Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;15(1):78–83. doi: 10.1111/j.1750-3639.2005.tb00103.x

Neurovascular Pathways and Alzheimer Amyloid β‐peptide

Berislav V Zlokovic 1,, Rashid Deane 1, Jan Sallstrom 2, Nienwen Chow 2, Joseph M Miano 3
PMCID: PMC8095816  PMID: 15779240

Abstract

According to the prevailing amyloid cascade hypothesis, the onset and progression of a chronic neurodegenerative condition in Alzheimer disease (AD) is initiated by the amyloid β‐peptide (Aβ) accumulation in brain and consequent neuronal toxicity. Recent emphasis on co‐morbidity of AD and cerebrovascular disease and the recognition that cerebrovascular dysregulation is an important feature of AD, has shed new light on neurovascular dysfunction as a possible contributor to cognitive decline and Alzheimer neurodegeneration. In the same time, this association has raised a question as to whether there is a causal relationship between cerebrovascular dysregulation and Aβinitiated pathology, and whether influencing targets in the neurovasculature may prevent different forms of Aβ brain accumulation and/or lower pre‐existing accumulates in a later stage of the disease. Pathogenic cascades which operate to dissociate normal transport exchanges between central and peripheral pools of Aβ, and decreased vascular competence leading to brain hypoperfusion and impaired Aβ clearance are discussed. We suggest that there is a link between neurovascular dysfunction and elevated brain AB which provides a new scenario for therapeutic interventions to control Alzheimer mental deterioration.

Full Text

The Full Text of this article is available as a PDF (235.7 KB).

REFERENCES

  • 1. Bacskai BJ, Kajdasz ST, McLellan ME, Games D, Seubert P, Schenk D, Hyman BT (2002). Non‐Fcmediated mechanisms are involved in the clearance of amyloid‐β in vivo by immunotherapy. J Neurosci 22:7873–7878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Bading JR, Yamada S, Mackic JB, Kirkman L, Miller C, Calero M, Ghiso J, Frangione B, Zlokovic BV (2002) Brain clearance of Alzheimer's amyloid‐β40 in the squirrel monkey: a SPECT study in a primate model of cerebral amyloid angiopathy. J Drug Target 10:359–368. [DOI] [PubMed] [Google Scholar]
  • 3. Bailey TL, Rivara CB, Rocher AB, Hof PR (2004) The nature and effects of cortical microvascular pathology in aging and Alzheimer's disease. Neurol Res. 26:573–578. [DOI] [PubMed] [Google Scholar]
  • 4. Blanchard BJ, Chen A, Rozeboom LM, Stafford KA, Weigele P, Ingram VM (2004) Efficient reversal of Alzheimer's disease fibril formation and elimination of neurotoxicity by a small molecule. Proc Natl Acad Sci U S A 101:14326–14332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak‐Vance MA, Mazziotta JC, Small GW (2000) Patterns of brain activation in people at risk for Alzheimer's disease. N Engl J Med 343:450–456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Casserly I, Topol E (2004) Convergence of atherosclerosis and Alzheimer's disease: inflammation, cholesterol, and misfolded proteins. Lancet 363:1139–1146. [DOI] [PubMed] [Google Scholar]
  • 7. Cheng T, Liu D, Griffin JH, Fernandez JA, Castellino F, Rosen ED, Fukudome K, Zlokovic BV (2003) Activated protein C blocks p53–mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med 9:338–342. [DOI] [PubMed] [Google Scholar]
  • 8. Chirita C, Necula M, Kuret J (2004) Ligand‐dependent inhibition and reversal of tau filament formation. Biochemistry 43:2879–2887. [DOI] [PubMed] [Google Scholar]
  • 9. Davis J, Xu F, Deane R, Romanov G, Previti ML, Zeigler K, Zlokovic BV, van Nostrand WE (2004) Early‐onset and robust cerebral microvascular accumulation of amyloid β‐protein in transgenic mice expressing low levels of a vasculotropic Dutch/lowa mutant form of amyloid β‐protein precursor. J Biol Chem 279:20296–20306. [DOI] [PubMed] [Google Scholar]
  • 10. Deane R, Wu Z, Sagare A, Davis J, Yan SD, Hamm K, Xu F, Parisi M, LaRue B, Hu HW, Spijkers P, Guo H, Song X, Lenting PJ, van Nostrand WE, Zlokovic BV (2004) LRP/amyloid β‐peptide interaction mediates differential brain efflux of aβ isoforms. Neuron 43:333–344. [DOI] [PubMed] [Google Scholar]
  • 11. Deane R, Wu Z, Zlokovic BV (2004) RAGE (Yin) versus LRP (Yang) balance regulates Alzheimer amyloid β‐peptide clearance through transport across the blood‐brain barrier. Stroke 35[suppl I]:2628–2631. [DOI] [PubMed] [Google Scholar]
  • 12. Deane R, Yan SD, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic BV (2003) RAGE mediates amyloid‐β peptide transport across the blood‐brain barrier and accumulation in brain. Nat Med 9:907–913. [DOI] [PubMed] [Google Scholar]
  • 13. De Felice FG, Ferreira ST (2002) Beta‐amyloid production, aggregation, and clearance as targets for therapy in Alzheimer's disease. Cell Mol Neurobiol 22:545–563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. De Felice FG, Vieira MN, Saraiva LM, Figueroa‐Villar JD, Garcia‐Abreu J, Liu R, Chang L, Klein WL, Ferreira ST (2004) Targeting the neurotoxic species in Alzheimer's disease: inhibitors of Abeta oligomerization. FASEB J 18:1366–1372. [DOI] [PubMed] [Google Scholar]
  • 15. de la Torre JC (2004). Alzheimer's disease is a vasocognopathy: a new term to describe its nature. Neurol Res 26:517–524. [DOI] [PubMed] [Google Scholar]
  • 16. DeMattos RB, Bales KR, Cummins DJ, Paul SM, Holtzman DM (2002) Brain to plasma amyloid‐efflux: a measure of brain amyloid burden in a mouse model of Alzheimer's disease. Science 295:2264–2267. [DOI] [PubMed] [Google Scholar]
  • 17. DeMattos RB, Bales KR, Parsadanian M, O'Dell MA, Foss EM, Paul SM, Holtzman DM (2002) Plaque‐associated disruption of CSF and plasma amyloid‐β equilibrium in a mouse model of Alzheimer's disease. J Neurochem 81:229–236. [DOI] [PubMed] [Google Scholar]
  • 18. DeMattos RB, Cirrito JR, Parsadanian M, May PC, O'Dell MA, Taylor JW, Harmony JAK, Aronow BJ, Bales KR, Paul SM, Holtzman DM (2004) ApoE and clusterin cooperatively suppress aβ levels and deposition: evidence that ApoE regulates extracellular aβ metabolism in vivo. Neuron 41:193–202. [DOI] [PubMed] [Google Scholar]
  • 19. Fagan AM, Watson M, Parsadanian M, Bales KR, Paul SM, Holtzman DM (2002) Human and murine ApoE markedly influence aβ metabolism before and after plaque formation in a mouse model of Alzheimer's disease. Neurobiol Dis 9:305–318. [DOI] [PubMed] [Google Scholar]
  • 20. Farkas E, Luiten PG (2001) Cerebral microvascular pathology in aging and Alzheimer's disease. Prog Neurobiol 64:575–611. [DOI] [PubMed] [Google Scholar]
  • 21. Gorelick PB (2004) Risk factors for vascular dementia and Alzheimer's disease. Stroke 35:2620–22. [DOI] [PubMed] [Google Scholar]
  • 22. Greenberg SM, Gurol ME, Rosand J, Smith EE (2004) Amyloid angiopathy‐related vascular cognitive impairment. Stroke 35:2616–2619. [DOI] [PubMed] [Google Scholar]
  • 23. Guo H, Liu D, Gelbard H, Cheng T, Insalaco R, Fernandez JA, Griffin JH, Zlokovic BV (2004) Activated protein C prevents neuronal apoptosis via protease activated receptors 1 and 3. Neuron 41:563–572. [DOI] [PubMed] [Google Scholar]
  • 24. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297:353–356. [DOI] [PubMed] [Google Scholar]
  • 25. Herz J, Hui DY (2004) Lypoprotein receptors in the vascular wall. Curr Opin Lipidol 15:175–181. [DOI] [PubMed] [Google Scholar]
  • 26. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Neurosci Rev 5:347–360. [DOI] [PubMed] [Google Scholar]
  • 27. Iqbal K, Alonso Adel C, El‐Akkad E, Gong CX, Haque N, Khatoon S, Pei JJ, Tanimukai H, Tsujio I, Wang JZ, Grundke‐Iqba I (2003) Alzheimer neurofibrillary degeneration: therapeutic targets and high‐throughput assays. J Mol Neurosci 20:425–429. [DOI] [PubMed] [Google Scholar]
  • 28. Iqbal K, Grundke‐Iqbal I (2004) Inhibition of neurofibrillary degeneration: a promising approach to Alzheimer's disease and other tauopathies. Curr Drug Targets 5:495–502. [DOI] [PubMed] [Google Scholar]
  • 29. Lwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard NP, Gerard C, Hama E, Lee H‐J, Saido TC (2001) Metabolic regulation of brain Aβ by neprilysin. Science 292:1550–1552. [DOI] [PubMed] [Google Scholar]
  • 30. Koistinaho M, Lin S, Wu X, Esterman M, Koger D, Hanson J, Higgs R, Liu F, Malkani S, Bales KR, Paul SM (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid‐β peptides. Nat Med 10:719–726. [DOI] [PubMed] [Google Scholar]
  • 31. Kumar‐Singh S, Dickson D, Pirici D, Serneels S, McGowan E, Duff K, Hardy J, van Broeckhoven C (2004) Dense‐core amyloid plaques in Tg2576 and PSAPP mice are centered on vascular wall and closely resemble Flemish Alzheimer's pathology. Soc Neurosci Ann Meeting , 23–27 October San Diego, CA.
  • 32. LaFerla FM, Troncoso JC, Strickland DK, Kawas CH, Jay G (1997) Neuronal cell death in Alzheimer's disease correlates with ApoE uptake and intracellular A‐beta stabilization. J Clin Invest 100:310–320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Lam FC, Liu R, Lu P, Shapiro AB, Renoir J‐M, Sharom FJ, Reiner PB (2001) β‐Amyloid efflux me diated by p‐glycoprotein. J Neurochem 76:1121–1128. [DOI] [PubMed] [Google Scholar]
  • 34. Lashuel HA, Hartley DM, Balakhaneh D, Aggarwal A, Teichberg S, Callaway DJ (2002) New class of inhibitors of amyloid‐beta fibril formation. Implications for the mechanism of pathogenesis in Alzheimer's disease. J Biol Chem 277:42881–42890. [DOI] [PubMed] [Google Scholar]
  • 35. Lau LF, Schachter JB, Seymour PA, Sanner MA (2002) Tau protein phosphorylation as a therapeutic target in Alzheimer's disease. Curr Top Med Chem 2:395–415. [DOI] [PubMed] [Google Scholar]
  • 36. Liu D, Cheng T, Guo H, Fernandez JA, Griffin JH, Song X, Zlokovic BV (2004) Tissue plasminogen activator neurovascular toxicity is controlled by activated protein C. Nat Med 10:1379–1383. [DOI] [PubMed] [Google Scholar]
  • 37. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891. [DOI] [PubMed] [Google Scholar]
  • 38. Mackic JB, Bading J, Ghiso J, Walker L, Wisniewski T, Frangione B, Zlokovic BV (2002) Circulating amyloid‐β peptide crosses the bloodbrain barrier in aged monkeys and contributes to Alzheimer's disease lesions. Vascul Pharmacol 38:303–313. [DOI] [PubMed] [Google Scholar]
  • 39. Matsuoka Y, Saito M, LaFrancois J, Saito M, Gaynor K, Olm V, Wang L, Casey E, Lu Y, Shiratori C, Lemere C, Duff K (2003) Novel therapeutic approach for the treatment of Alzheimer's disease by peripheral administration of agents with an affinity to β ‐amyloid. J Neurosci 23:29–33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO (2003). Neuropathology of human Alzheimer disease after immunization with amyloid‐β peptide: a case report. Nat Med 9:448–452. [DOI] [PubMed] [Google Scholar]
  • 41. Paris D, Patel N, DelleDonne A, Quadros A, Smeed R, Mullan M (2004) Impaired angiogenesis in a transgenic mouse model of cerebral amyloidosis. Neurosci Lett 366:80–85. [DOI] [PubMed] [Google Scholar]
  • 42. Paris D, Townsend K, Quadros A, Humphrey J, Sun J, Brem S, Wotoczek‐Obadia M, DelleDonne A, Patel N, Obregon DF, Crescentini R, Abdullah L, Coppola D, Rojiani AM, Crawford F, Sebti SM, Mullan M (2004) Inhibition of angiogenesis by Aβ peptides. Angiogenesis 7:75–85. [DOI] [PubMed] [Google Scholar]
  • 43. Roberts SB (2002) β‐Secretase inhibitors and Alzheimer's disease. Adv Drug Deliv Rev 54:1579–1588. [DOI] [PubMed] [Google Scholar]
  • 44. Roher AE, Esh C, Rahman A, Kokjohn TA, Beach TG (2004) Atherosclerosis of cerebral arteries in Alzheimer's disease. Stroke 35:2623–2627. [DOI] [PubMed] [Google Scholar]
  • 45. Sacchettini JC, Kelly JW (2002) Therapeutic strategies for human amyloid diseases. Nat Rev Drug Discov 1:267–275. [DOI] [PubMed] [Google Scholar]
  • 46. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson‐Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999). Immunization with amyloid‐β attenuates Alzheimer‐disease‐like pathology in the PDAPP mouse. Nature 400:173–177. [DOI] [PubMed] [Google Scholar]
  • 47. Selkoe DJ (2001) Clearing the brain's amyloid cobwebs. Neuron 32:177–180. [DOI] [PubMed] [Google Scholar]
  • 48. Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, Holtzman DM, Miller CA, Strickland DK, Ghiso J, Zlokovic BV (2000) Clearance of Alzheimer's amyloid‐β1–40 peptide from brain by LDL receptor‐related protein‐1 at the blood‐brain barrier. J Clin Invest 106:1489–1499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Sigurdsson EM, Scholtzova H, Mehta PD, Frangione B, Wisniewski T (2001) Immunization with a nontoxic/nonfibrillar amyloid‐beta homologous peptide reduces Alzheimer's disease‐associated pathology in transgenic mice. Am J Pathol 159:439–447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Silverberg GD, Mayo M, Saul T, Rubenstein E, McGuire D (2003) Alzheimer's disease, normalpressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2:506–511. [DOI] [PubMed] [Google Scholar]
  • 51. Tanzi RE, Moir RD, Wagner SL (2004) Clearance of Alzheimer's Aβ peptide: the many roads to perdition. Neuron 43:605–608. [DOI] [PubMed] [Google Scholar]
  • 52. Tariot PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, Gergel I, Memantine Study Group (2004) Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 219:317–324. [DOI] [PubMed] [Google Scholar]
  • 53. Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MMB (2003) Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med 348:1215–1222. [DOI] [PubMed] [Google Scholar]
  • 54. Vinters HV, Farag ES (2003) Amyloidosis of cerebral arteries. Adv Neurol 92:105–112. [PubMed] [Google Scholar]
  • 55. Wood JG, Mirra SS, Pollock NJ, Binder LI (1986) Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule‐associated protein tau (tau). Proc Natl Acad Sci U S A 83:4040–4043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Wyss‐Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, Silverstein SC, Husemann J (2003) Adult mouse astrocytes degrade amyloid‐β in vitro and in situ. Nat Med 9:453–457. [DOI] [PubMed] [Google Scholar]
  • 57. Yankner BA, Duffy LK, Kirschner DA (1990) Neurotrophic and neurotoxic effects of amyloidbeta protein: reversal by tachykinin neuropeptides. Science 250:279–282. [DOI] [PubMed] [Google Scholar]
  • 58. Zerbinatti CV, Wozniak DF, Cirrito J, Cam JA, Osaka H, Bales KR, Zhuo M, Paul SM, Holtzman DM, Bu G (2004) Increased soluble amyloid β peptide and memory deficits in amyloid model mice overexpressing the LDL receptor‐related protein. Proc Natl Acad Sci U S A 101:1075–1080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59. Zlokovic BZ (2004) Clearing amyloid through the blood‐brain barrier. J Neurochem 89:807–811. [DOI] [PubMed] [Google Scholar]
  • 60. Zlokovic BV (2005) Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci in press. [DOI] [PubMed] [Google Scholar]
  • 61. Zlokovic BV, Frangione B (2003) Transport‐clearance hypothesis for Alzheimer's disease and potential therapeutic implications. In: Saido TC, ed. Aβ Metabolism in Alzheimer's Disease. Georgetown , TX : Landes Bioscience; 114–122. [Google Scholar]
  • 62. Zlokovic BV, Martel CL, Matsubara E, McComb JG, Zheng G, McCluskey RT, Frangione B, Ghiso J (1996) Glycoprotein 330/megalin: probable role in receptor‐mediated transport of apolipoprotein J alone and in a complex with Alzheimer's disease amyloid‐ββat the blood‐brain and blood‐cerebrospinal fluid barriers. Proc Natl Acad Sci U S A 93:4229–4234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Zlokovic BV, Yamada S, Holtzman D, Ghiso J, Frangione B (2000) Clearance of amyloid‐Aβpeptide from brain: transport or metabolism Nature Med 6:718–719. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES