chintala SK, Kyritsis AP, Mohan PM, Mohanam S, Sawaya R, Gokslan Z, Yung WK, Steck P, Uhm JH, Aggarwal BB, Rao JS (1999) Altered actin cytoskeleton and inhibition of matrix metalloproteinase expression by vanadate and phenylarsine oxide, inhibitors of phosphotyrosine phosphatases: modulation of migration and invasion of human malignant glioma cells. Mol Carcinog 26:274–285. [PubMed] [Google Scholar]
  • 28. Chintala SK, Mohanam S, Go Y, Venkaiah B, Sawaya R, Gokaslan ZL, Rao JS (1997) Altered in vitro spreading and cytoskeletal organization in human glioma cells by downregulation of urokinase receptor. Mol Carcinog 20:355–365. [DOI] [PubMed] [Google Scholar]
  • 29. Chintala SK, Sawaya R, Aggarwal BB, Majumder S, Giri DK, Kyritsis AP, Gokaslan ZL, Rao JS (1998) Induction of matrix metalloproteinase‐9 requires a polymerized actin cytoskeleton in human malignant glioma cells. J Biol Chem 273:13545–13551. [DOI] [PubMed] [Google Scholar]
  • 30. Chintala SK, Sawaya R, Gokaslan ZL, Rao JS (1996) Modulation of matrix metalloprotease‐2 and invasion in human glioma cells by alpha 3 beta 1 integrin. Cancer Lett 103:201–208. [DOI] [PubMed] [Google Scholar]
  • 31. Choe G, Park JK, Jouben‐Steele L, Kremen TJ, Liau LM, Vinters HV, Cloughesy TF, Mischel PS (2002) Active matrix metalloproteinase 9 expression is associated with primary glioblastoma subtype. Clin Cancer Res 8:2894–2901. [PubMed] [Google Scholar]
  • 32. Clark RA, Tonnesen MG, Gailit J, Cheresh DA (1996) Transient functional expression of alphaVbeta 3 on vascular cells during wound repair. Am J Pathol 148:1407–1421. [PMC free article] [PubMed] [Google Scholar]
  • 33. Crowley CW, Cohen RL, Lucas BK, Liu G, Shuman MA, Levinson AD (1993) Prevention of metastasis by inhibition of the urokinase receptor. Proc Natl Acad Sci U S A 90:5021–5025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Curino A, Mitola DJ, Aaronson H, McMahon GA, Raja K, Keegan AD, Lawrence DA, Bugge TH (2002) Plasminogen promotes sarcoma growth and suppresses the accumulation of tumor‐infiltrating macrophages. Oncogene 21:8830–8842. [DOI] [PubMed] [Google Scholar]
  • 35. Dear AE, Medcalf RL (1998) The urokinasetype‐plasminogen‐activator receptor (CD87) is a pleiotropic molecule. Eur J Biochem 252:185–193. [DOI] [PubMed] [Google Scholar]
  • 36. Demchik LL, Sameni M, Nelson K, Mikkelsen T, Sloane BF (1999) Cathepsin B and glioma invasion. Int J Dev Neurosci 17:483–494. [DOI] [PubMed] [Google Scholar]
  • 37. Deng G, Curriden SA, Wang S, Rosenberg S, Loskutoff DJ (1996) Is plasminogen activator inhibitor‐1 the molecular switch that governs urokinase receptor‐mediated cell adhesion and release J Cell Biol 134:1563–1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Devy L, Blacher S, Grignet‐Debrus C, Bajou K, Masson V, Gerard RD, Gils A, Carmeliet G, Carmeliet P, Declerck PJ, Noel A, Foidart JM (2002) The pro‐ or antiangiogenic effect of plasminogen activator inhibitor 1 is dose dependent. FASEB J 16:147–154. [DOI] [PubMed] [Google Scholar]
  • 39. Dong Z, Kumar R, Yang X, Fidler IJ (1997) Macrophage‐derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 88:801–810. [DOI] [PubMed] [Google Scholar]
  • 40. Drake CJ, Cheresh DA, Little CD (1995) An antagonist of integrin alpha v beta 3 prevents maturation of blood vessels during embryonic neovascularization. J Cell Sci 108:2655–2661. [DOI] [PubMed] [Google Scholar]
  • 41. Dvorak HF (2000) VPF/VEGF and the angiogenic response. Semin Perinatol 24:75–78. [DOI] [PubMed] [Google Scholar]
  • 42. Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029–1039. [PMC free article] [PubMed] [Google Scholar]
  • 43. Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM (1999) Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 237:97–132. [DOI] [PubMed] [Google Scholar]
  • 44. Eeckhout Y, Vaes G (1977) Further studies on the activation of procollagenase, the latent precursor of bone collagenase. Effects of lysosomal cathepsin B, plasmin and kallikrein, and spontaneous activation. Biochem J 166:21–31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinsssases in cancer progression. Nat Rev Cancer 2:161–174. [DOI] [PubMed] [Google Scholar]
  • 46. Ellerbroek SM, Halbleib JM, Benavidez M, Warmka JK, Wattenberg EV, Stack MS, Hudson LG (2001) Phosphatidylinositol 3‐kinase activity in epidermal growth factor‐stimulated matrix metalloproteinase‐9 production and cell surface association. Cancer Res 61:1855–1861. [PubMed] [Google Scholar]
  • 47. Emmert‐Buck MR, Roth MJ, Zhuang Z, Campo E, Rozhin J, Sloane BF, Liotta LA, Stetler‐Stevenson WG (1994) Increased gelatinase A (MMP‐2) and cathepsin B activity in invasive tumor regions of human colon cancer samples. Am J Pathol 145:1285–1290. [PMC free article] [PubMed] [Google Scholar]
  • 48. Enenstein J, Kramer RH (1994) Confocal microscopic analysis of integrin expression on the microvasculature and its sprouts in the neonatal foreskin. J Invest Dermatol 103:381–386. [DOI] [PubMed] [Google Scholar]
  • 49. Fahraeus R, Lane DP (1999) The p16(INK4a) tumour suppressor protein inhibits alphavbeta3 integrin‐mediated cell spreading on vitronectin by blocking PKC‐dependent localization of alphavbeta3 to focal contacts. EMBO J 18:2106–2118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Ferrara N, Davis‐Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25. [DOI] [PubMed] [Google Scholar]
  • 51. Ferreras M, Felbor U, Lenhard T, Olsen BR, Delaisse J (2000) Generation and degradation of human endostatin proteins by various proteinases. FEBS Lett 486:247–251. [DOI] [PubMed] [Google Scholar]
  • 52. Fibbi G, Caldini R, Chevanne M, Pucci M, Schiavone N, Morbidelli L, Parenti A, Granger HJ, Del Rosso M, Ziche M (1998) Urokinase‐dependent angiogenesis in vitro and diacylglycerol production are blocked by antisense oligonucleotides against the urokinase receptor. Lab Invest 78:1109–1119. [PubMed] [Google Scholar]
  • 53. Fidler IJ, Ellis LM (1994) The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 79:185–188. [DOI] [PubMed] [Google Scholar]
  • 54. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31. [DOI] [PubMed] [Google Scholar]
  • 55. Forsyth PA, Laing TD, Gibson AW, Rewcastle NB, Brasher P, Sutherland G, Johnston RN, Edwards DR (1998) High levels of gelatinase‐B and active gelatinase‐A in metastatic glioblastoma. J Neurooncol 36:21–29. [DOI] [PubMed] [Google Scholar]
  • 56. Forsyth PA, Wong H, Laing TD, Rewcastle NB, Morris DG, Muzik H, Leco KJ, Johnston RN, Brasher PM, Sutherland G, Edwards DR (1999) Gelatinase‐A (MMP‐2), gelatinase‐B (MMP‐9) and membrane type matrix metalloproteinase‐1 (MT1‐MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 79:1828–1835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Gladson CL, Cheresh DA (1991) Glioblastoma expression of vitronectin and the alpha v beta 3 integrin. Adhesion mechanism for transformed glial cells. J Clin Invest 88:1924–1932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Gladson CL, Pijuan‐Thompson V, Olman MA, Gillespie GY, Yacoub IZ (1995) Up‐regulation of urokinase and urokinase receptor genes in malignant astrocytoma. Am J Pathol 146:1150–1160. [PMC free article] [PubMed] [Google Scholar]
  • 59. Go Y, Chintala SK, Mohanam S, Gokaslan Z, Venkaiah B, Bjerkvig R, Oka K, Nicolson GL, Sawaya R, Rao JS (1997) Inhibition of in vivo tumorigenicity and invasiveness of a human glioblastoma cell line transfected with antisense uPAR vectors. Clin Exp Metastasis 15:440–446. [DOI] [PubMed] [Google Scholar]
  • 60. Gondi CS, Lakka SS, Yanamandra N, Olivero WC, Dinh DH, Gujrati M, Tung CH, Weissleder R, Rao JS (2004) Adenovirus‐mediated expression of antisense urokinase plasminogen activator receptor and antisense cathepsin B inhibits tumor growth, invasion, and angiogenesis in gliomas. Cancer Res 64:4069–4077. [DOI] [PubMed] [Google Scholar]
  • 61. Gondi CS, Lakka SS, Yanamandra N, Siddique K, Dinh DH, Olivero WC, Gujrati M, Rao JS (2003) Expression of antisense uPAR and antisense uPA from a bicistronic adenoviral construct inhibits glioma cell invasion, tumor growth, and angiogenesis. Oncogene 22:5967–5975. [DOI] [PubMed] [Google Scholar]
  • 62. Gottschall PE, Deb S (1996) Regulation of matrix metalloproteinase expressions in astrocytes, microglia and neurons. Neuroimmunomodulation 3:69–75. [DOI] [PubMed] [Google Scholar]
  • 63. Gutierrez LS, Schulman A, Brito‐Robinson T, Noria F, Ploplis VA, Castellino FJ (2000) Tumor development is retarded in mice lacking the gene for urokinase‐type plasminogen activator or its inhibitor, plasminogen activator inhibitor‐1. Cancer Res 60:5839–5847. [PubMed] [Google Scholar]
  • 64. Hamano Y, Zeisberg M, Sugimoto H, Lively JC, Maeshima Y, Yang C, Hynes RO, Werb Z, Sudhakar A, Kalluri R (2003) Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP‐9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 3:589–601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Hammes HP, Brownlee M, Jonczyk A, Sutter A, Preissner KT (1996) Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptortype integrins inhibits retinal neovascularization. Nat Med 2:529–533. [DOI] [PubMed] [Google Scholar]
  • 66. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364. [DOI] [PubMed] [Google Scholar]
  • 67. Hansen AP, Petros AM, Meadows RP, Nettesheim DG, Mazar AP, Olejniczak ET, Xu RX, Pederson TM, Henkin J, Fesik SW (1994) Solution structure of the amino‐terminal fragment of urokinase‐type plasminogen activator. Biochemistry 33:4847–4864. [DOI] [PubMed] [Google Scholar]
  • 68. Hedberg KK, Stauff C, Hoyer‐Hansen G, Ronne E, Griffith OH (2000) High‐molecular‐weight serum protein complexes differentially promote cell migration and the focal adhesion localization of the urokinase receptor in human glioma cells. Exp Cell Res 257:67–81. [DOI] [PubMed] [Google Scholar]
  • 69. Hjortland GO, Bjornland K, Pettersen S, Garman‐Vik SS, Emilsen E, Nesland JM, Fodstad O, Engebraaten O (2003) Modulation of glioma cell invasion and motility by adenoviral gene transfer of PAI‐1. Clin Exp Metastasis 20:301–309. [DOI] [PubMed] [Google Scholar]
  • 70. Horton M (1990) Vitronectin receptor: tissue specific expression or adaptation to culture Int J Exp Pathol 71:741–759. [PMC free article] [PubMed] [Google Scholar]
  • 71. Hoyer‐Hansen G, Behrendt N, Ploug M, Dano K, Preissner KT (1997) The intact urokinase receptor is required for efficient vitronectin binding: receptor cleavage prevents ligand interaction. FEBS Lett 420:79–85. [DOI] [PubMed] [Google Scholar]
  • 72. Hsu DW, Efird JT, Hedley‐Whyte ET (1995) Prognostic role of urokinase‐type plasminogen activator in human gliomas. Am J Pathol 147:114–123. [PMC free article] [PubMed] [Google Scholar]
  • 73. Ingber DE, Folkman J (1989) How does extracellular matrix control capillary morphogenesis Cell 58:803–805. [DOI] [PubMed] [Google Scholar]
  • 74. Isahara K, Ohsawa Y, Kanamori S, Shibata M, Waguri S, Sato N, Gotow T, Watanabe T, Momoi T, Urase K, Kominami E, Uchiyama Y (1999) Regulation of a novel pathway for cell death by lysosomal aspartic and cysteine proteinases. Neuroscience 91:233–249. [DOI] [PubMed] [Google Scholar]
  • 75. Isogai C, Laug WE, Shimada H, Declerck PJ, Stins MF, Durden DL, Erdreich‐Epstein A, DeClerck YA (2001) Plasminogen activator inhibitor1 promotes angiogenesis by stimulating endothelial cell migration toward fibronectin. Cancer Res 61:5587–5594. [PubMed] [Google Scholar]
  • 76. Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S (1998) Reduced angiogenesis and tumor progression in gelatinase A‐deficient mice. Cancer Res 58:1048–1051. [PubMed] [Google Scholar]
  • 77. Jadhav U, Chigurupati S, Lakka SS, Mohanam S (2004) Inhibition of matrix metalloproteinase‐9 reduces in vitro invasion and angiogenesis in human microvascular endothelial cells. Int J Oncol 25:1407–1414. [PubMed] [Google Scholar]
  • 78. Joyce JA, Baruch A, Chehade K, Meyer‐Morse N, Giraudo E, Tsai FY, Greenbaum DC, Hager JH, Bogyo M, Hanahan D (2004) Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5:443–453. [DOI] [PubMed] [Google Scholar]
  • 79. Kanse SM, Kost C, Wilhelm OG, Andreasen PA, Preissner KT (1996) The urokinase receptor is a major vitronectin‐binding protein on endothelial cells. Exp Cell Res 224:344–353. [DOI] [PubMed] [Google Scholar]
  • 80. Kin Y, Chintala SK, Go Y, Sawaya R, Mohanam S, Kyritsis AP, Rao JS (2000) A novel role for the urokinase‐type plasminogen activator receptor in apoptosis of malignant gliomas. Int J Oncol 17:61–65. [DOI] [PubMed] [Google Scholar]
  • 81. Kirschke H, Barrett AJ, Rawlings ND (1995) Proteinases 1: lysosomal cysteine proteinases. Protein Profile 2:1581–1643. [PubMed] [Google Scholar]
  • 82. Kleihues P, Burger PC, Collins V, Newcomb EW, Ohgaki H, Cavenee WK (2000) Glioblastoma. In: Pathology and Genetics of Tumours of the Nervous System, Kleihues P, Cavenee WK, (Eds.), pp. 29–39, IARC Press: Lyon . [Google Scholar]
  • 83. Kobayashi H, Ohi H, Sugimura M, Shinohara H, Fujii T, Terao T (1992) Inhibition of in vitro ovarian cancer cell invasion by modulation of urokinase‐type plasminogen activator and cathepsin B . Cancer Res 52:3610–3614. [PubMed] [Google Scholar]
  • 84. Koblinski JE, Ahram M, Sloane BF (2000) Unraveling the role of proteases in cancer. Clin Chim Acta 291:113–135. [DOI] [PubMed] [Google Scholar]
  • 85. Koblinski JE, Dosescu J, Sameni M, Moin K, Clark K, Sloane BF (2002) Interaction of human breast fibroblasts with collagen I increases secretion of procathepsin B. J Biol Chem 277:32220–32227. [DOI] [PubMed] [Google Scholar]
  • 86. Kondraganti S, Mohanam S, Chintala SK, Kin Y, Jasti SL, Nirmala C, Lakka SS, Adachi Y, Kyritsis AP, Ali‐Osman F, Sawaya R, Fuller GN, Rao JS (2000) Selective suppression of matrix metalloproteinase‐9 in human glioblastoma cells by antisense gene transfer impairs glioblastoma cell invasion. Cancer Res 60:6851–6855. [PubMed] [Google Scholar]
  • 87. Konduri S, Lakka SS, Tasiou A, Yanamandra N, Gondi CS, Dinh DH, Olivero WC, Gujrati M, Rao JS (2001) Elevated levels of cathepsin B in human glioblastoma cell lines. Int J Oncol 19:519–524. [DOI] [PubMed] [Google Scholar]
  • 88. Konduri SD, Yanamandra N, Siddique K, Joseph A, Dinh DH, Olivero WC, Gujrati M, Kouraklis G, Swaroop A, Kyritsis AP, Rao JS (2002) Modulation of cystatin C expression impairs the invasive and tumorigenic potential of human glioblastoma cells. Oncogene 21:8705–8712. [DOI] [PubMed] [Google Scholar]
  • 89. Kono S, Rao JS, Bruner JM, Sawaya R (1994) Immunohistochemical localization of plasminogen activator inhibitor type 1 in human brain tumors. J Neuropathol Exp Neurol 53:256–262. [DOI] [PubMed] [Google Scholar]
  • 90. Kook YH, Adamski J, Zelent A, Ossowski L (1994) The effect of antisense inhibition of urokinase receptor in human squamous cell carcinoma on malignancy. EMBO J 13:3983–3991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91. Kostoulas G, Lang A, Nagase H, Baici A (1999) Stimulation of angiogenesis through cathepsin B inactivation of the tissue inhibitors of matrix metalloproteinases. FEBS Lett 455:286–290. [DOI] [PubMed] [Google Scholar]
  • 92. Krishnamoorthy B, Darnay B, Aggarwal B, Dinh DH, Kouraklis G, Olivero WC, Gujrati M, Rao JS (2001) Glioma cells deficient in urokinase plaminogen activator receptor expression are susceptible to tumor necrosis factor‐alpha‐related apoptosis‐inducing ligand‐induced apoptosis. Clin Cancer Res 7:4195–4201. [PubMed] [Google Scholar]
  • 93. Lah TT, Strojnik T, Levicar N, Bervar A, Zajc I, Pilkington G, Kos J (2000) Clinical and experimental studies of cysteine cathepsins and their inhibitors in human brain tumors. Int J Biol Markers 15:90–93. [DOI] [PubMed] [Google Scholar]
  • 94. Lakka SS, Bhattacharya A, Mohanam S, Boyd D, Rao JS (2001) Regulation of the uPA gene in various grades of human glioma cells. Int J Oncol 18:71–79. [PubMed] [Google Scholar]
  • 95. Lakka SS, Gondi CS, Dinh DH, Olivero WC, Gujrati M, Rao VH, Sioka C, Rao JS (2005) Specific interference of uPAR and MMP‐9 gene expression induced by double‐stranded RNA results in decreased invasion, tumor growth and angiogenesis in gliomas. J Biol Chem 280:21882–21892. [DOI] [PubMed] [Google Scholar]
  • 96. Lakka SS, Gondi CS, Yanamandra N, Dinh DH, Olivero WC, Gujrati M, Rao JS (2003) Synergistic down‐regulation of urokinase plasminogen activator receptor and matrix metalloproteinase‐9 in SNB19 glioblastoma cells efficiently inhibits glioma cell invasion, angiogenesis, and tumor growth. Cancer Res 63:2454–2461. [PubMed] [Google Scholar]
  • 97. Lakka SS, Gondi CS, Yanamandra N, Olivero WC, Dinh DH, Gujrati M, Rao JS (2004) Inhibition of cathepsin B and MMP‐9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene 23:4681–4689. [DOI] [PubMed] [Google Scholar]
  • 98. Lakka SS, Jasti SL, Gondi C, Boyd D, Chandrasekar N, Dinh DH, Olivero WC, Gujrati M, Rao JS (2002) Downregulation of MMP‐9 in ERK‐mutated stable transfectants inhibits glioma invasion in vitro. Oncogene 21:5601–5608. [DOI] [PubMed] [Google Scholar]
  • 99. Lakka SS, Jasti SL, Kyritsis AP, Yung WK, Ali‐Osman F, Nicolson GL, Rao JS (2000) Regulation of MMP‐9 (type IV collagenase) production and invasiveness in gliomas by the extracellular signal‐regulated kinase and jun amino‐terminal kinase signaling cascades. Clin Exp Metastasis 18:245–252. [DOI] [PubMed] [Google Scholar]
  • 100. Lakka SS, Rajan M, Gondi C, Yanamandra N, Chandrasekar N, Jasti SL, Adachi Y, Siddique K, Gujrati M, Olivero W, Dinh DH, Kouraklis G, Kyritsis AP, Rao JS (2002) Adenovirus‐mediated expression of antisense MMP‐9 in glioma cells inhibits tumor growth and invasion. Oncogene 21:8011–8019. [DOI] [PubMed] [Google Scholar]
  • 101. Leek RD, Harris AL, Lewis CE (1994) Cytokine networks in solid human tumors: regulation of angiogenesis. J Leukoc Biol 56:423–435. [DOI] [PubMed] [Google Scholar]
  • 102. Liang OD, Chavakis T, Kanse SM, Preissner KT (2001) Ligand binding regions in the receptor for urokinase‐type plasminogen activator. J Biol Chem 276:28946–28953. [DOI] [PubMed] [Google Scholar]
  • 103. Lignelid H, Collins VP, Jacobsson B (1997) Cystatin C and transthyretin expression in normal and neoplastic tissues of the human brain and pituitary. Acta Neuropathol (Berl) 93:494–500. [DOI] [PubMed] [Google Scholar]
  • 104. Liotta LA, Steeg PS, Stetler‐Stevenson WG (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64:327–336. [DOI] [PubMed] [Google Scholar]
  • 105. Lockhart AC, Braun RD, Yu D, Ross JR, Dewhirst MW, Humphrey JS, Thompson S, Williams KM, Klitzman B, Yuan F, Grichnik JM, Proia AD, Conway DA, Hurwitz HI (2003) Reduction of wound angiogenesis in patients treated with BMS‐275291, a broad spectrum matrix metalloproteinase inhibitor. Clin Cancer Res 9:586–593. [PubMed] [Google Scholar]
  • 106. MacDonald TJ, DeClerck YA, Laug WE (1998) Urokinase induces receptor mediated brain tumor cell migration and invasion. J Neurooncol 40:215–226. [DOI] [PubMed] [Google Scholar]
  • 107. Maeda A, Sobel RA (1996) Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J Neuropathol Exp Neurol 55:300–309. [DOI] [PubMed] [Google Scholar]
  • 108. Maekawa R, Maki H, Yoshida H, Hojo K, Tanaka H, Wada T, Uchida N, Takeda Y, Kasai H, Okamoto H, Tsuzuki H, Kambayashi Y, Watanabe F, Kawada K, Toda K, Ohtani M, Sugita K, Yoshioka T (1999) Correlation of antiangiogenic and antitumor efficacy of N‐biphenyl sulfonyl‐phenylalanine hydroxiamic acid (BPHA), an orally‐active, selective matrix metalloproteinase inhibitor. Cancer Res 59:1231–1235. [PubMed] [Google Scholar]
  • 109. Mandriota SJ, Seghezzi G, Vassalli JD, Ferrara N, Wasi S, Mazzieri R, Mignatti P, Pepper MS (1995) Vascular endothelial growth factor increases urokinase receptor expression in vascular endothelial cells. J Biol Chem 270:9709–9716. [DOI] [PubMed] [Google Scholar]
  • 110. Max R, Gerritsen RR, Nooijen PT, Goodman SL, Sutter A, Keilholz U, Ruiter DJ, de Waal RM (1997) Immunohistochemical analysis of integrin alpha vbeta3 expression on tumor‐associated vessels of human carcinomas. Int J Cancer 71:320–324. [DOI] [PubMed] [Google Scholar]
  • 111. May AE, Kanse SM, Lund LR, Gisler RH, Imhof BA, Preissner KT (1998) Urokinase receptor (CD87) regulates leukocyte recruitment via beta 2 integrins in vivo . J Exp Med 188:1029–1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112. Mazar AP, Buko APAM, Barnathan ESHJ (1992) Domain analysis of urokinase plasminogen activator (uPA) preparation and characterization of intact A‐chain molecules. Fibrinolysis 6:49–55. [Google Scholar]
  • 113. Mazar AP, Henkin J, Goldfarb RH (1999) The urokinase plasminogen activator system in cancer: implications for tumor angiogenesis and metastasis. Angiogenesis 3:15–32. [DOI] [PubMed] [Google Scholar]
  • 114. Mikkelsen T, Yan PS, Ho KL, Sameni M, Sloane BF, Rosenblum ML (1995) Immunolocalization of cathepsin B in human glioma: implications for tumor invasion and angiogenesis. J Neurosurg 83:285–290. [DOI] [PubMed] [Google Scholar]
  • 115. Mira E, Lacalle RA, Buesa JM, de Buitrago GG, Jimenez‐Baranda S, Gomez‐Mouton C, Martinez A, Manes S (2004) Secreted MMP9 promotes angiogenesis more efficiently than constitutive active MMP9 bound to the tumor cell surface. J Cell Sci 117:1847–1857. [DOI] [PubMed] [Google Scholar]
  • 116. Mishima K, Mazar AP, Gown A, Skelly M, Ji XD, Wang XD, Jones TR, Cavenee WK, Huang HJ (2000) A peptide derived from the non‐receptor‐binding region of urokinase plasminogen activator inhibits glioblastoma growth and angiogenesis in vivo in combination with cisplatin. Proc Natl Acad Sci U S A 97:8484–8489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117. Miyake K, Kimura S, Nakanishi M, Hisada A, Hasegawa M, Nagao S, Abe Y (2000) Transforming growth factor‐beta1 stimulates contraction of human glioblastoma cell‐mediated collagen lattice through enhanced alpha2 integrin expression. J Neuropathol Exp Neurol 59:18–28. [DOI] [PubMed] [Google Scholar]
  • 118. Mohan PM, Chintala SK, Mohanam S, Gladson CL, Kim ES, Gokaslan ZL, Lakka SS, Roth JA, Fang B, Sawaya R, Kyritsis AP, Rao JS (1999) Adenovirus‐mediated delivery of antisense gene to urokinase‐type plasminogen activator receptor suppresses glioma invasion and tumor growth. Cancer Res 59:3369–3373. [PubMed] [Google Scholar]
  • 119. Mohanam S, Chintala SK, Go Y, Bhattacharya A, Venkaiah B, Boyd D, Gokaslan ZL, Sawaya R, Rao JS (1997) In vitro inhibition of human glioblastoma cell line invasiveness by antisense uPA receptor. Oncogene 14:1351–1359. [DOI] [PubMed] [Google Scholar]
  • 120. Mohanam S, Jasti SL, Kondraganti SR, Chandrasekar N, Kin Y, Fuller GN, Lakka SS, Kyritsis AP, Dinh DH, Olivero WC, Gujrati M, Yung WK, Rao JS (2001) Stable transfection of urokinase‐type plasminogen activator antisense construct modulates invasion of human glioblastoma cells. Clin Cancer Res 7:2519–2526. [PubMed] [Google Scholar]
  • 121. Mohanam S, Jasti SL, Kondraganti SR, Chandrasekar N, Lakka SS, Kin Y, Fuller GN, Yung AW, Kyritsis AP, Dinh DH, Olivero WC, Gujrati M, AliOsman F, Rao JS (2001) Down‐regulation of cathepsin B expression impairs the invasive and tumorigenic potential of human glioblastoma cells. Oncogene 20:3665–3673. [DOI] [PubMed] [Google Scholar]
  • 122. Mohanam S, Sawaya R, McCutcheon I, Ali‐Osman F, Boyd D, Rao JS (1993) Modulation of in vitro invasion of human glioblastoma cells by urokinase‐type plasminogen activator receptor antibody. Cancer Res 53:4143–4147. [PubMed] [Google Scholar]
  • 123. Moon SK, Cho GO, Jung SY, Gal SW, Kwon TK, Lee YC, Madamanchi NR, Kim CH (2003) Quercetin exerts multiple inhibitory effects on vascular smooth muscle cells: role of ERK1/2, cell‐cycle regulation, and matrix metalloproteinase‐9. Biochem Biophys Res Commun 301:1069–1078. [DOI] [PubMed] [Google Scholar]
  • 124. Mori T, Abe T, Wakabayashi Y, Hikawa T, Matsuo K, Yamada Y, Kuwano M, Hori S (2000) Upregulation of urokinase‐type plasminogen activator and its receptor correlates with enhanced invasion activity of human glioma cells mediated by transforming growth factor‐alpha or basic fibroblast growth factor. J Neurooncol 46:115–123. [DOI] [PubMed] [Google Scholar]
  • 125. Moses MA, Sudhalter J, Langer R (1990) Identification of an inhibitor of neovascularization from cartilage. Science 248:1408–1410. [DOI] [PubMed] [Google Scholar]
  • 126. Muir EM, Adcock KH, Morgenstern DA, Clayton R, von Stillfried N, Rhodes K, Ellis C, Fawcett JW, Rogers JH (2002) Matrix metalloproteases and their inhibitors are produced by overlapping populations of activated astrocytes. Mol Brain Res 100:103–117. [DOI] [PubMed] [Google Scholar]
  • 127. Muracciole X, Romain S, Dufour H, Palmari J, Chinot O, Ouafik L, Grisoli F, Branger DF, Martin PM (2002) PAI‐1 and EGFR expression in adult glioma tumors: toward a molecular prognostic classification. Int J Radiat Oncol Biol Phys 52:592–598. [DOI] [PubMed] [Google Scholar]
  • 128. Murphy G, Knauper V, Cowell S, Hembry R, Stanton H, Butler G, Freije J, Pendas AM, Lopez‐Otin C (1999) Evaluation of some newer matrix metalloproteinases. Ann N Y Acad Sci 878:25–39. [DOI] [PubMed] [Google Scholar]
  • 129. Naglich JG, Jure‐Kunkel M, Gupta E, Fargnoli J, Henderson AJ, Lewin AC, Talbott R, Baxter A, Bird J, Savopoulos R, Wills R, Kramer RA, Trail PA (2001) Inhibition of angiogenesis and metastasis in two murine models by the matrix metalloproteinase inhibitor, BMS‐275291. Cancer Res 61:8480–8485. [PubMed] [Google Scholar]
  • 130. Nakagawa T, Kubota T, Kabuto M, Sato K, Kawano H, Hayakawa T, Okada Y (1994) Production of matrix metalloproteinases and tissue inhibitor of metalloproteinases‐1 by human brain tumors. J Neurosurg 81:69–77. [DOI] [PubMed] [Google Scholar]
  • 131. Nakano A, Tani E, Miyazaki K, Furuyama J, Matsumoto T (1993) Expressions of matrilysin and stromelysin in human glioma cells. Biochem Biophys Res Commun 192:999–1003. [DOI] [PubMed] [Google Scholar]
  • 132. Nirmala C, Jasti SL, Sawaya R, Kyritsis AP, Konduri SD, Ali‐Osman F, Rao JS, Mohanam S (2000) Effects of radiation on the levels of MMP‐2, MMP‐9 and TIMP‐1 during morphogenic glial‐endothelial cell interactions. Int J Cancer 88:766–771. [DOI] [PubMed] [Google Scholar]
  • 133. Nisato RE, Tille JC, Jonczyk A, Goodman SL, Pepper MS (2003) Alphav beta 3 and alphav beta 5 integrin antagonists inhibit angiogenesis in vitro. Angiogenesis 6:105–119. [DOI] [PubMed] [Google Scholar]
  • 134. Nusrat AR, Mazar A, Henkin J, Chapman HA (1992) A role for urokinase in mediating phorbol ester induced macrophage‐like maturation and adhesion of U937 and other myloid cells. Fibrinolysis 6:71–76. [Google Scholar]
  • 135. O'Reilly MS, Wiederschain D, Stetler‐Stevenson WG, Folkman J, Moses MA (1999) Regulation of angiostatin production by matrix metalloproteinase‐2 in a model of concomitant resistance. J Biol Chem 274:29568–29571. [DOI] [PubMed] [Google Scholar]
  • 136. Okada Y, Copeland BR, Hamann GF, Koziol JA, Cheresh DA, del Zoppo GJ (1996) Integrin alphavbeta3 is expressed in selected microvessels after focal cerebral ischemia. Am J Pathol 149:37–44. [PMC free article] [PubMed] [Google Scholar]
  • 137. Ossowski L, Aguirre‐Ghiso JA (2000) Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr Opin Cell Biol 12:613–620. [DOI] [PubMed] [Google Scholar]
  • 138. Park IK, Lyu MA, Yeo SJ, Han TH, Kook YH (2000) Sp1 mediates constitutive and transforming growth factor beta‐inducible expression of urokinase type plasminogen activator receptor gene in human monocyte‐like U937 cells. Biochim Biophys Acta 1490:302–310. [DOI] [PubMed] [Google Scholar]
  • 139. Park JE, Keller GA, Ferrara N (1993) The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix‐bound VEGF. Mol Biol Cell 4:1317–1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140. Park MJ, Kim MS, Park IC, Kang HS, Yoo H, Park SH, Rhee CH, Hong SI, Lee SH (2002) PTEN suppresses hyaluronic acid‐induced matrix metalloproteinase‐9 expression in U87MG glioblastoma cells through focal adhesion kinase dephosphorylation. Cancer Res 62:6318–6322. [PubMed] [Google Scholar]
  • 141. Patterson BC, Sang QA (1997) Angiostatin‐converting enzyme activities of human matrilysin (MMP‐7) and gelatinase B/type IV collagenase (MMP‐9). J Biol Chem 272:28823–28825. [DOI] [PubMed] [Google Scholar]
  • 142. Pepper MS, Matsumoto K, Nakamura T, Orci L, Montesano R (1992) Hepatocyte growth factor increases urokinase‐type plasminogen activator (u‐PA) and u‐PA receptor expression in Madin‐Darby canine kidney epithelial cells. J Biol Chem 267:20493–20496. [PubMed] [Google Scholar]
  • 143. Pepper MS, Montesano R, Mandriota SJ, Orci L, Vassalli JD (1996) Angiogenesis: a paradigm for balanced extracellular proteolysis during cell migration and morphogenesis. Enzyme Protein 49:138–162. [DOI] [PubMed] [Google Scholar]
  • 144. Pepper MS, Sappino AP, Stocklin R, Montesano R, Orci L, Vassalli JD (1993) Upregulation of urokinase receptor expression on migrating endothelial cells. J Cell Biol 122:673–684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145. Platten M, Wick W, Wild‐Bode C, Aulwurm S, Dichgans J, Weller M (2000) Transforming growth factors beta(1) (TGF‐beta(1)) and TGF‐beta(2) promote glioma cell migration via Up‐regulation of alpha(V)beta(3) integrin expression. Biochem Biophys Res Commun 268:607–611. [DOI] [PubMed] [Google Scholar]
  • 146. Ploug M (1998) Identification of specific sites involved in ligand binding by photoaffinity labeling of the receptor for the urokinase‐type plasminogen activator. Residues located at equivalent positions in uPAR domains I and III participate in the assembly of a composite ligand‐binding site. Biochemistry 37:16494–16505. [DOI] [PubMed] [Google Scholar]
  • 147. Polverini PJ (1996) Cellular adhesion molecules. Newly identified mediators of angiogenesis. Am J Pathol 148:1023–1029. [PMC free article] [PubMed] [Google Scholar]
  • 148. Pozzi A, LeVine WF, Gardner HA (2002) Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis. Oncogene 21:272–281. [DOI] [PubMed] [Google Scholar]
  • 149. Preissner KT, Kanse SM, May AE (2000) Urokinase receptor: a molecular organizer in cellular communication. Curr Opin Cell Biol 12:621–628. [DOI] [PubMed] [Google Scholar]
  • 150. Premzl A, Zavasnik‐Bergant V, Turk V, Kos J (2003) Intracellular and extracellular cathepsin B facilitate invasion of MCF‐10A neoT cells through reconstituted extracellular matrix in vitro. Exp Cell Res 283:206–214. [DOI] [PubMed] [Google Scholar]
  • 151. Primakoff P, Myles DG (2000) The ADAM gene family: surface proteins with adhesion and protease activity. Trends Genet 16:83–87. [DOI] [PubMed] [Google Scholar]
  • 152. Qian F, Frankfater A, Chan SJ, Steiner DF (1991) The structure of the mouse cathepsin B gene and its putative promoter. DNA Cell Biol 10:159–168. [DOI] [PubMed] [Google Scholar]
  • 153. Qian X, Wang TN, Rothman VL, Nicosia RF, Tuszynski GP (1997) Thrombospondin‐1 modulates angiogenesis in vitro by up‐regulation of matrix metalloproteinase‐9 in endothelial cells. Exp Cell Res 235:403–412. [DOI] [PubMed] [Google Scholar]
  • 154. Quax PH, Grimbergen JM, Lansink M, Bakker AH, Blatter MC, Belin D, van Hinsbergh VW, Verheijen JH (1998) Binding of human urokinase‐type plasminogen activator to its receptor: residues involved in species specificity and binding. Arterioscler Thromb Vasc Biol 18:693–701. [DOI] [PubMed] [Google Scholar]
  • 155. Rabbani SA, Mazar AP, Bernier SM, Haq M, Bolivar I, Henkin J, Goltzman D (1992) Structural requirements for the growth factor activity of the amino‐terminal domain of urokinase. J Biol Chem 267:14151–14156. [PubMed] [Google Scholar]
  • 156. Raithatha SA, Muzik H, Muzik H, Rewcastle NB, Johnston RN, Edwards DR, Forsyth PA (2000) Localization of gelatinase‐A and gelatinase‐B mRNA and protein in human gliomas. Neuro-oncol 2:145–150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157. Rao JS, Steck PA, Mohanam S, Stetler‐Stevenson WG, Liotta LA, Sawaya R (1993) Elevated levels of M(r) 92,000 type IV collagenase in human brain tumors. Cancer Res 53:2208–2211. [PubMed] [Google Scholar]
  • 158. Rao JS, Yamamoto M, Mohaman S, Gokaslan ZL, Fuller GN, Stetler‐Stevenson WG, Rao VH, Liotta LA, Nicolson GL, Sawaya RE (1996) Expression and localization of 92 kDa type IV collagenase/ gelatinase B (MMP‐9) in human gliomas. Clin Exp Metastasis 14:12–18. [DOI] [PubMed] [Google Scholar]
  • 159. Rao NK, Shi GP, Chapman HA (1995) Urokinase receptor is a multifunctional protein: influence of receptor occupancy on macrophage gene expression. J Clin Invest 96:465–474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160. Rempel SA, Rosenblum ML, Mikkelsen T, Yan PS, Ellis KD, Golembieski WA, Sameni M, Rozhin J, Ziegler G, Sloane BF (1994) Cathepsin B expression and localization in glioma progression and invasion. Cancer Res 54:6027–6031. [PubMed] [Google Scholar]
  • 161. Resnati M, Pallavicini I, Wang JM, Oppenheim J, Serhan CN, Romano M, Blasi F (2002) The fibrinolytic receptor for urokinase activates the G protein‐coupled chemotactic receptor FPRL1/ LXA4R. Proc Natl Acad Sci U S A 99:1359–1364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162. Ribatti D, Leali D, Vacca A, Giuliani R, Gualandris A, Roncali L, Nolli ML, Presta M (1999) In vivo angiogenic activity of urokinase: role of endogenous fibroblast growth factor‐2. J Cell Sci 112:4213–4221. [DOI] [PubMed] [Google Scholar]
  • 163. Risau W, Lemmon V (1988) Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev Biol 125:441–450. [DOI] [PubMed] [Google Scholar]
  • 164. Roldan AL, Cubellis MV, Masucci MT, Behrendt N, Lund LR, Dano K, Appella E, Blasi F (1990) Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis. EMBO J 9:467–474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165. Romanic AM, Madri JA (1994) Extracellular matrix‐degrading proteinases in the nervous system. Brain Pathol 4:145–156. [DOI] [PubMed] [Google Scholar]
  • 166. Rooprai HK, McCormick D (1997) Proteases and their inhibitors in human brain tumours: a review. Anticancer Res 17:4151–4162. [PubMed] [Google Scholar]
  • 167. Rooprai HK, Rucklidge GJ, Panou C, Pilkington GJ (2000) The effects of exogenous growth factors on matrix metalloproteinase secretion by human brain tumour cells. Br J Cancer 82:52–55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 168. Roshy S, Sloane BF, Moin K (2003) Pericellular cathepsin B and malignant progression. Cancer Metastasis Rev 22:271–286. [DOI] [PubMed] [Google Scholar]
  • 169. Ruegg C, Yilmaz A, Bieler G, Bamat J, Chaubert P, Lejeune FJ (1998) Evidence for the involvement of endothelial cell integrin alphaVbeta3 in the disruption of the tumor vasculature induced by TNF and IFN‐gamma. Nat Med 4:408–414. [DOI] [PubMed] [Google Scholar]
  • 170. Rustamzadeh E, Li C, Doumbia S, Hall WA, Vallera DA (2003) Targeting the over‐expressed urokinase‐type plasminogen activator receptor on glioblastoma multiforme. J Neurooncol 65:63–75. [DOI] [PubMed] [Google Scholar]
  • 171. Sabapathy KT, Pepper MS, Kiefer F, Mohle‐Steinlein U, Tacchini‐Cottier F, Fetka I, Breier G, Risau W, Carmeliet P, Montesano R, Wagner EF (1997) Polyoma middle T‐induced vascular tumor formation: the role of the plasminogen activator/ plasmin system. J Cell Biol 19;137:953–963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172. Sage EH (1997) Pieces of eight: bioactive fragments of extracellular proteins as regulators of angiogenesis. Trends Cell Biol 7:182–186. [DOI] [PubMed] [Google Scholar]
  • 173. Sawaya R, Go Y, Kyritisis AP, Uhm J, Venkaiah B, Mohanam S, Gokaslan ZL, Rao JS (1998) Elevated levels of Mr 92,000 type IV collagenase during tumor growth in vivo. Biochem Biophys Res Commun 251:632–636. [DOI] [PubMed] [Google Scholar]
  • 174. Sephel GC, Kennedy R, Kudravi S (1996) Expression of capillary basement membrane components during sequential phases of wound angiogenesis. Matrix Biol 15:263–279. [DOI] [PubMed] [Google Scholar]
  • 175. Shapiro SD, Fliszar CJ, Broekelmann TJ, Mecham RP, Senior RM, Welgus HG (1995) Activation of the 92‐kDa gelatinase by stromelysin and 4aminophenylmercuric acetate. Differential processing and stabilization of the carboxyl‐terminal domain by tissue inhibitor of metalloproteinases (TIMP). J Biol Chem 270:6351–6356. [DOI] [PubMed] [Google Scholar]
  • 176. Shetty S, Idell S (1998) A urokinase receptor mRNA binding protein from rabbit lung fibroblasts and mesothelial cells. Am J Physiol 274: L871–L882. [DOI] [PubMed] [Google Scholar]
  • 177. Shibata M, Kanamori S, Isahara K, Ohsawa Y, Konishi A, Kametaka S, Watanabe T, Ebisu S, Ishido K, Kominami E, Uchiyama Y (1998) Participation of cathepsins B and D in apoptosis of PC12 cells following serum deprivation. Biochem Biophys Res Commun 251:199–203. [DOI] [PubMed] [Google Scholar]
  • 178. Simon DI, Wei Y, Zhang L, Rao NK, Xu H, Chen Z, Liu Q, Rosenberg S, Chapman HA (2000) Identification of a urokinase receptor‐integrin interaction site. Promiscuous regulator of integrin function. J Biol Chem 275:10228–10234. [DOI] [PubMed] [Google Scholar]
  • 179. Sivaparvathi M, McCutcheon I, Sawaya R, Nicolson GL, Rao JS (1996) Expression of cysteine protease inhibitors in human gliomas and meningiomas. Clin Exp Metastasis 14:344–350. [DOI] [PubMed] [Google Scholar]
  • 180. Sivaparvathi M, Sawaya R, Wang SW, Rayford A, Yamamoto M, Liotta LA, Nicolson GL, Rao JS (1995) Overexpression and localization of cathepsin B during the progression of human gliomas. Clin Exp Metastasis 13:49–56. [DOI] [PubMed] [Google Scholar]
  • 181. Sloane BF (1994) Pathogenesis and proteases ‐ alterations in processing and trafficking of Cathepsin B during malignant progression. In: Biological Functions of Proteases and Inhibitors, Katunama N, Suzuki J, Travis J, Fritz H, (Eds.), pp. 131–147, Scientific Societies Press: Tokyo . [Google Scholar]
  • 182. Somanna A, Mundodi V, Gedamu L (2002) Functional analysis of cathepsin B‐like cysteine proteases from Leishmania donovani complex. Evidence for the activation of latent transforming growth factor beta. J Biol Chem 277:25305–25312. [DOI] [PubMed] [Google Scholar]
  • 183. Spiess E, Bruning A, Gack S, Ulbricht B, Spring H, Trefz G, Ebert W (1994) Cathepsin B activity in human lung tumor cell lines: ultrastructural localization, pH sensitivity, and inhibitor status at the cellular level. J Histochem Cytochem 42:917–929. [DOI] [PubMed] [Google Scholar]
  • 184. Stack MS, Johnson DA (1994) Human mast cell tryptase activates single‐chain urinary‐type plasminogen activator (pro‐urokinase). J Biol Chem 269:9416–9419. [PubMed] [Google Scholar]
  • 185. Strojnik T, Kos J, Zidanik B, Golouh R, Lah T (1999) Cathepsin B immunohistochemical staining in tumor and endothelial cells is a new prognostic factor for survival in patients with brain tumors. Clin Cancer Res 5:559–567. [PubMed] [Google Scholar]
  • 186. Stupack DG, Cheresh DA (2002) ECM remodeling regulates angiogenesis: endothelial integrins look for new ligands. Sci STKE 119:PE7. [DOI] [PubMed] [Google Scholar]
  • 187. Sudhakar A, Sugimoto H, Yang C, Lively J, Zeisberg M, Kalluri R (2003) Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci U S A 100:4766–4771. [DOI] [PMC free article] [PubMed] [Google Scholar] [Research Misconduct Found]
  • 188. Sugiura Y, Ma L, Sun B, Shimada H, Laug WE, Seeger RC, DeClerck YA (1999) The plasminogen‐plasminogen activator (PA) system in neuroblastoma: role of PA inhibitor‐1 in metastasis. Cancer Res 59:1327–1336. [PubMed] [Google Scholar]
  • 189. Takuma K, Kiriu M, Mori K, Lee E, Enomoto R, Baba A, Matsuda T (2003) Roles of cathepsins in reperfusion‐induced apoptosis in cultured astrocytes. Neurochem Int 42:153–159. [DOI] [PubMed] [Google Scholar]
  • 190. Tang BL (2001) ADAMTS: a novel family of extracellular matrix proteases. Int J Biochem Cell Biol 33:33–44. [DOI] [PubMed] [Google Scholar]
  • 191. Tarui T, Mazar AP, Cines DB, Takada Y (2001) Urokinase‐type plasminogen activator receptor (CD87) is a ligand for integrins and mediates cell‐cell interaction. J Biol Chem 276:3983–3990. [DOI] [PubMed] [Google Scholar]
  • 192. Todhunter DA, Hall WA, Rustamzadeh E, Shu Y, Doumbia SO, Vallera DA (2004) A bispecific immunotoxin (DTAT13) targeting human IL‐13 receptor (IL‐13R) and urokinase‐type plasminogen activator receptor (uPAR) in a mouse xenograft model. Protein Eng Des Sel 17:157–164. [DOI] [PubMed] [Google Scholar]
  • 193. Tonn JC, Kerkau S, Hanke A, Bouterfa H, Mueller JG, Wagner S, Vince GH, Roosen K (1999) Effect of synthetic matrix‐metalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro. Int J Cancer 80:764–772. [DOI] [PubMed] [Google Scholar]
  • 194. Tressler RJ, Pitot PA, Stratton JR, Forrest LD, Zhuo S, Drummond RJ, Fong S, Doyle MV, Doyle LV, Min HY, Rosenberg S (1999) Urokinase receptor antagonists: discovery and application to in vivo models of tumor growth. APMIS 107:168–173. [DOI] [PubMed] [Google Scholar]
  • 195. Turk V, Kos J, Turk B (2004) Cysteine cathepsins (proteases)–on the main stage of cancer Cancer Cell 5:409–410. [DOI] [PubMed] [Google Scholar]
  • 196. Turk V, Turk B, Turk D (2001) Lysosomal cysteine proteases: facts and opportunities. EMBO J 20:4629–4633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 197. Uhm JH, Dooley NP, Kyritsis AP, Rao JS, Gladson CL (1999) Vitronectin, a glioma‐derived extracellular matrix protein, protects tumor cells from apoptotic death. Clin Cancer Res 5:1587–1594. [PubMed] [Google Scholar]
  • 198. Uhm JH, Dooley NP, Oh LY, Yong VW (1998) Oligodendrocytes utilize a matrix metalloproteinase, MMP‐9, to extend processes along an astrocyte extracellular matrix. Glia 22:53–63. [DOI] [PubMed] [Google Scholar]
  • 199. Vallera DA, Li C, Jin N, Panoskaltsis‐Mortari A, Hall WA (2002) Targeting urokinase‐type plasminogen activator receptor on human glioblastoma tumors with diphtheria toxin fusion protein DTAT. J Natl Cancer Inst 94:597–606. [DOI] [PubMed] [Google Scholar]
  • 200. van der Pluigm G, Sijmons B, Vloedgraven H, van der Bent C, Drijfhout JW, Verheijen J, Quax P, Karperien M, Papapoulos S, Lowik C (2001) Urokinase‐receptor/integrin complexes are functionally involved in adhesion and progression of human breast cancer in vivo. Am J Pathol 159:971–982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 201. Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z (1998) MMP‐9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411–422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 202. Waltz DA, Chapman HA (1994) Reversible cellular adhesion to vitronectin linked to urokinase receptor occupancy. J Biol Chem 269:14746–14750. [PubMed] [Google Scholar]
  • 203. Waltz DA, Natkin LR, Fujita RM, Wei Y, Chapman HA (1997) Plasmin and plasminogen activator inhibitor type 1 promote cellular motility by regulating the interaction between the urokinase receptor and vitronectin. J Clin Invest 100:58–67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 204. Wang Y (2001) The role and regulation of urokinase‐type plasminogen activator receptor gene expression in cancer invasion and metastasis. Med Res Rev 21:146–170. [DOI] [PubMed] [Google Scholar]
  • 205. Wang Y, Dang J, Wang H, Allgayer H, Murrell GA, Boyd D (2000) Identification of a novel nuclear factor‐kappaB sequence involved in expression of urokinase‐type plasminogen activator receptor. Eur J Biochem 267:3248–3254. [DOI] [PubMed] [Google Scholar]
  • 206. Wei Y, Yang X, Liu Q, Wilkins JA, Chapman HA (1999) A role for caveolin and the urokinase receptor in integrin‐mediated adhesion and signaling. J Cell Biol 144:1285–1294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 207. Westermarck J, Kahari VM (1999) Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 13:781–792. [PubMed] [Google Scholar]
  • 208. Witz IP (2000) Differential expression of genes by tumor cells of a low or a high malignancy phenotype: the case of murine and human Ly‐6 proteins. J Cell Biochem 34(Suppl):61–66. [PubMed] [Google Scholar]
  • 209. Xue W, Mizukami I, Todd RF, III , Petty HR (1997) Urokinase‐type plasminogen activator receptors associate with beta1 and beta3 integrins of fibrosarcoma cells: dependence on extracellular matrix components. Cancer Res 57:1682–1689. [PubMed] [Google Scholar]
  • 210. Yamamoto M, Ikeda K, Ohshima K, Tsugu H, Kimura H, Tomonaga M (1998) Expression and cellular localization of low‐density lipoprotein receptor‐related protein/alpha 2‐macroglobulin receptor in human glioblastoma in vivo. Brain Tumor Pathol 15:23–30. [DOI] [PubMed] [Google Scholar]
  • 211. Yamamoto M, Sawaya R, Mohanam S, Bindal AK, Bruner JM, Oka K, Rao VH, Tomonaga M, Nicolson GL, Rao JS (1994) Expression and localization of urokinase‐type plasminogen activator in human astrocytomas in vivo. Cancer Res 54:3656–3661. [PubMed] [Google Scholar]
  • 212. Yamamoto M, Sawaya R, Mohanam S, Loskutoff DJ, Bruner JM, Rao VH, Oka K, Tomonaga M, Nicolson GL, Rao JS (1994) Expression and cellular localization of messenger RNA for plasminogen activator inhibitor type 1 in human astrocytomas in vivo. Cancer Res 54:3329–3332. [PubMed] [Google Scholar]
  • 213. Yamamoto M, Sawaya R, Mohanam S, Rao VH, Bruner JM, Nicolson GL, Rao JS (1994) Expression and localization of urokinase‐type plasminogen activator receptor in human gliomas. Cancer Res 54:5016–5020. [PubMed] [Google Scholar]
  • 214. Yan S, Berquin IM, Troen BR, Sloane BF (2000) Transcription of human cathepsin B is mediated by Sp1 and Ets family factors in glioma. DNA Cell Biol 19:79–91. [DOI] [PubMed] [Google Scholar]
  • 215. Yana I, Weiss SJ (2000) Regulation of membrane type‐1 matrix metalloproteinase activation by proprotein convertases. Mol Biol Cell 11:2387–2401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 216. Yanamandra N, Gumidyala KV, Waldron KG, Gujrati M, Olivero WC, Dinh DH, Rao JS, Mohanam S (2004) Blockade of cathepsin B expression in human glioblastoma cells is associated with suppression of angiogenesis. Oncogene 23:2224–2230. [DOI] [PubMed] [Google Scholar]
  • 217. Yanamandra N, Konduri SD, Mohanam S, Dinh DH, Olivero WC, Gujrati M, Nicolson GL, Obeyeseke M, Rao JS (2001) Downregulation of urokinase‐type plasminogen activator receptor (uPAR) induces caspase‐mediated cell death in human glioblastoma cells. Clin Exp Metastasis 18:611–615. [DOI] [PubMed] [Google Scholar]
  • 218. Yasunaga C, Nakashima Y, Sueishi K (1989) A role of fibrinolytic activity in angiogenesis. Quantitative assay using in vitro method. Lab Invest 61:698–704. [PubMed] [Google Scholar]
  • 219. Zhu DM, Uckun FM (2000) Cathepsin inhibition induces apoptotic death in human leukemia and lymphoma cells. Leuk Lymphoma 39:343–354. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES