Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;14(3):305–311. doi: 10.1111/j.1750-3639.2004.tb00069.x

The Pathogenesis of Neonatal Post‐hemorrhagic Hydrocephalus

Shobha Cherian 1, Andrew Whitelaw 2, Marianne Thoresen 1, Seth Love 2,
PMCID: PMC8095844  PMID: 15446586

Abstract

Hydrocephalus after intraventricular hemorrhage (IVH) has emerged as a major complication of preterm birth and is especially problematic to treat. The hydrocephalus is usually ascribed to fibrosing arachnoiditis, meningeal fibrosis and subependymal gliosis, which impair flow and resorption of cerebrospinal fluid (CSF). Recent experimental studies have suggested that acute parenchymal compression and ischemic damage, and increased parenchymal and perivascular deposition of extracellular matrix proteins—probably due at least partly to upregulation of transforming growth factor‐β (TGF‐β)—are further important contributors to the development of the hydrocephalus. IVH is associated with damage to periventricular white matter and the damage is exacerbated by the development of hydrocephalus; combinations of pressure, distortion, ischaemia, inflammation, and free radical‐mediated injury are probably responsible. The damage to white matter accounts for the high frequency of cerebral palsy in this group of infants. The identification of mechanisms and mediators of hydrocephalus and white matter damage is leading to the development of new treatments to prevent permanent hydrocephalus and its neurological complications, and to avoid shunt dependence.

Full Text

The Full Text of this article is available as a PDF (744.3 KB).

REFERENCES

  • 1. Ajayi‐Obe M, Saeed N, Cowan FM, Rutherford MA, Edwards AD (2000) Reduced development of cerebral cortex in extremely preterm infants. Lancet 356:1162–1163. [DOI] [PubMed] [Google Scholar]
  • 2. Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21:1302–1312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Bejar R, Saugstad OD, James H, Gluck L (1983) Increased hypoxanthine concentrations in cerebrospinal fluid of infants with hydrocephalus. J Pediatr 103:44–48. [DOI] [PubMed] [Google Scholar]
  • 4. Border WA, Ruoslahti E (1990) Transforming growth factor‐beta 1 induces extracellular matrix formation in glomerulonephritis. Cell Differ Dev 32:425–431. [DOI] [PubMed] [Google Scholar]
  • 5. Brionne TC, Tesseur I, Masliah E, Wyss‐Coray T (2004) Loss of TGF‐β1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 40:1133–1145. [DOI] [PubMed] [Google Scholar]
  • 6. Castilla A, Prieto J, Fausto N (1991) Transforming growth factors beta 1 and alpha in chronic liver disease. Effects of interferon alfa therapy. N Engl J Med 324:933–940. [DOI] [PubMed] [Google Scholar]
  • 7. Cherian S, Love S, Silver IA, Thoresen M, Whitelaw A (in press) Transforming growth factor‐βs in a rat model of neonatal post‐haemorrhagic hydrocephalus. Neuropathol Appl Neurobiol. . [DOI] [PubMed]
  • 8. Cherian SS, Love S, Silver IA, Porter HJ, Whitelaw AG, Thoresen M (2003) Posthemorrhagic ventricular dilation in the neonate: development and characterization of a rat model. J Neuropathol Exp Neurol 62:292–303. [DOI] [PubMed] [Google Scholar]
  • 9. Davis SL, Tooley WH, Hunt JV (1987) Developmental outcome following posthemorrhagic hydrocephalus in preterm infants. Comparison of twins discordant for hydrocephalus. Am J Dis Child 141:1170–1174. [DOI] [PubMed] [Google Scholar]
  • 10. de la Monte SM, Hsu FI, Hedley‐Whyte ET, Kupsky W (1990) Morphometric analysis of the human infant brain: effects of intraventricular hemorrhage and periventricular leukomalacia. J Child Neurol 5:101–110. [DOI] [PubMed] [Google Scholar]
  • 11. Deguchi K, Oguchi K, Matsuura N, Armstrong DD, Takashima S (1999) Periventricular leukomalacia: relation to gestational age and axonal injury. Pediatr Neurol 20:370–374. [DOI] [PubMed] [Google Scholar]
  • 12. Del Bigio MR (1993) Neuropathological changes caused by hydrocephalus. Acta Neuropathol 85:573–585. [DOI] [PubMed] [Google Scholar]
  • 13. Flood C, Akinwunmi J, Lagord C, Daniel M, Berry M, Jackowski A, Logan A (2001) Transforming growth factor‐beta 1 in the cerebrospinal fluid of patients with subarachnoid hemorrhage: titers derived from exogenous and endogenous sources. J Cereb Blood Flow Metab 21:157–162. [DOI] [PubMed] [Google Scholar]
  • 14. Fukumizu M, Takashima S, Becker LE (1995) Neonatal posthemorrhagic hydrocephalus: neuropathologic and immunohistochemical studies. Pediatr Neurol 13:230–234. [DOI] [PubMed] [Google Scholar]
  • 15. Fukumizu M, Takashima S, Becker LE (1996) Glial reaction in periventricular areas of the brainstem in fetal and neonatal posthemorrhagic hydrocephalus and congenital hydrocephalus. Brain Dev 18:40–45. [DOI] [PubMed] [Google Scholar]
  • 16. Galbreath E, Kim SJ, Park K, Brenner M, Messing A (1995) Overexpression of TGF‐beta 1 in the central nervous system of transgenic mice results in hydrocephalus. J Neuropathol Exp Neurol 54: 339–349. [DOI] [PubMed] [Google Scholar]
  • 17. Ghazi‐Birry HS, Brown WR, Moody DM, Challa VR, Block SM, Reboussin DM (1997) Human germinal matrix: venous origin of hemorrhage and vascular characteristics. Am J Neuroradiol 18: 219–229. [PMC free article] [PubMed] [Google Scholar]
  • 18. Goddard J, Lewis RM, Alcala H, Zeller RS (1980) Intraventricular hemorrhage‐an animal model. Biol Neonate 37:39–52. [DOI] [PubMed] [Google Scholar]
  • 19. Goh KY, Poon WS (1998) Recombinant tissue plasminogen activator for the treatment of spontaneous adult intraventricular hemorrhage. Surg Neurol 50:526–531; discussion 531–522. [DOI] [PubMed] [Google Scholar]
  • 20. Greitz D, Greitz T, Hindmarsh T (1997) A new view on the CSF‐circulation with the potential for pharmacological treatment of childhood hydrocephalus. Acta Paediatr 86:125–132. [DOI] [PubMed] [Google Scholar]
  • 21. Hansen A, Whitelaw A, Lapp C, Brugnara C (1997) Cerebrospinal fluid plasminogen activator inhibitor‐1: a prognostic factor in posthaemorrhagic hydrocephalus. Acta Paediatr 86:995–998. [DOI] [PubMed] [Google Scholar]
  • 22. Heep A, Stoffel‐Wagner B, Soditt V, Aring C, Groneck P, Bartmann P (2002) Procollagen I C‐propeptide in the cerebrospinal fluid of neonates with posthaemorrhagic hydrocephalus. Arch Dis Child Fetal Neonatal Ed 87:F34–36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Hill A, Shackelford GD, Volpe JJ. (1984) A potential mechanism of pathogenesis for early post‐hemorrhagic hydrocephalus in the premature newborn. Pediatrics 73:19–21. [PubMed] [Google Scholar]
  • 24. Hille R (1994) The reaction mechanism of oxomolybdenum enzymes. Biochim Biophys Acta 1184:143–169. [DOI] [PubMed] [Google Scholar]
  • 25. Inder T, Mocatta T, Darlow B, Spencer C, Volpe JJ, Winterbourn C. (2002) Elevated free radical products in the cerebrospinal fluid of VLBW infants with cerebral white matter injury. Pediatr Res 52:213–218. [DOI] [PubMed] [Google Scholar]
  • 26. Inder TE, Huppi PS, Warfield S, Kikinis R, Zientara GP, Barnes PD, Jolesz F, Volpe JJ (1999) Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Ann Neurol 46:755–760. [DOI] [PubMed] [Google Scholar]
  • 27. Kadhim H, Tabarki B, Verellen G, De Prez C, Rona AM, Sebire G (2001) Inflammatory cytokines in the pathogenesis of periventricular leukomalacia. Neurology 56:1278–1284. [DOI] [PubMed] [Google Scholar]
  • 28. Kaiser AM, Whitelaw AG (1985) Cerebrospinal fluid pressure during post haemorrhagic ventricular dilatation in newborn infants. Arch Dis Child 60:920–924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Kitazawa K, Tada T (1994) Elevation of transforming growth factor‐beta 1 level in cerebrospinal fluid of patients with communicating hydrocephalus after subarachnoid hemorrhage. Stroke 25:1400–1404. [DOI] [PubMed] [Google Scholar]
  • 30. Knuckey NW, Finch P, Palm DE, Primiano MJ, Johanson CE, Flanders KC, Thompson NL (1996) Differential neuronal and astrocytic expression of transforming growth factor beta isoforms in rat hippocampus following transient forebrain ischemia. Brain Res Mol Brain Res 40:1–14. [DOI] [PubMed] [Google Scholar]
  • 31. Larroche JC (1972) Post‐haemorrhagic hydrocephalus in infancy. Anatomical study. Biol Neonate 20:287–299. [DOI] [PubMed] [Google Scholar]
  • 32. Lehrmann E, Kiefer R, Finsen B, Diemer NH, Zimmer J, Hartung HP (1995) Cytokines in cerebral ischemia: expression of transforming growth factor beta‐1 (TGF‐β1) mRNA in the postischemic adult rat hippocampus. Exp Neurol 131:114–123. [DOI] [PubMed] [Google Scholar]
  • 33. Leviton A, Paneth N, Reuss ML, Susser M, Allred EN, Dammann O, Kuban K, van Marter LJ, Pagano M, Hegyi T, Hiatt M, et al (1999) Maternal infection, fetal inflammatory response, and brain damage in very low birth weight infants. Developmental Epidemiology Network Investigators. Pediatr Res 46:566–575. [DOI] [PubMed] [Google Scholar]
  • 34. Logan A, Frautschy SA, Gonzalez AM, Sporn MB, Baird A (1992) Enhanced expression of transforming growth factor beta 1 in the rat brain after a localized cerebral injury. Brain Res 587:216–225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Lorenzo AV, Welch K, Conner S (1982) Spontaneous germinal matrix and intraventricular hemorrhage in prematurely born rabbits. J Neurosurg 56:404–410. [DOI] [PubMed] [Google Scholar]
  • 36. Lou HC (1988) The “lost autoregulation hypothesis” and brain lesions in the newborn‐an update. Brain Dev 10:143–146. [DOI] [PubMed] [Google Scholar]
  • 37. Lou HC (1988) Perinatal hypoxic‐ischaemic brain damage and intraventricular haemorrhage. Baillieres Clin Obstet Gynaecol 2:213–220. [DOI] [PubMed] [Google Scholar]
  • 38. Love S (1999) Oxidative stress in brain ischemia. Brain Pathol 9:119–131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Love S (2004) Acute haemorrhagic and hypoxic‐ischaemic brain damage in the neonate. Curr Diagn Pathol 10:106–115. [Google Scholar]
  • 40. Love S, Cherian S, Thoresen M, Whitelaw A (2003) Role of TGFβ during the early phase of post‐hemorrhagic hydrocephalus in a neonatal rat model. J Neuropathol Exp Neurol 62:560. [Google Scholar]
  • 41. Mayfrank L, Kissler J, Raoofi R, Delsing P, Weis J, Kuker W, Gilsbach JM (1997) Ventricular dilatation in experimental intraventricular hemorrhage in pigs. Characterization of cerebrospinal fluid dynamics and the effects of fibrinolytic treatment. Stroke 28:141–148. [DOI] [PubMed] [Google Scholar]
  • 42. McDonald JW, Levine JM, Qu Y (1998) Multiple classes of the oligodendrocyte lineage are highly vulnerable to excitotoxicity. Neuroreport 9:2757–2762. [DOI] [PubMed] [Google Scholar]
  • 43. Ment LR, Stewart WB, Duncan CC, Lambrecht R (1982) Beagle puppy model of intraventricular hemorrhage. J Neurosurg 57:219–223. [DOI] [PubMed] [Google Scholar]
  • 44. Miyawaki T, Matsui K, Takashima S (1998) Developmental characteristics of vessel density in the human fetal and infant brains. Early Hum Dev 53:65–72. [DOI] [PubMed] [Google Scholar]
  • 45. Murphy BP, Inder TE, Rooks V, Taylor GA, Anderson NJ, Mogridge N, Horwood LJ, Volpe JJ (2002) Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome. Arch Dis Child Fetal Neonatal Ed 87:F37–41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Nakamura Y, Okudera T, Fukuda S, Hashimoto T (1990) Germinal matrix hemorrhage of venous origin in preterm neonates. Hum Pathol 21:1059–1062. [DOI] [PubMed] [Google Scholar]
  • 47. Narayan RK, Narayan TM, Katz DA, Kornblith PL, Murano G (1985) Lysis of intracranial hematomas with urokinase in a rabbit model. J Neurosurg 62:580–586. [DOI] [PubMed] [Google Scholar]
  • 48. Ness JK, Romanko MJ, Rothstein RP, Wood TL, Levison SW (2001) Perinatal hypoxia‐ischemia induces apoptotic and excitotoxic death of periventricular white matter oligodendrocyte progenitors. Dev Neurosci 23:203–208. [DOI] [PubMed] [Google Scholar]
  • 49. Nishino T, Tamura I (1991) The mechanism of conversion of xanthine dehydrogenase to oxidase and the role of the enzyme in reperfusion injury. Adv Exp Med Biol 309A:327–333. [DOI] [PubMed] [Google Scholar]
  • 50. Nosarti C, Al‐Asady MH, Frangou S, Stewart AL, Rifkin L, Murray RM (2002) Adolescents who were born very preterm have decreased brain volumes. Brain 125:1616–1623. [DOI] [PubMed] [Google Scholar]
  • 51. Pang D, Sclabassi RJ, Horton JA (1986) Lysis of intraventricular blood clot with urokinase in a canine model: Part 1. Canine intraventricular blood cast model. Neurosurgery 19:540–546. [DOI] [PubMed] [Google Scholar]
  • 52. Pang D, Sclabassi RJ, Horton JA (1986) Lysis of intraventricular blood clot with urokinase in a canine model: Part 2. In vivo safety study of intraventricular urokinase. Neurosurgery 19:547–552. [DOI] [PubMed] [Google Scholar]
  • 53. Pang D, Sclabassi RJ, Horton JA (1986) Lysis of intraventricular blood clot with urokinase in a canine model: Part 3. Effects of intraventricular urokinase on clot lysis and posthemorrhagic hydrocephalus. Neurosurgery 19:553–572. [DOI] [PubMed] [Google Scholar]
  • 54. Pierrat V, Bevenot S, Truffert P, Duquennoy C, Lequien P (1998) Incidence, evolution and prognosis of posthemorrhagic ventriculomegaly in a population of newborns of less than 33 weeks gestational age. Arch Pediatr 5:974–981. [DOI] [PubMed] [Google Scholar]
  • 55. Reynolds ML, Evans CA, Reynolds EO, Saunders NR, Durbin GM, Wigglesworth JS (1979) Intracranial haemorrhage in the preterm sheep fetus. Early Hum Dev 3:163–186. [DOI] [PubMed] [Google Scholar]
  • 56. Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH, et al. (1986) Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci U S A 83:4167–4171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Rorke LB (1972) Pathology of perinatal brain injury, Raven Press: New York . [Google Scholar]
  • 58. Savman K, Blennow M, Hagberg H, Tarkowski E, Thoresen M, Whitelaw A (2002) Cytokine response in cerebrospinal fluid from preterm infants with posthaemorrhagic ventricular dilatation. Acta Paediatr 91:1357–1363. [DOI] [PubMed] [Google Scholar]
  • 59. Savman K, Nilsson UA, Blennow M, Kjellmer I, Whitelaw A (2001) Non‐protein‐bound iron is elevated in cerebrospinal fluid from preterm infants with posthemorrhagic ventricular dilatation. Pediatr Res 49:208–212. [DOI] [PubMed] [Google Scholar]
  • 60. Sheth RD (1998) Trends in incidence and severity of intraventricular hemorrhage. J Child Neurol 13:261–264. [DOI] [PubMed] [Google Scholar]
  • 61. Tada T, Kanaji M, Kobayashi S (1994) Induction of communicating hydrocephalus in mice by intrathecal injection of human recombinant transforming growth factor‐beta 1. J Neuroimmunol 50:153–158. [DOI] [PubMed] [Google Scholar]
  • 62. Takano T, Rutka JT, Becker LE (1996) Overexpression of nestin and vimentin in ependymal cells in hydrocephalus. Acta Neuropathol 92:90–97. [DOI] [PubMed] [Google Scholar]
  • 63. Ventriculomegaly Trial Group (1990) Randomised trial of early tapping in neonatal posthaemorrhagic ventricular dilatation. Arch Dis Child 65:3–10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. Volpe J (2001) Neurology of the Newborn. 4th edition, Saunders: Philadelphia . [Google Scholar]
  • 65. Volpe JJ (1989) Intraventricular hemorrhage and brain injury in the premature infant. Neuropathology and pathogenesis. Clin Perinatol 16:361–386. [PubMed] [Google Scholar]
  • 66. Volpe JJ (1989) Intraventricular hemorrhage in the premature infant ‐ current concepts. Part I. Ann Neurol 25:3–11. [DOI] [PubMed] [Google Scholar]
  • 67. Whitelaw A (2001) Intraventricular streptokinase after intraventricular hemorrhage in newborn infants. Cochrane Database Syst Rev: CD000498. . [DOI] [PubMed]
  • 68. Whitelaw A (2001) Repeated lumbar or ventricular punctures in newborns with intraventricular hemorrhage. Cochrane Database Syst Rev:CD000216. . [DOI] [PubMed]
  • 69. Whitelaw A, Christie S, Pople I (1999) Transforming growth factor‐beta1: a possible signal molecule for posthemorrhagic hydrocephalus Pediatr Res 46:576–580. [DOI] [PubMed] [Google Scholar]
  • 70. Whitelaw A, Kennedy CR, Brion LP (2001) Diuretic therapy for newborn infants with posthemorrhagic ventricular dilatation. Cochrane Database Syst Rev: CD002270. . [DOI] [PMC free article] [PubMed]
  • 71. Whitelaw A, Mowinckel MC, Abildgaard U (1995) Low levels of plasminogen in cerebrospinal fluid after intraventricular haemorrhage: a limiting factor for clot lysis Acta Paediatr 84: 933–936. [DOI] [PubMed] [Google Scholar]
  • 72. Whitelaw A, Pople I, Cherian S, Evans D, Thoresen M (2003) Phase 1 trial of prevention of hydrocephalus after intraventricular hemorrhage in newborn infants by drainage, irrigation, and fibrinolytic therapy. Pediatrics 111:759–765. [DOI] [PubMed] [Google Scholar]
  • 73. Whitelaw A, Thoresen M, Pople I (2002) Posthaemorrhagic ventricular dilatation. Arch Dis Child Fetal Neonatal Ed 86:F72–74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Wyss‐Coray T, Feng L, Masliah E, Ruppe MD, Lee HS, Toggas SM, Rockenstein EM, Mucke L (1995) Increased central nervous system production of extracellular matrix components and development of hydrocephalus in transgenic mice overexpressing transforming growth factor‐beta 1. Am J Pathol 147:53–67. [PMC free article] [PubMed] [Google Scholar]
  • 75. Xue M, Balasubramaniam J, Buist RJ, Peeling J, Del Bigio MR (2003) Periventricular/intraventricular hemorrhage in neonatal mouse cerebrum. J Neuropathol Exp Neurol 62:1154–1165. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES