Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;13(4):617–629. doi: 10.1111/j.1750-3639.2003.tb00490.x

Differential Expression of the Chemokine Receptors CX3CR1 and CCR1 by Microglia and Macrophages in Myelin‐Oligodendrocyte‐Glycoprotein‐Induced Experimental Autoimmune Encephalomyelitis

Dan Sunnemark 1,, Sana Eltayeb 4, Erik Wallström 4, Lena Appelsved 2, Åsa Malmberg 3, Hans Lassmann 5, Anders Ericsson‐Dahlstrand 1, Fredrik Piehl 4, Tomas Olsson 4
PMCID: PMC8095849  PMID: 14655765

Abstract

Chemokines are important for the recruitment of immune cells into sites of inflammation. To better understand their functional roles during inflammation we have here studied the in vivo expression of receptors for the chemokines CCL3/CCL5/CCL7 (MIP‐1α/RANTES/MCP‐3) and CX3CL1 (fractalkine), CCR1 and CX3CR1, respectively, in rat myelin oligodendrocyte glycoprotein‐induced experimental autoimmune encephalomyelitis. Combined in situ hybridization and immunohistochemistry demonstrated intensely upregulated CCR1 mRN A expression in early, actively demyelinating plaques, whereas CX3CR1 displayed a more generalized expression pattern. CX3CR1 mRNA expressing cells were identified as microglia on the basis of their cellular morphology and positive GSA/B4 lectin staining. In contrast, CCR1 mRNA was preferentially expressed by ED1+GSA/B4+ macrophages. The notion of differential chemokine receptor expression in microglia and monocyte‐derived macrophages was corroborated at the protein level by extraction and flow cytometric sorting of cells infiltrating the spinal cord using gating for the surface markers CD45, ED‐2 and CD11b. These observations suggest a differential receptor expression between microglia and monocyte‐derived macrophages and that mainly the latter cell type is responsible for active demyelination. This has great relevance for the possibility of therapeutic intervention in demyelinating diseases such as multiple sclerosis, for example by targeting signaling events leading to monocyte recruitment.

Full Text

The Full Text of this article is available as a PDF (633.4 KB).

References

  • 1. Amor S, Groome N, Linington C, Morris MM, Dornmair K, Gardinier M, Matthieu, JM , Baker D (1994) Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J Immunol 153:4349–4356. [PubMed] [Google Scholar]
  • 2. Balashov KE, Rottman JB, Weiner HL, Hancock WW (1999) CCR5(+) and CXCR3(+) T‐cells are increased in multiple sclerosis and their ligands MIP‐1 alpha and IP‐10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci U S A 96:6873–6878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Baranzini SE, Elfstrom C, Chang SY, Butunoi C, Murray R, Higuchi R, Oksenberg JR (2000) Transcriptional analysis of multiple sclerosis brain lesions reveals a complex pattern of cytokine expression. J Immunol 165:6576–6582. [DOI] [PubMed] [Google Scholar]
  • 4. Boddeke EWGH, Meigel I, Frentzel S, Biber K, Renn LQ, Gebicke‐Harter P (1999) Functional expression of the fractalkine (CX3C) receptor and its regulation by lipopolysaccharide in rat microglia. Eur J Pharmacol 374:309–313. [DOI] [PubMed] [Google Scholar]
  • 5. Boehme SA, Lio FM, Maciejewski‐Lenoir D, Bacon KB, Conlon PJ (2000) The chemokine fractalkine inhibits Fas‐mediated cell death of brain microglia. J Immunol 165:397–403. [DOI] [PubMed] [Google Scholar]
  • 6. Bruck W, Sommermeier N, Bergmann M Zettl U, Goebel HH, Kretzschmar HA, Lassmann H (1996) Macrophages in multiple sclerosis. Immunobiology. 195:588–600. [DOI] [PubMed] [Google Scholar]
  • 7. Chen C, Bacon KB, Li L, Garcia, GE , Lo Xia, D , Thompson DA, Siani MA, Yamamoto T, Harrison JK, Feng L (1998) In vivo inhibition of CC and CX3C chemokine‐induced leukocyte infiltration and attenuation of glomeru‐lonephritis in Wistar‐Kyoto (WKY) rats by vMIP‐II. J Exp Med 188:193–198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Combadiere C, Salzwedel K, Smith ED, Tiffany HL, Berger EA, Murphy PM (1998) Identification of CX(3)CR1 - A chemotactic receptor for the human CX3C chemokine fractalkine and a fusion coreceptor for HIV-1. J Biol Chem 273:23799–23804. [DOI] [PubMed] [Google Scholar]
  • 9. Davie CA, Hawkins CP, Barker GJ Brennan A, Tofts PS, Miller DH, McDonald WI (1994) Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117:49–58. [DOI] [PubMed] [Google Scholar]
  • 10. De Stefano N, Matthews PM, Fu L, Narayanan S, Stanley J, Francis GS, Antel JP, Arnold DL (1998) Axonal damage correlates with disability in patients with relapsing‐remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121:1469–1477. [DOI] [PubMed] [Google Scholar]
  • 10a. Eltayeb S, Sunnemark D, Berg AL, Nordvall G, Malmberg A, Lassmann H, Wallstrom E, Olsson T, Ericsson‐Dahlstrand A (2003) Effector stage CC chemokine receptor‐1 selective antagonism reduces multiple sclerosis‐like rat disease. J Neuroimmunol 142:75–85. [DOI] [PubMed] [Google Scholar]
  • 11. Feng LL, Chen SZ, Garcia GE, Xia YY, Siani MA, Botti P, Wilson CB, Harrison JK, Bacon KB (1999) Prevention of crescentic glomerulonephritis by immunoneutralization of the fractalkine receptor CX(3)CR1. Kidney International 56:612–620. [DOI] [PubMed] [Google Scholar]
  • 12. Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120:393–399. [DOI] [PubMed] [Google Scholar]
  • 13. Flugel A, Berkowicz T, Ritter T, Labeur M, Jenne DE, Li Z, Ellwart JW, Willem M, Lassmann, H , Wekerle H (2001) Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis. Immunity 14:547–560. [DOI] [PubMed] [Google Scholar]
  • 14. Fong AM, Robinson LA, Steeber DA, Tedder TF, Yoshie O, Imai T, Patel DD (1998) Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. J Exp Med 188:1413–1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Foussat A, Coulomb‐LHermine A, Gosling J, Krzysiek R, Durand‐Gasselin I, Schall T, Balian A, Richard Y, Galanaud P, Emilie D (2000) Fractalkine receptor expression by T lymphocyte subpopulations and in vivo production of fractalkine in human. Eur J Immunol 30:87–97. [DOI] [PubMed] [Google Scholar]
  • 16. Fraticelli P, Sironi M, Bianchi G, D'Ambrosio D, Albanesi C, Stoppacciaro A, Chieppa M, Allavena P, Ruco L, Girolomoni G, Sinigaglia F, Vecchi A, Mantovani A (2001) Fractalkine (CX3CL1) as an amplification circuit of polarized Th1 responses. J Clin Invest 107:1173–1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Gay FW, Drye TJ, Dick GW, Esiri MM (1997) The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis. Identification and characterization of the primary demyelinating lesion. Brain 120:1461–1483. [DOI] [PubMed] [Google Scholar]
  • 18. Godiska R, Chantry D, Dietsch GN, Gray PW (1995) Chemokine expression in murine experimental allergic encephalomyelitis. J Neuroimmunol 58:167–176. [DOI] [PubMed] [Google Scholar]
  • 19. Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, Streit WJ, Salafranca MN, Adhikari S, Thompson DA, Botti P, Bacon KB, Feng L (1998) Role of neuronally derived fractalkine in mediating interactions between neurons and CX3CR1‐expressing microglia. Proc Natl Acad Sci U S A 95:10896–10901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Haskell CA, Hancock WW, Salant DJ, Gao W, Csizmadia V, Peters W, Faia K, Fituri O, Rottman JB, Charo IF (2001) Targeted deletion of CX(3)CR1 reveals a role for fractalkine in cardiac allograft rejection. J Clin Invest 108:679–688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Hesselgesser J, Ng HP, Liang M, Zheng W, May K, Bauman JG, Monahan S, Islam I, Wei GP, Ghannam A, Taub DD, Rosser M, Snider RM, Morrissey MM, Perez HD, Horuk R (1998) Identification and characterization of small molecule functional antagonists of the CCR1 chemokine receptor. J Biol Chem 273:15687–15692. [DOI] [PubMed] [Google Scholar]
  • 22. Hickey WF, Kimura H (1988) Perivascular microglial cells of the CNS are bone marrow‐derived and present antigen in vivo. Science 239:290–292. [DOI] [PubMed] [Google Scholar]
  • 23. Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, Kakizaki M, Takagi S, Nomiyama H, Schall TJ, Yoshie O (1997) Identification and molecular characterization of fractalkine receptor CX(3)CR1 which mediates both leukocyte migration and adhesion (1997). Cell 91:521–530. [DOI] [PubMed] [Google Scholar]
  • 24. Izikson L, Klein RS, Luster AD, Weiner HL (2002) Targeting monocyte recruitment in CNS autoimmune disease. Clin Immunol 103:125–131. [DOI] [PubMed] [Google Scholar]
  • 25. Jiang Y, Salafranca MN, Adhikari S, Xia Y, Feng L, Sonntag MK, de Fiebre CM, Pennell NA, Streit WJ, Harrison JK (1998) Chemokine receptor expression in cultured glia and rat experimental allergic encephalomyelitis. J Neuroimmunol 86:1–12. [DOI] [PubMed] [Google Scholar]
  • 26. Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Karpus WJ (2001) Chemokines and central nervous system disorders. J Neurovirol 7:493–500. [DOI] [PubMed] [Google Scholar]
  • 28. Karpus WJ, Kennedy KJ (1997) MIP‐1alpha and MCP‐1 differentially regulate acute and relapsing autoimmune encephalomyelitis as well as Th1/Th2 lymphocyte differentiation. J Leukoc Biol 62:681–687. [PubMed] [Google Scholar]
  • 29. Karpus WJ, Lukacs NW, Kennedy KJ, Smith WS, Hurst SD, Barrett TA (1997) Differential CC chemokine‐induced enhancement of T helper cell cytokine production. J Immunol 158:4129–4136. [PubMed] [Google Scholar]
  • 30. Karpus WJ, Lukacs NW, McRae BL, Strieter RM, Kunkel SL, Miller SD (1995) An important role for the chemokine macrophage inflammatory protein‐1 alpha in the pathogenesis of the T‐cell‐mediated autoimmune disease, experimental autoimmune encephalomyelitis. J Immunol 155:5003–5010. [PubMed] [Google Scholar]
  • 31. Keegan BM, Noseworthy JH (2002) Multiple sclerosis. Ann Rev Med 53:285–302. [DOI] [PubMed] [Google Scholar]
  • 32. Kornek B, Storch MK, Bauer J, Djamshidian A, Weissert R, Wallstroem E, Stefferl A, Zimprich F, Olsson T, Linington C, Schmidbauer M, Lassmann H (2001) Distribution of a calcium channel subunit in dystrophic axons in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain 124:1114–1124. [DOI] [PubMed] [Google Scholar]
  • 33. Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T, Linington C, Schmidbauer M, Lassmann H (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 157:267–276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Lassmann H (1999) The pathology of multiple sclerosis and its evolution. Philosophical Transactions of the Royal Society of London ‐ Series B: Biol Sci 354:1635–1640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Lesnik P, Haskell CA, Charo IF (2003) Decreased atherosclerosis in CX3CR1‐/‐ mice reveals a role for fractalkine in atherogenesis. J Clin Investig 111:333–340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Li H, Cuzner ML, Newcombe J (1996) Microglia‐derived macrophages in early multiple sclerosis plaques. Neuropathol Appl Neurobiol 22:207–215. [PubMed] [Google Scholar]
  • 37. Liang M, Rosser M, Ng HP, May K, Bauman JG, Islam I, Ghannam A, Kretschmer PJ, Pu H, Dunning L, Snider RM, Morrissey MM, Hesselgesser J, Perez HD, Horuk R (2000) Species selectivity of a small molecule antagonist for the CCR1 chemokine receptor. Eur J Pharmacol 389:41–49. [DOI] [PubMed] [Google Scholar]
  • 38. Lorentzen JC, Issazadeh S, Storch M, Mustafa MI, Lass‐man H, Linington C, Klareskog L, Olsson T (1995) Protracted, relapsing and demyelinating experimental autoimmune encephalomyelitis in DA rats immunized with syngeneic spinal cord and incomplete Freund's adjuvant. J Neuroimmunol 63:193–205. [DOI] [PubMed] [Google Scholar]
  • 39. Maciejewski‐Lenoir D, Chen SZ, Feng LL, Maki R, Bacon KB (1999) Characterization of fractalkine in rat brain cells: Migratory and activation signals for CX3CR‐1‐expressing microglia. J Immunol 163:1628–1635. [PubMed] [Google Scholar]
  • 40. McDermott DH, Halcox JP, Schenke WH, Waclawiw MA, Merrell MN, Epstein N, Quyyumi AA, Murphy PM (2001) Association between polymorphism in the chemokine receptor CX3CR1 and coronary vascular endothelial dysfunction and atherosclerosis. Circ Res 89:401–407. [DOI] [PubMed] [Google Scholar]
  • 41. McManus C, Berman JW, Brett FM, Staunton H, Farrell M, Brosnan CF (1998) MCP‐1, MCP‐2 and MCP‐3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. J Neuroimmunol 86:20–29. [DOI] [PubMed] [Google Scholar]
  • 42. Moatti D, Faure S, Fumeron F, Amara Mel‐W, Seknadji P, McDermott DH, Debre P, Aumont, MC , Murphy PM, De Prost D, Combadiere C (2001) Polymorphism in the fractalkine receptor CX3CR1 as a genetic risk factor for coronary artery disease. Blood 97:19251928. [DOI] [PubMed] [Google Scholar]
  • 43. Nishiyori A, Minami M, Ohtani Y, Takami S, Yamamoto J, Kawaguchi N, Kume T, Akaike A. Satoh M (1998) Localization of fractalkine and CX3CR1 mRNAs in rat brain: does fractalkine play a role in signaling from neuron to microglia FEBS Lett 429:167–172. [DOI] [PubMed] [Google Scholar]
  • 44. Pan Y, Lloyd C, Zhou H, Dolich S, Deeds J, Gonzalo JA, Vath J, Gosselin M, Ma JY, Dussault B, Woolf E, Alperin G, Culpepper J, Gutierrezramos JC, Gearing D (1997) Neurotactin a membrane‐anchored chemokine upregulated in brain inflammation. Nature 387:611–617. [DOI] [PubMed] [Google Scholar]
  • 45. Piehl F, Lidman O (2001) Neuroinflammation in the rat‐CNS cells and their role in the regulation of immune reactions. Immuno Rev 184:212–225. [DOI] [PubMed] [Google Scholar]
  • 46. Robinson LA, Nataraj C, Thomas DW, Howell DN, Griffiths R, Bautch V, Patel DD, Feng LL, Coffman TM (2000) A role for fractalkine and its receptor (CX(3)CR1) in cardiac allograft rejection. J Immunol 165:6067–6072. [DOI] [PubMed] [Google Scholar]
  • 47. Rottman JB, Slavin AJ, Silva R, Weiner HL, Gerard CG, Hancock WW (2000) Leukocyte recruitment during onset of experimental allergic encephalomyelitis is CCR1 dependent. Eur J Immunol 30:2372–2377. [DOI] [PubMed] [Google Scholar]
  • 48. Saunders J, Tarby CM (1999) Opportunities for novel therapeutic agents acting at chemokine receptors. Drug Disc Today 4:80–92. [DOI] [PubMed] [Google Scholar]
  • 49. Schols D (1999) Promising anti‐HIV therapeutic strategy with a small molecule CXCR4 antagonist. Verhandelingen-Koninklijke Academie Voor Geneeskunde Van Belgie 61:551–564. [PubMed] [Google Scholar]
  • 50. Schwaeble WJ, Stover CM, Schall TJ, Dairaghi DJ, Trinder PKE, Linington C, Iglesias A, Schubart A, Lynch NJ, Weihe E, Schafer MKH (1998) Neuronal expression of fractalkine in the presence and absence of inflammation. FEBS Lett 439:203–207. [DOI] [PubMed] [Google Scholar]
  • 51. Sicotte NL, Voskuhl RR (2001) Onset of multiple sclerosis associated with anti‐TNF therapy. Neurology 57:1885–1888. [DOI] [PubMed] [Google Scholar]
  • 52. Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN (1998) Expression of monocyte chemoattractant protein‐1 and other beta‐chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. J Neuroimmunol 84:238–249. [DOI] [PubMed] [Google Scholar]
  • 53. Skurkovich S, Boiko A, Beliaeva I, Buglak A, Alekseeva T, Smirnova N, Kulakova O, Tchechonin V, Gurova O, Deomina T, Favorova OO, Skurkovic B, Gusev E (2001) Randomized study of antibodies to IFN‐gamma and TNF‐alpha in secondary progressive multiple sclerosis. Multiple Sclerosis 7:277–284. [DOI] [PubMed] [Google Scholar]
  • 54. Sorensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM, Frederiksen JL, Ransohoff RM (1999) Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 103:807–815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Steinman L (1996) Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85:299–302. [DOI] [PubMed] [Google Scholar]
  • 56. Storch MK, Stefferl A, Brehm U, Weissert R, Wallstrom E, Kerschensteiner M, Olsson T, Linington C, Lassmann H (1998) Autoimmunity to myelin oligodendrocyte glyco‐protein in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol 8:681–694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Storch MK, Weissert R, Steffer A, Birnbacher R, Wallstrom E, Dahlman I, Ostensson CG, Linington C, Olsson T, Lassmann H (2002) MHC gene related effects on microglia and macrophages in experimental autoimmune encephalomyelitis determine the extent of axonal injury. Brain Pathol 12:287–299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Swanson LW, Simmons DM (1989) Differential steroid hormone and neural influences on peptide mRNA levels in CRH cells of the paraventricular nucleus: a hybridization histochemical study in the rat. J Comp Neurol 285:413–435. [DOI] [PubMed] [Google Scholar]
  • 59. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Eng J Med 338:278–285. [DOI] [PubMed] [Google Scholar]
  • 60. Trebst C, Ransohoff RM (2001) Investigating chemokines and chemokine receptors in patients with multiple sclerosis: opportunities and challenges. Arch Neurol 58:19751980. [DOI] [PubMed] [Google Scholar]
  • 61. Trebst C, Sorensen TL, Kivisakk P, Cathcart MK, Hesselgesser J, Horuk R, Sellebjerg F, Lassmann H, Ransohoff RM, (2001) CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis. Am J Pathol 159:1701–1710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Wiendl H, Hohlfeld R (2002) Therapeutic approaches in multiple sclerosis: lessons from failed and interrupted treatment trials. Biodrugs 16:183–200. [DOI] [PubMed] [Google Scholar]
  • 63. Wingerchuk DM, Lucchinetti CF, Noseworthy JH (2001) Multiple sclerosis: current pathophysiological concepts. Lab Invest 81:263–281. [DOI] [PubMed] [Google Scholar]
  • 64. Zujovic V, Benavides J, Vige X, Carter C, Taupin V (2000) Fractalkine modulates TNF‐alpha secretion and neurotoxicity induced by microglial activation. Glia 29:305–315. [PubMed] [Google Scholar]
  • 65. Zujovic V, Schussler N, Jourdain D, Duverger D, Taupin V (2001) In vivo neutralization of endogenous brain fractalkine increases hippocampal TNF alpha and 8‐isoprostane production induced by intracerebroventricular injection of LPS. J Neuroimmunol 115:135–143. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES