Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;12(2):183–190. doi: 10.1111/j.1750-3639.2002.tb00433.x

A Role for Chromosome 9p21 Deletions in the Malignant Progression of Meningiomas and the Prognosis of Anaplastic Meningiomas

Arie Perry MD 1, Ruma Banerjee 1, Christine M Lohse 2, Bette K Kleinschmidt‐DeMasters 4, Bernd W Scheithauer 3,
PMCID: PMC8095834  PMID: 11958372

Abstract

Meningiomas display significant variability in terms of recurrence and survival rates, even within tumor grade. Although several recent modifications of the grading system have improved our ability to predict biologic behavior, additional prognostic markers are needed. Inactivation of the cell cycle regulator, p16 (CDKN2A), has recently been observed in a small subset of atypical and the majority of anaplastic meningiomas. To assess the potential clinical utility of this marker, we performed dual‐color FISH on 117 well‐characterized archival meningiomas using paired commercial probes to the chromosome 9 centromeric (CEP9) and p16 (9p21) regions. Benign meningiomas (N=42) were divided into non‐recurring versus recurring groups. Atypical meningiomas (N=52) consisted of proliferative and brain invasive subsets. The 23 anaplastic meningiomas were not further stratified. Deletion of p16 or monosomy 9 was seen in 17% of benign, 52% of atypical, and 74% of anaplastic meningiomas (p<0.001). No statistically significant differences were found among subsets of benign or subsets of atypical meningioma, though there were more recurrences in those with deletion. Despite potential effects on cell cycle regulation, p16 deletions were not restricted to meningiomas with a high proliferative index. Most importantly, p16 deletion was strongly associated with survival in the anaplastic meningioma cohort, with a risk ratio for death of 6.79 (p= 0.016). Conversely, absence of deletion identified a subset of anaplastic meningioma patients (26%) with prolonged survival. We conclude that chromosome 9p21 deletions are associated with malignant progression of meningiomas and poor prognosis in anaplastic meningiomas.

Full Text

The Full Text of this article is available as a PDF (150.2 KB).

References

  • 1. Bostrom J, Meyer‐Puttlitz B, Wolter M, Blaschke B, Weber RG, Lichter P, Ichimura K, Collins VP, Reifen‐berger G (2001) Alterations of the tumor suppressor genes CDKN2A (p16 INK4a), p14 ARF, CDKN2B (p15 INK4b), and CDKN2C (p18 INK4c) in atypical and anaplastic menin‐giomas. Am J Pathol 159:661–669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Cai DX, Banerjee R, Scheithauer BW, Lohse CM, Klein‐schmidt‐DeMasters BK, Perry A (2001) Chromosome 1p and 14q FISH Analysis in clinicopathologic subsets of meningioma: diagnostic and prognostic implications. J Neuropathol Exp Neurol 60:628–636. [DOI] [PubMed] [Google Scholar]
  • 3. Cai DX, James CD, Scheithauer BW, Couch FJ, Perry A (2001) PS6K amplification characterizes a small subset of anaplastic meningiomas. Am J Clin Pathol 115:213–218. [DOI] [PubMed] [Google Scholar]
  • 4. CBTRUS (2000) Statistical report: primary brain tumors in the United States, 1992–1997. Published by the Central Brain Tumor Registry of the United States. [Google Scholar]
  • 5. De Vitis LR, Vitelli ATF, Mennonna FAP, Montali UBE, Papi L (1996) Screening for mutations in the neurofibro‐matosis type 2 (NF2) gene in sporadic meningiomas. Hum Genet 97:632–637. [DOI] [PubMed] [Google Scholar]
  • 6. Ellison DW, Lunec J, Gallagher PJ, Steart PV, Jaros E, Gat‐ter KC (1995) Accumulation of wild‐type p53 in menin‐giomas. Neuropathol Appl Neurobiol 21:136–142. [DOI] [PubMed] [Google Scholar]
  • 7. Gutmann DH, Donahoe J, Perry A, Lemke L, Gorse K, Kit‐tiniyom K, Rempel SA, Gutierrez JA, Newsham IF (2000) Loss of DAL‐1, a protein 4.1‐related tumor suppressor, is an important early event in the pathogenesis of menin‐gioma Hum Mol Genet 9:1495–1500. [DOI] [PubMed] [Google Scholar]
  • 8. Gutmann DH, Giordano MJ, Fishback AS, Guha A (1997) Loss of merlin expression in sporadic meningiomas, ependymomas, and schwannomas. Neurology 49:267–270. [DOI] [PubMed] [Google Scholar]
  • 9. Lamszus K, Kluwe L, Matschke J, Meissner H, Laas R, Westphal M (1999) Allelic losses at 1p, 9q, 10q, 14q, and 22q in sporadic meningiomas. Cancer Genet Cytogenet 110:103–110. [DOI] [PubMed] [Google Scholar]
  • 10. Leone PE, Bello MJ, De Campos JM, Vaquero J, Sarasa JL, Pestana A, Rey JA (1999) NF2 gene mutations and allelic status of 1p, 14q and 22q in sporadic menin‐giomas. Oncogene 18:2231–2239. [DOI] [PubMed] [Google Scholar]
  • 11. Louis DN, Scheithauer BW, Budka H, von Deimling A, Kepes JJ (2000) Meningiomas In: Kleihues P, Cavenee WK. (eds.), World Health Organization classification of tumours. Pathology and genetics of tumours of the nervous system, pp. 176–189, IARC Press: Lyon , France . [Google Scholar]
  • 12. Merel P, Hoang‐Xuan K, Sanson M, Moreau‐Aubry A, Bijlsma EK, Lazaro C, Moisan JP, Resche F, Nishisho I, Estivill X, Delattre JY, Poisson M, Theillet C, Hulsebos T, Delattre O, Thomas G (1995) Predominant occurrence of somatic mutations of the NF2 gene in meningiomas and schwannomas. Genes Chrom Cancer 13:211–216. [DOI] [PubMed] [Google Scholar]
  • 13. Perry A, Cai DX, Scheithauer BW, Swanson PE, Lohse CM, Newsham IF, Weaver A, Gutmann DH (2000) Merlin, DAL‐1, and progesterone receptor expression in clinico‐pathologic subsets of meningioma: Acorrelative immuno‐histochemical study of 175 cases. J Neuropathol Exp Neurol 59:872–879. [DOI] [PubMed] [Google Scholar]
  • 14. Perry A, Nobori T, Ru N, Anderl K, Borell TJ, Mohapatra G, Feuerstein BG, Jenkins RB, Carson DA. Detection of p16 gene deletions in gliomas: Fluorescence in situ hybridization (FISH) versus quantitative PCR (1997) J Neuropathol Exp Neurol 56: 999–1008. [DOI] [PubMed] [Google Scholar]
  • 15. Perry A, Scheithauer BW, Stafford SL, Lohse CM, Wollan PC (1999) “Malignancy” in meningiomas: a clinicopatho‐logic study of 116 patients. Cancer 85:2046–2056. [DOI] [PubMed] [Google Scholar]
  • 16. Perry A, Stafford SL, Scheithauer BW, Suman VJ, Lohse CM (1997) Meningioma grading: an analysis of histologic parameters. Am J Surg Pathol 21:1455–1465. [DOI] [PubMed] [Google Scholar]
  • 17. Ruttledge MH, Sarrazin J, Rangaratnam S, Phelan CM, Twist E, Merel P, Delattre O, Thomas G, Nordenskjold M, Collins VP, Dumanski JP, Rouleau GA (1994) Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nature Genet 6:180–184. [DOI] [PubMed] [Google Scholar]
  • 18. Sato K, Schauble B, Kleihues P, Ohgaki H (1996) Infrequent alterations of the p15, p16, CDK4 and cyclin D1 genes in non‐astrocytic human brain tumors. Int J Cancer 66:305–308. [DOI] [PubMed] [Google Scholar]
  • 19. Schneider BF, Shashi V, von Kap H, Golde WL (1995) Loss of chromosomes 22 and 14 in the malignant progression of meningiomas: Acomparative study of fluorescence in situ hybridization (FISH) and standard cytogenetic analysis. Cancer Genet Cytogenet 85:101–104. [DOI] [PubMed] [Google Scholar]
  • 20. Simon M, von Deimling A, Larson JJ, Wellenreuther R, Kaskel P, Waha A, Warnick RE, Tew JM, Jr. , Menon AG (1995) Allelic losses on chromosomes 14, 10, and 1 in atypical and malignant meningiomas: a genetic model of meningioma progression. Cancer Res 55:4696–4701. [PubMed] [Google Scholar]
  • 21. Tse JY, Ng HK, Lo KW, Chong EY, Lam PY, Ng EK, Poon WS, Huang DP (1998) Analysis of cell cycle regulators: p16INK4A, pRb, and CDK4 in low‐ and high‐grade menin‐giomas. Hum Pathol 29:1200–1207. [DOI] [PubMed] [Google Scholar]
  • 22. Ueki K, Wen‐Bin C, Narita Y, Asai A, Kirino T (1999) Tight association of loss of merlin expression with loss of het‐erozygosity at chromosome 22q in sporadic menin‐giomas. Cancer Res 59:5995–5998. [PubMed] [Google Scholar]
  • 23. Weber RG, Bostrom J, Wolter M, Baudis M, Collins VP, Reifenberger G, Lichter P (1997) Analysis of genomic alterations in benign, atypical, and anaplastic menin‐giomas: Toward a genetic model of meningioma progression. Proc Natl Acad Sci USA 94:14719–14724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Zang KD (2001) Meningioma: a cytogenetic model of a complex benign human tumor, including data on 394 karyotyped cases. Cancer Genet Cytogenet 93:207–220. [DOI] [PubMed] [Google Scholar]
  • 25. Zang KD, Singer H (1967) Chromosomal constitution of meningiomas. Cancer Genet Cytogenet 216:84–85. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES