Abstract
In recent years the amyloid cascade hypothesis of Alzheimer disease (AD) has been increasingly referred to as the amyloid β protein (Aβ) cascade hypothesis. This subtle rephrasing reflects the acknowledgment that there is debate within the field as to whether Aβ aggregates other than Aβ deposited as classic amyloid fibrils could trigger the pathological cascade that results in neuronal dysfunction and neurodegeneration. Despite this semantic shift, which highlights one enigmatic aspects of AD, the evidence supporting the Aβ hypothesis of AD is extensive. More importantly the Aβ hypothesis of AD has led and will continue to lead to the development of rationale therapeutic strategies that are likely to either prevent or treat this devastating disease. In this review, the evidence supporting the Aβ hypothesis and the recent advances in anti‐Aβ therapy are discussed.
Full Text
The Full Text of this article is available as a PDF (77.8 KB).
REFERENCES
- 1. Bales K, Verina T, Dodel R, Du Y, Altstiel L, Bender M, Hyslop P, Johnstone E, Little S, Cummins D, et al (1997) Lack of apolipoprotein E dramatically reduces amyloid beta‐peptide deposition. Nat-Genet 17:263–264. [DOI] [PubMed] [Google Scholar]
- 2. Bertram L, Blacker D, Mullin K, Keeney D, Jones J, Basu S, Yhu S, McInnis MG, Go RC, Vekrellis K, et al (2000) Evidence for genetic linkage of Alzheimer's disease to chromosome 10q. Science 290:2302–2303. [DOI] [PubMed] [Google Scholar]
- 3. Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL, Wong PC (2001) BACE1 is the major beta‐secretase for generation of Abeta peptides by neurons. Nat Neurosci 4:233–234. [DOI] [PubMed] [Google Scholar]
- 4. Cai XD, Golde TE, Younkin SG (1993) Release of excess amyloid beta protein from a mutant amyloid beta protein precursor. Science 259:514–516. [DOI] [PubMed] [Google Scholar]
- 5. Caughey B, Lansbury PT, Jr. (2003) Protofibrils, Pores, Fibrils, and Neurodegeneration: Separating the Responsible Protein Aggregates from the Innocent Bystanders. Annu Rev Neurosci 9:9. [DOI] [PubMed] [Google Scholar]
- 6. Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim Y, et al (2001) Treatment with a copper‐zinc chelator markedly and rapidly inhibits beta‐amyloid accumulation in Alzheimer's disease transgenic mice. Neuron 30:665–676. [DOI] [PubMed] [Google Scholar]
- 7. Curtain CC, Ali F, Volitakis I, Cherny RA, Norton RS, Beyreuther K, Barrow CJ, Masters CL, Bush AI, Barnham KJ (2001) Alzheimer's disease amyloid‐beta binds copper and zinc to generate an allosterically ordered membrane‐penetrating structure containing superoxide dismutase‐like subunits. J Biol Chem 276:20466–20473. [DOI] [PubMed] [Google Scholar]
- 8. De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, Schroeter EH, Schrijvers V, Wolfe MS, Ray WJ, et al (1999) A presenilin‐1‐dependent gamma‐secretase‐like protease mediates release of Notch intracellular domain. Nature 398:518–522. [DOI] [PubMed] [Google Scholar]
- 9. Eriksen JL, Sagi SA, Smith TE, Weggen S, Das P, McLendon DC, Ozols VV, Jessing KW, Zavitz KH, Koo EH, et al (2003) NSAIDs and enantiomers of flurbiprofen target gamma‐secretase and lower Abeta 42 in vivo. J Clin Invest 112:440–449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Ertekin‐Taner N, Graff‐Radford N, Younkin LH, Eckman C, Baker M, Adamson J, Ronald J, Blangero J, Hutton M, Younkin SG (2000) Linkage of plasma Abeta42 to a quantitative locus on chromosome 10 in late‐onset Alzheimer's disease pedigrees. Science 290:2303–2304. [DOI] [PubMed] [Google Scholar]
- 11. Gotz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293:1491–1495. [DOI] [PubMed] [Google Scholar]
- 12. Haass C, Lemere CA, Capell A, Citron M, Seubert P, Schenk D, Lannfelt L, Selkoe DJ (1995) The Swedish mutation causes early‐onset Alzheimer's disease by beta‐secretase cleavage within the secretory pathway. Nat Med 1:1291–1296. [DOI] [PubMed] [Google Scholar]
- 13. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297:353–356. [DOI] [PubMed] [Google Scholar]
- 14. Hock C, Konietzko U, Streffer JR, Tracy J, Signorell A, Muller‐Tillmanns B, Lemke U, Henke K, Moritz E, Garcia E, et al (2003) Antibodies against beta‐amyloid slow cognitive decline in Alzheimer's disease. Neuron 38:547–554. [DOI] [PubMed] [Google Scholar]
- 15. Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, Mackey B, Olney J, McKeel D, Wozniak D, et al (2000) Apolipoprotein E isoform‐dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 97:2892–2897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Holtzman DM, Fagan AM, Mackey B, Tenkova T, Sartorius L, Paul SM, Bales K, Ashe KH, Irizarry MC, Hyman BT (2000) Apolipoprotein E facilitates neuritic and cerebrovascular plaque formation in an Alzheimer's disease model. Ann Neurol 47:739–747. [PubMed] [Google Scholar]
- 17. Huang TH, Yang DS, Fraser PE, Chakrabartty A (2000) Alternate aggregation pathways of the Alzheimer beta‐amyloid peptide. An in vitro model of preamyloid. J Biol Chem 275:36436–36440. [DOI] [PubMed] [Google Scholar]
- 18. Huang TH, Yang DS, Plaskos NP, Go S, Yip CM, Fraser PE, Chakrabartty A (2000) Structural studies of soluble oligomers of the Alzheimer beta‐amyloid peptide. J Mol Biol 297:73–87. [DOI] [PubMed] [Google Scholar]
- 19. Jarrett JT, Berger EP, Jr. PTL (1993) The carboxy terminus of β amyloid protein is critical for the seeding of amyloid formation: Implications for pathogenesis of Alzheimer's disease. Biochem 32:4693–4697. [DOI] [PubMed] [Google Scholar]
- 20. Jarrett JT, Jr. PTL (1993) Seeding “one dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer's disease and Scrapie Cell 73:1055–1058. [DOI] [PubMed] [Google Scholar]
- 21. Kirkitadze MD, Condron MM, Teplow DB (2001) Identification and characterization of key kinetic intermediates in amyloid beta‐protein fibrillogenesis. J Mol Biol 312:1103–1119. [DOI] [PubMed] [Google Scholar]
- 22. Leissring MA, Akbari Y, Fanger CM, Cahalan MD, Mattson MP, LaFerla FM (2000) Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin‐1 knockin mice. J Cell Biol 149:793–798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, et al (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491. [DOI] [PubMed] [Google Scholar]
- 24. Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, van Slegtenhorst M, Gwinn‐Hardy K, Paul Murphy M, Baker M, Yu X, et al (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301 L) tau protein. Nat Genet 25:402–405. [DOI] [PubMed] [Google Scholar]
- 25. Luo Y, Bolon B, Kahn S, Bennett BD, Babu‐Khan S, Denis P, Fan W, Kha H, Zhang J, Gong Y, et al (2001) Mice deficient in BACE1, the Alzheimer's beta‐secretase, have normal phenotype and abolished beta‐amyloid generation. Nat Neurosci 4:231–232. [DOI] [PubMed] [Google Scholar]
- 26. Mann DMA, Yates P, Marcyniuk B (1984) Alzheimer's presenile dementia, senile dementia of Alzheimer type and Down's syndrome in middle age form an age related continuum of pathologic changes. Neuropathol Appl Neurobiol 10:185–207. [DOI] [PubMed] [Google Scholar]
- 27. Marambaud P, Wen PH, Dutt A, Shioi J, Takashima A, Siman R, Robakis NK (2003) A CBP binding transcriptional repressor produced by the PS1/epsilon‐cleavage of N‐cadherin is inhibited by PS1 FAD mutations. Cell 114:635–645. [DOI] [PubMed] [Google Scholar]
- 28. McLaurin J, Franklin T, Zhang X, Deng J, Fraser PE (1999) Interactions of Alzheimer amyloid‐beta peptides with glycosaminoglycans effects on fibril nucleation and growth. Eur J Biochem 266:1101–1110. [DOI] [PubMed] [Google Scholar]
- 29. McNamara MJ, Gomez‐Isla T, Hyman BT (1998) Apolipoprotein E genotype and deposits of Abeta40 and Abeta42 in Alzheimer disease. Arch Neurol 55:1001–1004. [DOI] [PubMed] [Google Scholar]
- 30. Myers A, Holmans P, Marshall H, Kwon J, Meyer D, Ramic D, Shears S, Booth J, DeVrieze FW, Crook R, et al (2000) Susceptibility locus for Alzheimer's disease on chromosome 10. Science 290:2304–2305. [DOI] [PubMed] [Google Scholar]
- 31. Neve RL (2001) Abeta may be a planet, but APP is central. Neurobiol Aging 22:151–154; discussion 161–153. [DOI] [PubMed] [Google Scholar]
- 32. Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO (2003) Neuropathology of human Alzheimer disease after immunization with amyloid‐beta peptide: a case report. Nat Med 9:448–452. [DOI] [PubMed] [Google Scholar]
- 33. Nilsberth C, Westlind‐Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, Stenh C, Luthman J, Teplow DB, Younkin SG, et al (2001) The ‘Arctic’ APP mutation (E693G) causes Alzheimer's disease by enhanced Abeta protofibril formation. Nat Neurosci 4:887–893. [DOI] [PubMed] [Google Scholar]
- 34. Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM (2004) Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43:321–332. [DOI] [PubMed] [Google Scholar]
- 35. Price DL, Sisodia SS (1998) Mutant genes in familial Alzheimer's disease and transgenic models. Ann Rev Neurosci 21:479–505. [DOI] [PubMed] [Google Scholar]
- 36. Schenk D (2002) Opinion: Amyloid‐beta immunotherapy for Alzheimer's disease: the end of the beginning. Nat Rev Neurosci 3:824–828. [DOI] [PubMed] [Google Scholar]
- 37. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson‐Wood K, Khan K, et al (1999) Immunization with amyloid‐beta attenuates Alzheimer‐disease‐like pathology in the PDAPP mouse. Nature 400:173–177. [DOI] [PubMed] [Google Scholar]
- 38. Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J, Hutton M, Kukull W, et al (1996) Secreted amyloid beta‐protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat Med 2:864–870. [DOI] [PubMed] [Google Scholar]
- 39. Selkoe DJ (2001) Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 81:741–766. [DOI] [PubMed] [Google Scholar]
- 40. Suzuki N, Cheung TT, Cai X‐D, Odaka A, Otvos L, Eckman C, Golde TE, Younkin SG (1994) An increased percentage of long amyloid β protein is secreted by familial amyloid β protein precursor (βAPP717) mutants. Science 264:1336–1340. [DOI] [PubMed] [Google Scholar]
- 41. Vidal R, Frangione B, Rostagno A, Mead S, Revesz T, Plant G, Ghiso J (1999) A stop‐codon mutation in the BRI gene associated with familial British dementia. Nature 399:776–781. [DOI] [PubMed] [Google Scholar]
- 42. Vidal R, Revesz T, Rostagno A, Kim E, Holton JL, Bek T, Bojsen‐Moller M, Braendgaard H, Plant G, Ghiso J, et al (2000) A decamer duplication in the 3′ region of the BRI gene originates an amyloid peptide that is associated with dementia in a Danish kindred. Proc Natl Acad Sci U S A 97:4920–4925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43. Weggen S, Eriksen JL, Sagi SA, Pietrzik CU, Ozols V, Fauq A, Golde TE, Koo EH (2003) Evidence that nonsteroidal anti‐inflammatory drugs decrease amyloid beta 42 production by direct modulation of gamma‐secretase activity. J Biol Chem 278:31831–31837. [DOI] [PubMed] [Google Scholar]
- 44. Yamatsuji T, Okamoto T, Takeda S, Murayama Y, Tanaka N, Nishimoto I (1996) Expression of V642 APP mutant causes cellular apoptosis as Al‐zheimer trait‐linked phenotype. Embo J 15:498–509. [PMC free article] [PubMed] [Google Scholar]
- 45. Yankner BA, Dawes LR, Fisher S, Villa‐Komaroff L, Oster‐Granite ML, Neve RL (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer's disease. Science 245:417–420. [DOI] [PubMed] [Google Scholar]
