Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;15(4):318–326. doi: 10.1111/j.1750-3639.2005.tb00117.x

The Role of the Extracellular Matrix in Angiogenesis in Malignant Glioma Tumors

Dongyan Wang 1,*, Joshua C Anderson 1,*, Candece L Gladson 1,
PMCID: PMC8095805  PMID: 16389944

Abstract

Angiogenesis is a promising target for the development of effective strategies for the treatment of malignant brain tumors in that it has the potential to starve large tumors and prevent the regrowth of residual margins. Two critical steps in angiogenesis, the proliferation of activated endothelial cells and their migration into the perivascular space (sprouting), require adherence of the endothelial cells to the extracellular matrix (ECM). Thus, the availability of the appropriate ligands within the ECM contributes to the regulation of angiogenesis. In addition, several components of the ECM can act through other mechanisms to further promote angiogenesis or inhibit it. Current evidence suggests that the regulation of angiogenesis is a dynamic process in which the endothelial cells can promote angiogenesis by secreting proteases that remodel the ECM, tumor cells can further promote angiogenesis by secreting ECM components and actively remodeling their environment, and stromal cells may respond to angiogenesis associated with tumors and inflammatory reactions by secreting inhibitory molecules. Here, we provide a critical review of the protein and proteoglycan components of the ECM that have been implicated in angiogenesis with an emphasis on their role in promoting or inhibiting angiogenesis in brain tumors.

Full Text

The Full Text of this article is available as a PDF (190.1 KB).

References

  • 1. Abe R, Shimizu T, Yamagishi S, Shibaki A, Amano S, Inagaki Y, Watanabe H, Sugawara H, Nakamura H, Takeuchi M, Imaizumi T, Shimizu H (2004) Overexpression of pigment epithelium‐derived factor decreases angiogenesis and inhibits the growth of human malignant melanoma cells in vivo . Am J Pathol 164:1225–1232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Abramsson A, Berlin O, Papayan H, Paulin D, Shani M, Betsholtz C (2002) Analysis of mural cell recruitment to tumor vessels. Circulation 105:112–117. [DOI] [PubMed] [Google Scholar]
  • 3. Adams JC (2001) Thrombospondins: Multifunctional regulators of cell interactions. Ann Rev Cell Develop Biol 17:25–51. [DOI] [PubMed] [Google Scholar]
  • 4. Adams JC, Lawler J (2004) The thrombospondins. Int J Biochem Cell Biol 36:961–968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Armstrong LC, Bornstein P (2003) Thrombospondins 1 and 2 function as inhibitors of angiogenesis. Matrix Biol 22:63–71. [DOI] [PubMed] [Google Scholar]
  • 6. Armstrong LC, Bjorkblom B, Hankenson KD, Siadak AW, Stiles CE, Bornstein P (2002) Thrombospondin 2 inhibits microvascular endothelial cell proliferation by a caspase‐independent mechanism. Mol Biol Cell 13:1893–1905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Aszodi A, Bateman JF, Gustafsson E, Boot‐Handford R, Fassler R (2000) Mammalian skeletogenesis and extracellular matrix: what can we learn from knockout mice Cell Struct Funct 25:73–84. [DOI] [PubMed] [Google Scholar]
  • 8. Auguste P, Gursel DB, Lemiere S, Reimers D, Cuevas P, Carceller F, Di Santo JP, Bikfalvi A (2001) Inhibition of fibroblast growth factor/fibroblast growth factor receptor activity in glioma cells impedes tumor growth by both angiogenesis‐dependent and‐independent mechanisms. Cancer Res 61:1717–1726. [PubMed] [Google Scholar]
  • 9. Aumailley M, Battaglia C, Mayer U, Nischt R, Timpl R, Fox JW (1993) Nidogen mediates the formation of ternary complexes of basement membrane components. Kidney Int 43:7–12. [DOI] [PubMed] [Google Scholar]
  • 10. Aviezer D, Hecht D, Safran M, Eisinger M, David G, Yayon A (1994) Perlecan basal lamina proteoglycan, promotes basic fibroblast growth factor‐receptor binding, mitogenesis, and angiogenesis. Cell 79:1005–1013. [DOI] [PubMed] [Google Scholar]
  • 11. Bein K, Simons M (2000) Thrombospondin type 1 repeats interact with matrix metalloproteinase 2. Regulation of metalloproteinase activity. J Biol Chem 275:32167–32173. [DOI] [PubMed] [Google Scholar]
  • 12. Bello L, Giussani C, Carrabba G, Pluderi M, Costa F, Bikfalvi A (2004) Angiogenesis and invasion in gliomas. Cancer Treat Res 117:263–84. [DOI] [PubMed] [Google Scholar]
  • 13. Bello L, Lucini V, Costa F, Pluderi M, Giussani C, Acerbi F, Carrabba G, Pannacci M, Caronzolo D, Grosso S, Shinkaruk S, Colleoni F, Canron X, Tomei G, Deleris G, Bikfalvi A (2004) Combinatorial administration of molecules that simultaneously inhibit angiogenesis and invasion leads to increased therapeutic efficacy in mouse models of malignant glioma. Clin Cancer Res 10:4527–4537. [DOI] [PubMed] [Google Scholar]
  • 14. Bikfalvi A (2004) Recent developments in the inhibition of angiogenesis: examples from studies on platelet factor‐4 and the VEGF/VEGFR system. Biochem Pharmacol 68:1017–1021. [DOI] [PubMed] [Google Scholar]
  • 15. Bogdanov A Jr, Marecos E, Cheng HC, Chandrasekaran L, Krutzsch HC, Roberts DD, Weissleder R (1999) Treatment of experimental brain tumors with thrombospondin‐1 derived peptides: an in vivo imaging study. Neoplasia 1:438–445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Bouck N (2002) PEDF: antiangiogenic guardian of ocular function. Trends Mol Med 8:330–334. [DOI] [PubMed] [Google Scholar]
  • 17. Brakebusch C, Bouvard D, Stanchi F, Sakai, T , Fassler R (2002) Integrins in invasive growth. J Clin Invest 109:999–1006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164. [DOI] [PubMed] [Google Scholar]
  • 19. Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin avβ3 for angiogenesis. Science 264: 569–571. [DOI] [PubMed] [Google Scholar]
  • 20. Brooks PC (1996) Role of integrins in angiogenesis. Eur J Cancer 32A:2423–2429. [DOI] [PubMed] [Google Scholar]
  • 21. Brooks PC, Stromblad S, Sanders LC, von Schalscha TL, Aimes RT, Stetler‐Stevenson WG, Quigley JP, Cheresh DA (1996) Localization of matrix metalloproteinase MMP‐2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85:683–693. [DOI] [PubMed] [Google Scholar]
  • 22. Burg MA, Nishiyama A, Stallcup WB (1997) A central segment of the NG2 proteoglycan is critical for the ability of glioma cells to bind and migrate toward type VI collagen. Exp Cell Res 235:254–264. [DOI] [PubMed] [Google Scholar]
  • 23. Burg MA, Pasqualini R, Arap W, Ruoslahti E, Stallcup WB (1999) NG2 proteoglycan‐binding peptides target tumor neovasculature. Cancer Res 59:2869–2874. [PubMed] [Google Scholar]
  • 24. Carnemolla B, Balza E, Siri A, Zardi L, Nicotra MR, Bigotti A, Natali PG (1989) A tumor‐associated fibronectin isoform generated by alternative splicing of messenger RNA precursors. J Cell Biol 108:1139–1148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Carnemolla B, Castellani P, Ponassi M, Borsi L, Urbini S, Nicolo G, Dorcaratto A, Viale G, Winter G, Neri D, Zardi L (1999) Identification of a glioblastoma‐associated tenascin‐C isoform by a high affinity recombinant antibody. Am J Pathol 154:1345–1352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Castellani P, Borsi L, Carnemolla B, Biro A, Dorcaratto A, Viale GL, Neri D, Zardi L (2002) Differentiation between high‐ and low‐grade astrocytoma using a human recombinant antibody to the extra domain‐B of fibronectin. Am J Pathol 161:1695–1700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Chakravarti A, Zhai G, Suzuki Y, Sarkesh S, Black PM, Muzikansky A, Loeffler JS (2004) The prognostic significance of phosphatidylinositol 3‐kinase pathway activation in human gliomas. J Clin Oncol 22:1926–1933. [DOI] [PubMed] [Google Scholar]
  • 28. Chekenya M, Enger PO, Thorsen F, Tysnes BB, AI‐Sarraj S, Read TA, Furmanek T, Mahesparan R, Levine JM, Butt AM, Pilkington GJ, Bjerkvig R (2002) The glial precursor proteoglycan, NG2, is expressed on tumour neovasculature by vascular pericytes in human malignant brain tumours. Neuropathol Appl Neurobiol 28:367–380. [DOI] [PubMed] [Google Scholar]
  • 29. Chekenya M, Hjelstuen M, Enger P, Thorsen F, Jacob AL, Probst B, Haraldseth O, Pilkington G, Butt A, Levine JM, Bjerkvig R (2002) NG2 proteoglycan promotes angiogenesis‐dependent tumor growth in CNS by sequestering angiostatin. FASEB J 16:586–588. [DOI] [PubMed] [Google Scholar]
  • 30. Chekenya M, Pilkington GJ (2002) NG2 precursor cells in neoplasia: functional, histogenesis and therapeutic implications for malignant brain tumours. J Neurocytol 31:507–521. [DOI] [PubMed] [Google Scholar]
  • 31. Chen H, Sottile J, Strickland D, Mosher DF (1996) Binding and degradation of thrombospondin‐1 mediated through heparan sulphate proteoglycans and low‐density‐lipoprotein receptor‐related protein: localization of the functional activity to the trimeric N‐terminal heparinbinding region of thrombospondin‐1. Biochem J 318:959–963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Chen H, Strickland DK, Mosher, DF (1996) Metabolism of thrombospondin 2. Binding and degradation by 3T3 cells and glycosaminoglycanvariant Chinese hamster ovary cells. J Biol Chem 271:15993–15999. [DOI] [PubMed] [Google Scholar]
  • 33. Connolly DT, Heuvelman DM, Nelson R, Olander JV, Eppley BL, Delfino JJ, Siegel NR, Leimgruber RM, Feder J (1989) Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. Clin Invest 84:1470–1478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Cooper CR, Chay CH, Pienta KJ (2002) The role of alpha(v)beta(3) in prostate cancer progression. Neoplasia 4:191–194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Costell M, Gustafsson E, Aszodi A, Morgelin M, Bloch W, Hunziker E, Addicks K, Timpl R, Fassler R (1999) Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol 147:1109–1122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP (1997) CD36 mediates the in vitro inhibitory effects of thrombospondin‐1 on endothelial cells. J Cell Biol 138:707–717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W, Bouck NP (1999) Pigment epithelium‐derived factor: a potent inhibitor of angiogenesis. Science 285:245–248. [DOI] [PubMed] [Google Scholar]
  • 38. de Fraipont F, Keramidas M, El Atifi M, Chambaz EM, Berger F, Feige JJ (2004) Expression of the thrombospondin 1 fragment 167–569 in C6 glioma cells stimulates tumorigenicity despite reduced neovascularization. Oncogene 23:3642–3649. [DOI] [PubMed] [Google Scholar]
  • 39. Denhardt DT, Noda M (1998) Osteopontin expression and function: role in bone remodeling. J Cell Biochem Suppl 30–31:92–102. [PubMed] [Google Scholar]
  • 40. Ding Q, Stewart J Jr., Prince CW, Chang P‐L, Trikha M, Han X, Grammer JR, Gladson CL (2002) Promotion of malignant astrocytoma cell migration by osteopontin expressed in the normal brain: differensces in integrin signaling during cell adhesion to osteopontin versus vitronectin. Cancer Res 62:5336–5343. [DOI] [PubMed] [Google Scholar]
  • 41. Ding Q, Grammer JR, Nelson MA, Guan JL, Stewart JE Jr, Gladson CL (2005) p27(Kip1) and cyclin D1 are necessary for focal adhesion kinase (FAK) regulation of cell cycle progression in glioblastoma cells propagated in vitro and in vivo in the scid mouse brain. J Biol Chem 280:6802–6815. [DOI] [PubMed] [Google Scholar]
  • 42. Doll JA, Stellmach VM, Bouck NP, Bergh AR, Lee C, Abramson LP, Cornwell ML, Pins MR, Borensztajn J, Crawford SE (2003) Pigment epithelium‐derived factor regulates the vasculature and mass of the prostate and pancreas. Nat Med 9:774–780. [DOI] [PubMed] [Google Scholar]
  • 43. Eriksson K, Magnusson P, Dixelius J, Claesson‐Welsh L, Cross MJ (2003) Angiostatin and endostatin inhibit endothelial cell migration in response to FGF and VEGF without interfering with specific intracellular signal transduction pathways. FEBS Lett 536:19–24. [DOI] [PubMed] [Google Scholar]
  • 44. Fears CY, Grammer JR, Stewart JE Jr, Annis DS, Mosher DF, Bornstein P, Gladson CL (2005) Lowdensity lipoprotein receptor‐related protein contributes to the antiangiogenic activity of thrombospondin‐2 in a murine glioma model. Cancer Res 65:9338–9346. [DOI] [PubMed] [Google Scholar]
  • 45. Felbor U, Dreier L, Bryant RA, Ploegh HL, Olsen BR, Mothes W (2000) Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J 19:1187–1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Ferrara N, Henzel WJ (1989) Pituitary follicular cells secret a novel heparin‐binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161:851–858. [DOI] [PubMed] [Google Scholar]
  • 47. Ferreras M, Felbor U, Lenhard T, Olsen BR, Delaisse J (2000) Generation and degradation of human endostatin proteins by various proteinases. FEBS Lett 486:247–251. [DOI] [PubMed] [Google Scholar]
  • 48. Fong TA, Shawver LK, Sun L, Tang C, App H, Powell TJ, Kim YH, Schreck R, Wang X, Risau W, Ullrich A, Hirth KP, McMahon G (1999) SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk‐1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 59:99–106. [PubMed] [Google Scholar]
  • 49. Fox JW, Mayer U, Nischt R, Aumailley M, Reinhardt D, Wiedemann H, Mann K, Timpl R, Krieg T, Engel J, Chu ML (1991) Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. EMBO J 10:3137–3146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA (1995) Definition of two angiogenic pathways by distinct alpha v in tegrins Scince 270:1500–1502. [DOI] [PubMed] [Google Scholar]
  • 51. Garmy‐Susini B, Zhu Y, Sung RJ, Hwang R, Varner J (2005) Integrin a4β1‐VCAM‐1‐mediated adhesion between endothelial and mural cells is required for blood vessel maturation. J Clin Invest 115:1542–1551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Geng JG (2003) Interaction of vascular endothelial cells with leukocytes, platelets and cancer cells in inflammation, thrombosis and cancer growth and metastasis. Acta Pharmacol Sin 24:1297–300. [PubMed] [Google Scholar]
  • 53. George EL, Georges‐Labouesse EN, Patel‐King RS, Rayburn H, Hynes RO (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091. [DOI] [PubMed] [Google Scholar]
  • 54. Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1032. [DOI] [PubMed] [Google Scholar]
  • 55. Gladson CL (1996) Expression of integrin alpha v beta 3 in small blood vessels of glioblastoma tumors. J Neuropathol Exp Neurol 55:1143–1149. [DOI] [PubMed] [Google Scholar]
  • 56. Gladson CL, Cheresh DA (1991) Glioblastoma expression of vitronectin and the alpha v beta 3 integrin. Adhesion mechanism for transformed glial cells. J Clin Invest 88:1924–1932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Gladson CL, Wilcox JN, Sanders L, Gillespie GY, Cheresh DA (1995) Cerebral microenvironment influences expression of the vitronectin gene astrocytic tumors. J Cell Sci 108:947–956. [DOI] [PubMed] [Google Scholar]
  • 58. Gladson CL (1999) The extracellular matrix of giomas: modulation of cell function. J Neuropathol Exp Neurol 58:1029–1040. [DOI] [PubMed] [Google Scholar]
  • 59. Godyna S, Liau G, Popa I, Stefansson S, Argraves WS (1995) Identification of the low density lipoprotein receptor‐related protein (LRP) as an endocytic receptor for thrombospondin‐1. J Cell Biol 129:1403–1410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Goldman CK, Kim J, Wong WL, King V, Brock T, Gillespie GY (1993) Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology. Mol Biol Cell 4:121–133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61. Guan M, Yam HF, Su B, Chan KP, Pang CP, Liu WW, Zhang WZ, Lu Y (2003) Loss of pigment epithelium derived factor expression in glioma progression. J Clin Pathol 56:277–282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Gumbiner BM (2005) Regulation of cadherinmediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6:622–634. [DOI] [PubMed] [Google Scholar]
  • 63. Guo N, Krutzsch HC, Inman JK, Roberts DD (1997) Thrombospondin 1 and type I repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells. Cancer Res 57:1735–1742. [PubMed] [Google Scholar]
  • 64. Hahn W, Ho SH, Jeong JG, Hahn EY, Kim S, Yu SS, Kim S, Kim JM (2004) Viral vector‐mediated transduction of a modified thrombospondin‐2 cDNA inhibits tumor growth and angiogenesis. Gene Ther 11:739–745. [DOI] [PubMed] [Google Scholar]
  • 65. Hajitou A, Sounni NE, Devy L, Grignet‐Debrus C, Lewalle JM, Li H, Deroanne CF, Lu H, Colige A, Nusgens BV, Frankenne F, Maron A, Yeh P, Perricaudet M, Chang Y, Soria C, Calberg‐Bacq CM, Foidart JM, Noel A (2001) Down‐regulation of vascular endothelial growth factor by tissue inhibitor of metalloproteinase‐2: effect on in vivo mammary tumor growth and angiogenesis. Cancer Res 61:3450–3457. [PubMed] [Google Scholar]
  • 66. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364. [DOI] [PubMed] [Google Scholar]
  • 67. Haskell H, Natarajan M, Hecker TP, Ding Q, Stewart JE Jr., Grammer JR, Gladson, CL (2003) Focal adhesion kinase is expressed in the angiogenic blood vessels of malignant astrocytic tumors in vivo and promotes capillary tube formation of brain microvascular endothelial cells. Clin Cancer Res 9:2157–2165. [PubMed] [Google Scholar]
  • 68. Hawighorst T, Velasco P, Streit M, Hong YK, Kyriakides TR, Brown LF, Bornstein P, Detmar M (2001) Thrombospondin‐2 plays a protective role in multistep carcinogenesis: a novel host anti‐tumor defense mechanism. EMBO J 20:2631–2640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Hecker TP, Gladson CL (2003) Focal adhesion kinase in cancer. Front Biosci 8:s705–s714. [DOI] [PubMed] [Google Scholar]
  • 70. Hirama M, Takahashi F, Takahashi K, Akutagawa S, Shimizu K, Soma S, Shimanuki Y, Nishio K, Fukuchi Y (2003) Osteopontin overproduced by tumor cells acts as a potent angiogenic factor contributing to tumor growth. Cancer Lett 198:107–117. [DOI] [PubMed] [Google Scholar]
  • 71. Hirschi KK, D'Amore PA (1996) Pericytes in the microvasculature. Cardiovasc Res 32:687–698. [PubMed] [Google Scholar]
  • 72. Hosomichi J, Yasui N, Koide T, Soma K, Morita I (2005) Involvement of the collagen I‐binding motif in the antiangiogenic activity of pigment epithelium‐derived factor. Biochem Biophys Res Commun 335:756–761. [DOI] [PubMed] [Google Scholar]
  • 73. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25. [DOI] [PubMed] [Google Scholar]
  • 74. Iida J, Meijne AM, Spiro RC, Roos E, Furcht LT, McCarthy JB (1995) Spreading and focal contact formation of human melanoma cells in response to the stimulation of both melanoma‐associated proteoglycan (NG2) and alpha 4 beta 1 integrin. Cancer Res 55:2177–2185. [PubMed] [Google Scholar]
  • 75. Iida J, Pei D, Kang T, Simpson MA, Herlyn M, Furcht LT, McCarthy JB (2001) Melanoma chondroitin sulfate proteoglycan regulates matrix metalloproteinase‐dependent human melanoma invasion into type I collagen. J Biol Chem 276:18786–18794. [DOI] [PubMed] [Google Scholar]
  • 76. Ilic D, Kovacic B, McDonagh S, Jin F, Baumbusch C, Gardner DG, Damsky CH (2003) Focal adhesion kinase is required for blood vessel morphogenesis. Circ Res 92:300–307. [DOI] [PubMed] [Google Scholar]
  • 77. Ilic D, Kovacic B, Johkura K, Schlaepfer DD, Tomasevic N, Han Q, Kim JB, Howerton K, Baumbusch C, Ogiwara N et al (2004) FAK promotes organization of fibronectin matrix and fibrillar adhesions. J Cell Sci 117(Pt 2):177–187. [DOI] [PubMed] [Google Scholar]
  • 78. Iozzo RV (2005) Basement membrane proteoglycans: from cellar to ceiling. Nat Rev Mol Cell Biol 8:646–656. [DOI] [PubMed] [Google Scholar]
  • 79. Jansen M, de Witt Hamer PC, Witmer AN, Troost D, van Noorden CJ (2004) Current perspectives on antiangiogenesis strategies in the treatment of malignant gliomas. Brain Res Rev 45:143–163. [DOI] [PubMed] [Google Scholar]
  • 80. Janssen ML, Oyen WJ, Massuger LF, Frielink C, Dijkgraaf I, Edwards DS, Radjopadhye M, Corstens FH, Boerman OC (2002) Comparison of a monomeric and dimeric radiolabeled RGD‐peptide for tumor targeting. Cancer Biother Radiopharm 17:641–646. [DOI] [PubMed] [Google Scholar]
  • 81. Janssen ML, Oyen WJ, Dijkgraaf I, Massuger LF, Frielink C, Edwards DS, Rajopadhye M, Boonstra H, Corstens FH, Boerman OC (2002) Tumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model. Cancer Res 62:6146–6151. [PubMed] [Google Scholar]
  • 82. Jiang X, Couchman JR (2003) Perlecan and tumor angiogenesis. J Histochem Cytochem 51:1393–1410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83. Jiang X, Multhaupt H, Chan E, Schaefer L, Schaefer RM, Couchman JR (2004) Essential contribution of tumor‐derived perlecan to epidermal tumor growth and angiogenesis. J Histochem Cytochem 52:1575–1590. [DOI] [PubMed] [Google Scholar]
  • 84. Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N (2000) Signals leading to apoptosis‐dependent inhibition of neovascularization by thrombospondin‐1. Nat Med 6:41–48. [DOI] [PubMed] [Google Scholar]
  • 85. John A, Tuszynski G (2001) The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res 7:14–23. [DOI] [PubMed] [Google Scholar]
  • 86. Jones LL, Yamaguchi Y, Stallcup WB, Tuszynski MH (2002) NG2 is a major chondroitin sulfate proteoglycan produced after spinal cord injury and is expressed by macrophages and oligodendrocyte progenitors. J Neurosci 22:2792–803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87. Jones PL, Jones FS (2000) Tenascin‐C in development and disease: gene regulation and cell function. Matrix Biol 19:581–596. [DOI] [PubMed] [Google Scholar]
  • 88. Karumanchi SA, Jha V, Ramchandran R, Kari‐haloo A, Tsiokas L, Chan B, Dhanabal M, Hanai JI, Venkataraman G, Shriver Z, Keiser N, Kalluri R, Zeng H, Mukhopadhyay D, Chen RL, Lander AD, Hagihara K, Yamaguchi Y, Sasisekharan R, Cantley L, Sukhatme VP (2001) Cell surface glypicans are low‐affinity endostatin receptors. Mol Cell 7:811–822. [DOI] [PubMed] [Google Scholar]
  • 89. Kawataki T, Naganuma H, Sasaki A, Yoshikawa H, Tasaka K, Nukui H (2000) Correlation of thrombospondin‐1 and transforming growth factorbeta expression with malignancy of glioma. Neuropathology 20:161–169. [DOI] [PubMed] [Google Scholar]
  • 90. Kazuno M, Tokunaga T, Oshika Y, Tanaka Y, Tsugane R, Kijima H, Yamazaki H, Ueyama Y, Nakamura M (1999) Thrombospondin‐2 (TSP2) expression is inversely correlated with vascularity in glioma. Eur J Cancer 35:502–506. [DOI] [PubMed] [Google Scholar]
  • 91. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N (1993) Inhibition of vascular endothelial growth factor‐induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844. [DOI] [PubMed] [Google Scholar]
  • 92. Kim S, Bell K, Mousa SA, Varner JA (2000) Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell‐binding domain of fibronectin. Am J Pathol 156:1345–1362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93. Kim YM, Hwang S, Kim YM, Pyun BJ, Kim TY, Lee ST, Gho YS, Kwon YG (2002) Endostatin blocks vascular endothelial growth factor‐mediated signaling via direct interaction with KDR/Flk‐1. J Biol Chem 277:27872–27879. [DOI] [PubMed] [Google Scholar]
  • 94. King GL, Suzuma K (2000) Pigment‐epithelium‐derived factor – a key coordinator of retinal neuronal and vascular functions. N Engl J Med 342:349–351. [DOI] [PubMed] [Google Scholar]
  • 95. Kornberg L, Earp HS, Parsons JT, Schaller M, Juliano RL (1992) Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion‐associated tyrosine kinase. J Biol Chem 267:23439–23442. [PubMed] [Google Scholar]
  • 96. Kragh M, Quistorff B, Tenan M, van Meir EG, Kristjansen PE (2002) Overexpression of throm‐bospondin‐1 reduces growth and vascular index but not perfusion in glioblastoma. Cancer Res 62:1191–1195. [PubMed] [Google Scholar]
  • 97. Kyriakides TR, Zhu YH, Yang Z, Huynh G, Born‐stein P (2001) Altered extracellular matrix remodeling and angiogenesis in sponge granulomas of thrombospondin 2‐null mice. Am J Pathol 159:1255–1262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98. Lawler J (2000) The functions of thrombos‐pondin‐1 and‐2. Curr Opin Cell Biol 12:634–640. [DOI] [PubMed] [Google Scholar]
  • 99. Liaw L, Almeida M, Hart CE, Schwartz SM, Giachelli CM (1994) Osteopontin promotes vascular cell adhesion and spreading and is chemotactic for smooth muscle cells in in vitro. Circ Res 74:214–224. [DOI] [PubMed] [Google Scholar]
  • 100. Liekens S, de Clercq E, Neyts J (2001) Angiogenesis: regulators and clinical applications. Biochem Pharmacol 61:253–270. [DOI] [PubMed] [Google Scholar]
  • 101. Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF‐B‐deficient mice. Science 277:242–245. [DOI] [PubMed] [Google Scholar]
  • 102. MacDonald NJ, Shivers WY, Narum DL, Plum SM, Wingard JN, Fuhrmann SR, Liang H, HollandLinn J, Chen DH, Sim BK (2001) Endostatin binds tropomyosin. A potential modulator of the antitumor activity of endostatin. J Biol Chem 276:25190–25196. [DOI] [PubMed] [Google Scholar]
  • 103. Machein MR, Plate KH (2000) VEGF in brain tumors. J Neurooncol 50:109–120. [DOI] [PubMed] [Google Scholar]
  • 104. Meredith JE, Fazeli B, Schwartz MA (1993) The extracellular matrix as a cell survival factor. Mol Biol Cell 4:953–961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105. Meyer C, Notari L, Becerra SP (2002) Mapping the type I collagen‐binding site on pigment epithelium‐derived factor. Implications for its antiangiogenic activity. J Biol Chem 277:45400–45407. [DOI] [PubMed] [Google Scholar]
  • 106. Mikhailenko I, Kounnas MZ, Strickland DK (1995) Low density lipoprotein receptor‐related protein/alpha 2‐macroglobulin receptor mediates the cellular internalization and degradation of thrombospondin. A process facilitated by cell‐surface proteoglycans. J Biol Chem 270:9543–9549. [DOI] [PubMed] [Google Scholar]
  • 107. Mikhailenko I, Krylov D, Argraves KM, Roberts DD, Liau G, Strickland DK (1997) Cellular internalization and degradation of thrombospondin‐1 is mediated by the amino‐terminal heparin binding domain (HBD). High affinity interaction of dimeric HBD with the low density lipoprotein receptor‐related protein. J Biol Chem 272:6784–6791. [DOI] [PubMed] [Google Scholar]
  • 108. Mongiat M, Sweeney SM, San Antonio JD, Fu J, Iozzo RV (2003) Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J Biol Chem 278:4238–4249. [DOI] [PubMed] [Google Scholar]
  • 109. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors . Am J Pathol 160:985–1000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110. Mundhenke C, Meyer K, Drew S, Friedl A (2002) Heparan sulfate proteoglycans as regulators of fibroblast growth factor‐2 receptor binding in breast carcinomas. Am J Pathol 160:185–194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111. Murphy‐Ullrich JE (2001) The de‐adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state J Clin Invest 107:785–790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112. Nishiyama A, Lin XH, Stallcup WB (1995) Generation of truncated forms of the NG2 proteoglycan by cell surface proteolysis. Mol Biol Cell 6:1819–1832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113. Nor JE, Mitra RS, Sutorik MM, Mooney DJ, Castle VP, Polverini PJ (2000) Thrombospondin‐1 induces endothelial cell apoptosis and inhibits angiogenesis by activating the caspase death pathway. J Vasc Res 37:209–218. [DOI] [PubMed] [Google Scholar]
  • 114. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285. [DOI] [PubMed] [Google Scholar]
  • 115. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315–328. [DOI] [PubMed] [Google Scholar]
  • 116. Ornitz DM, Yayon A, Flanagan JG, Svahn CM, Levi E, Leder P (1992) Heparin is required for cellfree binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol Cell Biol 12:240–247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117. Ozerdem U, Stallcup WB (2003) Early contribution of pericytes to angiogenic sprouting and tube formation. Angiogenesis 6:241–249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118. Paulus W, Baur I, Schuppan D, Roggendorf W (1993) Characterization of integrin receptors in normal and neoplastic human brain. Am J Pathol 143:154–163. [PMC free article] [PubMed] [Google Scholar]
  • 119. Pijuan‐Thompson V, Grammer JR, Stewart J, Silverstein RL, Pearce SF, Tuszynski GP, Murphy‐Ullrich JE, Gladson CL (1999) Retinoic acid alters the mechanism of attachment of malignant astrocytoma and neuroblastoma cells to thrombospondin‐1. Exp Cell Res 249:86–101. [DOI] [PubMed] [Google Scholar]
  • 120. Plouet J, Schilling J, Gospodarowicz D (1989) Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT‐20 Cells. EMBO J 8:3801–3806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121. Pöschl E, Schlotzer‐Schrehardt U, Brachvogel B, Saito K, Ninomiya Y, Mayer U (2004) Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 131:1619–28. [DOI] [PubMed] [Google Scholar]
  • 122. Qiao D, Meyer K, Mundhenke C, Drew SA, Friedl A (2003) Heparan sulfate proteoglycans as regulators of fibroblast growth factor‐2 signaling in brain endothelial cells. Specific role for glypican‐1 in glioma angiogenesis. J Biol Chem 278:16045–16053. [DOI] [PubMed] [Google Scholar]
  • 123. Rapraeger AC, Krufka A, Olwin BB (1991) Requirement of heparan sulfate for bFGF‐mediated fibroblast growth and myoblast differentiation. Science 252:1705–1708. [DOI] [PubMed] [Google Scholar]
  • 124. Real FX, Houghton AN, Albino AP, CordonCardo C, Melamed MR., Oettgen HF, Old LJ (1985) Surface antigens of melanomas and melanocytes defined by mouse monoclonal antibodies: specificity, analysis, and comparison of antigen expression in cultured cells and tissues. Cancer Res 45: 4401–4411. [PubMed] [Google Scholar]
  • 125. Rege TA, Stewart J Jr, Henkin J, Silverstein RL, Gladson CL (2004) TSP and type 1 repeat domain peptides induce apoptosis of human brain microvascular endothelial cells. Second National Meeting of the American Society for Matrix Biology, Abstract.
  • 126. Rege RA, Fears CY, Gladson CL (2005) Endogenous inhibitors of angiogenesis in malignant gliomas: Nature's antiangiogenic therapy. NeuroOncology 7:106–121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127. Reinmuth N, Liu W, Ahmad SA, Fan F, Stoeltzing O, Parikh AA, Bucana CD, Gallick GE, Nickols MA, Westlin WF, Ellis LM (2003) Alphavbeta3 integrin antagonist S247 decreases colon cancer metastasis and angiogenesis and improves survival in mice. Cancer Res 63:2079–2087. [PubMed] [Google Scholar]
  • 128. Rodriguez‐Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela‐Arispe ML (2001) Thrombospondin‐1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase‐9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci U S A 98:12485–12490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129. Saitoh Y, Kuratsu J, Takeshima H, Yamamoto S, Ushio Y (1995) Expression of osteopontin in human glioma. Its correlation with the malignancy. Lab Invest 72:55–63. [PubMed] [Google Scholar]
  • 130. Santimaria M, Moscatelli G, Viale GL, Giovannomi L, Neri G, Viti F, Leprini A, Borsi L, Castellani P, Zardi L, Neri D, Riva P (2003) Immunoscintigraphic detection of the ED‐B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res 9:571–579. [PubMed] [Google Scholar]
  • 131. Sasaki T, Larsson H, Kreuger J, Salmivirta M, Claesson‐Welsh L, Lindahl U, Hohenester E, Timpl R (1999) Structural basis and potential role of heparin/heparan sulfate binding to the angiogenesis inhibitor endostatin. EMBO J 18:6240–6248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132. Sawaya RE, Yamamoto M, Gokaslan ZL, Wang SW, Mohanam S, Fuller GN, McCutcheon IE, Stetler‐Stevenson WG, Nicolson GL, Rao JS (1996) Expression and localization of 72 kDa type IV collagenase (MMP‐2) in human malignant gliomas in vivo. Clin Exp Metastasis 14:35–42. [DOI] [PubMed] [Google Scholar]
  • 133. Schrappe M, Klier FG, Spiro RC, Waltz TA, Reisfeld RA, Gladson CL (1991) Correlation of chondroitin sulfate proteoglycan expression on proliferating brain capillary endothelial cells with the malignant phenotype of astroglial cells. Cancer Res 51:4986–4993. [PubMed] [Google Scholar]
  • 134. Senger DR, Ledbetter SR, Claffey KP, Papadopoulos‐Sergiou A, Peruzzi CA, Detmar M (1996) Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. Am J Pathol 149:293–305. [PMC free article] [PubMed] [Google Scholar]
  • 135. Sharma B, Handler M, Eichstetter I, Whitelock JM, Nugent MA, Iozzo RV (1998) Antisense targeting of perlecan blocks tumor growth and angiogenesis in vivo. J Clin Invest 102:1599–1608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136. Steinfeld R, Van Den Berghe H, David G (1996) Stimulation of fibroblast growth factor receptor‐1 occupancy and signaling by cell surface‐associated syndecans and glypican. J Cell Biol 133:405–416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137. Streit M, Riccardi L, Velasco P, Brown LF, Hawighorst T, Bornstein P, Detmar M (1999) Thrombospondin‐2: a potent endogenous inhibitor of tumor growth and angiogenesis. Proc Natl Acad Sci U S A 96:14888–14893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138. Stellmach V, Crawford SE, Zhou W, Bouck N (2001) Prevention of ischemia‐induced retinopathy by the natural ocular antiangiogenic agent pigment epithelium‐derived factor. Proc Natl Acad Sci U S A 98:2593–2597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139. Sudhakar A, Sugimoto H, Yang C, Lively J, Zeisberg M, Kalluri R (2003) Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci U S A 100:4766–4771. [DOI] [PMC free article] [PubMed] [Google Scholar] [Research Misconduct Found]
  • 140. Takenaka K, Yamagishi SI, Jinnouchi Y, Nakamura K, Matsui T, Imaizumi T (2005) Pigment epithelium‐derived factor (PEDF)induced apoptosis and inhibition of vascular endothelial growth factor (VEGF) expression in MG63 human osteosarcoma cells. Life sci 77:3231–3241. [DOI] [PubMed] [Google Scholar]
  • 141. Tapanadechopone P, Tumova S, Jiang X, Couchman JR (2001) Epidermal transformation leads to increased perlecan synthesis with heparin‐binding‐growth‐factor affinity. Biochem J 355:517–527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142. Tarli L, Balza E, Viti F, Borsi L, Castellani P, Berndorff D, Dinkelborg L, Neri D, Zardi L (1999) A high‐affinity human antibody that targets tumoral blood vessels. Blood 94:192–198. [PubMed] [Google Scholar]
  • 143. Tarui T, Miles LA, Takada Y (2001) Specific interaction of angiostatin with integrin alpha(v)beta(3) in endothelial cells. J Biol Chem 276:39562–39568. [DOI] [PubMed] [Google Scholar]
  • 144. Tenan M, Fulci G, Albertoni M, Diserens AC, Hamou MF, El Atifi‐Borel M, Feige JJ, Pepper MS, van Meir EG (2000) Thrombospondin‐1 is downregulated by anoxia and suppresses tumorigenicity of human glioblastoma cells. J Exp Med 191:1789–1798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145. Teti A, Farina AR, Villanova I, Tiberio A, Tacconelli A, Sciortino G, Chambers AF, Gulino A, Mackay AR (1998) Activation of MMP‐2 by human GCT23 giant cell tumour cells induced by osteopontin, bone sialoprotein and GRGDSP peptides is RGD and cell shape change dependent. Int J Cancer 77:82–93. [DOI] [PubMed] [Google Scholar]
  • 146. Thorns V, Walter GF, Thorns C (2003) Expression of MMP‐2, MMP‐7, MMP‐9, MMP‐10 and MMP‐11 in human astrocytic and oligodendroglial gliomas. Anticancer Res 23:3937–44. [PubMed] [Google Scholar]
  • 147. Timpl R, Brown JC (1996) Supramolecular assembly of basement membranes. Bioessays 18:123–132. [DOI] [PubMed] [Google Scholar]
  • 148. Tovari J, Paku S, Raso E, Pogany G, Kovalszky I, Ladanyi A, Lapis K, Timar J (1997) Role of sinusoidal heparan sulfate proteoglycan in liver metastasis formation. Int J Cancer 71 (5):825–31. [DOI] [PubMed] [Google Scholar]
  • 149. Volpert OV, Tolsma SS, Pellerin S, Feige JJ, Chen H, Mosher DF, Bouck N (1995) Inhibition of angiogenesis by thrombospondin‐2. Biochem Biophys Res Commun 217:326–332. [DOI] [PubMed] [Google Scholar]
  • 150. Volpert OV, Zaichuk T, Zhou W, Reiher F, Ferguson TA, Stuart PM, Amin M, Bouck NP (2002) Inducer‐stimulated Fas targets activated endothelium for destruction by antiangiogenic thrombospondin‐1 and pigment epithelium‐derived factor. Nat Med 8:349–357. [DOI] [PubMed] [Google Scholar]
  • 151. Wang D, Grammer JR, Cobbs CS, Stewart JE, Liu Z, Rhoden R, Hecker TP, Ding Q, Gladson CL (2000) p125 focal adhesion kinase promotes malignant astrocytoma cell proliferation in vivo. J Cell Sci 113:4221–4230. [DOI] [PubMed] [Google Scholar]
  • 152. Wang M, Wang T, Liu S, Yoshida D, Teramoto A (2003) The expression of matrix metalloproteinase‐2 and‐9 in human gliomas of different pathological grades. Brain Tumor Pathol 20:65–72. [DOI] [PubMed] [Google Scholar]
  • 153. Wang S, Herndon ME, Ranganathan S, Godyna S, Lawler J, Argraves WS, Liau G (2004) Internalization but not binding of thrombospondin‐1 to low density lipoprotein receptor‐related protein‐1 requires heparan sulfate proteoglycans. J Cell Biochem 91:766–776. [DOI] [PubMed] [Google Scholar]
  • 154. Wen W, Moses MA, Wiederschain D, Arbiser JL, Folkman J (1999) The generation of endostatin is mediated by elastase. Cancer Res 59:6052–6056. [PubMed] [Google Scholar]
  • 155. Wierzbicka‐Patynowski I, Schwarzbauer JE (2003) The ins and outs of fibronectin matrix assembly. J Cell Sci 116:3269–3276. [DOI] [PubMed] [Google Scholar]
  • 156. Yamamoto M, Ikeda K, Ohshima K, Tsugu H, Kimura H, Tomonaga M (1997) Increased expression of low density lipoprotein receptor‐related protein/alpha2‐macroglobulin receptor in human malignant astrocytomas. Cancer Res 57:2799–2805. [PubMed] [Google Scholar]
  • 157. Yang Z, Kyriakides TR, Bornstein P (2000) Matricellular proteins as modulators of cell matrix interactions: adhesive defect in thrombospondin 2‐null fibroblasts is a consequence of increased levels of matrix metalloproteinase‐2. Mol Biol Cell 11:3353–3364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158. Yang Z, Strickland DK, Bornstein P (2001) Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein‐related scavenger receptor and thrombospondin 2. J Biol Chem 276:8403–8408. [DOI] [PubMed] [Google Scholar]
  • 159. Yurchenco PD, O'Rear JJ (1994) Basal lamina assembly. Curr Opin Cell Biol 6:674–81. [DOI] [PubMed] [Google Scholar]
  • 160. Zhou Z, Wang J, Cao R, Morita H, Soininen R, Chan KM, Liu B, Cao Y, Tryggvason K (2004) Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate‐deficient mice. Cancer Res 64:4699–4702. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES