Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;12(2):199–211. doi: 10.1111/j.1750-3639.2002.tb00436.x

Ammon's Horn Sclerosis: A Maldevelopmental Disorder Associated with Temporal Lobe Epilepsy

Ingmar Blümcke MD 1,, Maria Thom MRCPath 2, Otmar D Wiestler 1
PMCID: PMC8095862  PMID: 11958375

Abstract

Ammon's horn sclerosis (AHS) is the major neuropathological substrate in patients with temporal lobe epilepsy (TLE). Histopathological hallmarks include segmental loss of pyramidal neurons, granule cell dispersion and reactive gliosis. Pathogenetic mechanisms underlying this distinct hippocampal pathology have not yet been identified and it remains to be resolved whether AHS represents the cause or the consequence of chronic seizure activity and pharmacoresistant TLE. Whereas the clinical history indicates an early onset in most patients, ie, occurrence of febrile seizures at a young age, surgical treatment is usually carried out at an end stage of the disease. It has, therefore, been difficult to analyse the sequential development of hippocampal pathology in TLE patients. Recent molecular neuropathological studies focusing on developmental aspects of hippocampal organization revealed 2 intriguing findings in AHS specimens: i) The persistence of Cajal‐Retzius cells in AHS patients points towards an early insult and an altered Reelin signaling pathway and ii) increased neurogenesis in and abnormal architectural organization of the dentate granule cell layer can be observed in young patients with early hippocampal seizure onset. These findings would be compatible with a model that involves a neurodevelopmental component in the formation of AHS. Its association with a lowered seizure threshold and an increased susceptibility for segmental cell loss in the hippocampus during the long course of the disease may constitute additional elements in a pathogenic cascade.

Full Text

The Full Text of this article is available as a PDF (853.5 KB).

References

  • 1. Akbarian S, Vinuela A, Kim JJ, Potkin SG, Bunney WE, Jr. , Jones EG (1993) Distorted distribution of nicotinamide‐adenine dinucleotide phosphate‐diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. Arch Gen Psychiatry 50:178–187. [DOI] [PubMed] [Google Scholar]
  • 2. Altman J, Bayer SA (1990) Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J Comp Neurol 301:365–381. [DOI] [PubMed] [Google Scholar]
  • 3. Amaral DG, Price JL, Pitkänen A, Carmichael ST. Anatomical organization of the primate amygdaloid complex. In: Aggleton JP, editor. The amygdala: neurobiological aspects of emotopn, memory, and mental dysfunction. New York : Wiley Liss; 1992. p. 1–66. [Google Scholar]
  • 4. Bar I, Goffinet AM (1999) Developmental neurobiology. Decoding the Reelin signal. Nature 399:645–646. [DOI] [PubMed] [Google Scholar]
  • 5. Baulac M, De Grissac N, Hasboun D, Oppenheim C, Adam C, Arzimanoglou A, Semah F, Lehericy S, Clemenceau S, Berger B (1998) Hippocampal developmental changes in patients with partial epilepsy: magnetic resonance imaging and clinical aspects. Ann Neurol 44:223–233. [DOI] [PubMed] [Google Scholar]
  • 6. Blümcke I, Beck H, Lie AA, Wiestler OD (1999) Molecular neuropathology of human mesial temporal lobe epilepsy. Epilepsy Res 36:205–223. [DOI] [PubMed] [Google Scholar]
  • 7. Blümcke I, Beck H, Nitsch R, Eickhoff C, Scheffler B, Celio MR, Schramm J, Elger CE, Wolf HK, Wiestler OD (1996) Preservation of calretinin‐immunoreactive neurons in the hippocampus of epilepsy patients with Ammon's horn sclerosis. J Neuropathol Exp Neurol 55:329–341. [DOI] [PubMed] [Google Scholar]
  • 8. Blümcke I, Beck H, Suter B, Hoffmann D, Födisch HJ, Wolf HK, Schramm J, Elger CE, Wiestler OD (1999) An increase of hippocampal calretinin‐immunoreactive neurons correlates with early febrile seizures in temporal lobe epilepsy. Acta Neuropathol 97:31–39. [DOI] [PubMed] [Google Scholar]
  • 9. Blümcke I, Löbach M, Wolf HK, Wiestler OD (1999) Evidence for developmental precursor lesions in epilepsy‐associated glioneuronal tumors. Microsc Res Tech 46:53–58. [DOI] [PubMed] [Google Scholar]
  • 10. Blümcke I, Schewe JC, Normann S, Brustle O, Schramm J, Elger CE, Wiestler OD (2001) Increase of nestinimmunoreactive neural precursor cells in the dentate gyrus of pediatric patients with early‐onset temporal lobe epilepsy. Hippocampus 11:311–321. [DOI] [PubMed] [Google Scholar]
  • 11. Blümcke I, Zuschratter W, Schewe JC, Suter B, Lie AA, Riederer BM, Meyer B, Schramm J, Elger CE, Wiestler OD (1999) Cellular pathology of hilar neurons in Ammon's horn sclerosis. J Comp Neurol 414:437–453. [DOI] [PubMed] [Google Scholar]
  • 12. Bothwell S, Meredith GE, Phillips J, Staunton H, Doherty C, Grigorenko E, Glazier S, Deadwyler SA, O'Donovan CA, Farrell M (2001) Neuronal hypertrophy in the neocortex of patients with temporal lobe epilepsy. J Neurosci 21:4789–4800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Brooks‐Kayal AR, Shumate MD, Jin H, Rikhter TY, Coulter DA (1998) Selective changes in single cell GABA(A) receptor subunit expression and function in temporal lobe epilepsy. Nat Med 4:1166–1172. [DOI] [PubMed] [Google Scholar]
  • 14. Bruton CJ. The neuropathology of temporal lobe epilepsy. In: Russel G, Marley E, Williams P, editors. Maudsley monographs. London : Oxford University Press; 1988. p. 1–158. [Google Scholar]
  • 15. Cameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435:406–417. [DOI] [PubMed] [Google Scholar]
  • 16. Choi D, Na DG, Byun HS, Suh YL, Kim SE, Ro DW, Chung IG, Hong SC, Hong SB (1999) White‐matter change in mesial temporal sclerosis: correlation of MRI with PET, pathology, and clinical features. Epilepsia 40:1634–1641. [DOI] [PubMed] [Google Scholar]
  • 17. Chun JJ, Shatz CJ (1989) Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population. J Comp Neurol 282:555–569. [DOI] [PubMed] [Google Scholar]
  • 18. Clancy B, Cauller LJ (1999) Widespread projections from subgriseal neurons (layer VII) to layer I in adult rat cortex. J Comp Neurol 407:275–286. [PubMed] [Google Scholar]
  • 19. Crino PB, Eberwine J (1997) Cellular and molecular basis of cerebral dysgenesis. J Neurosci Res 50:907–916. [DOI] [PubMed] [Google Scholar]
  • 20. Crino PB, Trojanowski JQ, Eberwine J (1997) Internexin, MAP1B, and nestin in cortical dysplasia as markers of developmental maturity. Acta Neuropathol 93:619–627. [DOI] [PubMed] [Google Scholar]
  • 21. D'Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723. [DOI] [PubMed] [Google Scholar]
  • 22. Del Bigio MR (1999) Proliferative status of cells in adult human dentate gyrus. Microsc Res Tech 45:353–358. [DOI] [PubMed] [Google Scholar]
  • 23. Del Rio JA, Heimrich B, Borrell V, Förster E, Drakew A, Alcantara S, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Derer P, Frotscher M, Soriano E (1997) A role for Cajal‐Retzius cells and reelin in the development of hippocampal connections. Nature 385:70–74. [DOI] [PubMed] [Google Scholar]
  • 24. Du F, Whetsell WJ, Abou Khalil B, Blumenkopf B, Lothman EW, Schwarcz R (1993) Preferential neuronal loss in layer III of the entorhinal cortex in patients with temporal lobe epilepsy. Epilepsy Res 16:223–233. [DOI] [PubMed] [Google Scholar]
  • 25. El Bahh B, Lespinet V, Lurton D, Coussemacq M, Le Gal La Salle G, Rougier A (1999) Correlations between granule cell dispersion, mossy fiber sprouting, and hippocampal cell loss in temporal lobe epilepsy. Epilepsia 40:1393–1401. [DOI] [PubMed] [Google Scholar]
  • 26. Emery JA, Roper SN, Rojiani AM (1997) White matter neuronal heterotopia in temporal lobe epilepsy: a morphometric and immunohistochemical study. J Neuropathol Exp Neurol 56:1276–1282. [DOI] [PubMed] [Google Scholar]
  • 27. Eriksson PS, Perfilieva E, Bjork‐Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317. [DOI] [PubMed] [Google Scholar]
  • 28. Fernandez G, Effenberger O, Vinz B, Steinlein O, Elger CE, Dohring W, Heinze HJ (1998) Hippocampal malformation as a cause of familial febrile convulsions and subsequent hippocampal sclerosis. Neurology 50:909–917. [DOI] [PubMed] [Google Scholar]
  • 29. Fuerst D, Shah J, Kupsky WJ, Johnson R, Shah A, Hayman‐Abello B, Ergh T, Poore Q, Canady A, Watson C (2001) Volumetric MRI, pathological, and neuropsychological progression in hippocampal sclerosis. Neurology 57:184–188. [DOI] [PubMed] [Google Scholar]
  • 30. Garbelli R, Frassoni C, Ferrario A, Tassi L, Bramerio M, Spreafico R (2001) Cajal‐Retzius cell density as marker of type of focal cortical dysplasia. Neuroreport 12:2767–2771. [DOI] [PubMed] [Google Scholar]
  • 31. Gleeson JG, Walsh CA (2000) Neuronal migration disorders: from genetic diseases to developmental mechanisms. Trends Neurosci 23:352–359. [DOI] [PubMed] [Google Scholar]
  • 32. Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ (1999) Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci 2:260–265. [DOI] [PubMed] [Google Scholar]
  • 33. Gould E, Reeves AJ, Graziano MS, Gross CG (1999) Neurogenesis in the Neocortex of Adult Primates. Science 286:548–552. [DOI] [PubMed] [Google Scholar]
  • 34. Gray WP, Sundstrom LE (1998) Kainic acid increases the proliferation of granule cell progenitors in the dentate gyrus of the adult rat. Brain Res 790:52–59. [DOI] [PubMed] [Google Scholar]
  • 35. Grunewald RA, Farrow T, Vaughan P, Rittey CD, Mundy J (2001) A magnetic resonance study of complicated early childhood convulsion. J Neurol Neurosurg Psychiatry 71:638–642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Hammers A, Koepp MJ, Labbe C, Brooks DJ, Thom M, Cunningham VJ, Duncan JS (2001) Neocortical abnormalities of [11C]‐flumazenil PET in mesial temporal lobe epilepsy. Neurology 56:897–906. [DOI] [PubMed] [Google Scholar]
  • 37. Hardiman O, Burke T, Phillips J, Murphy S, O'Moore B, Staunton H, Farrell MA (1988) Microdysgenesis in resected temporal neocortex: incidence and clinical significance in focal epilepsy. Neurology 38:1041–1047. [DOI] [PubMed] [Google Scholar]
  • 38. Harding B, Thom M (2001) Bilateral hippocampal granule cell dispersion: autopsy study of 3 infants. Neuropathol Appl Neurobiol 27:245–251. [DOI] [PubMed] [Google Scholar]
  • 39. Honavar M, Meldrum BS. Epilepsy. In: Graham DI, Lantos PL, editors. Greenfield's neuropathology. 6th ed. London – New York : Arnold/Oxford University Press; 1997. p. 931–971. [Google Scholar]
  • 40. Houser CR (1990) Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res 535:195–204. [DOI] [PubMed] [Google Scholar]
  • 41. Houser CR, Swartz BE, Walsh GO, Delgado‐ Escueta AV (1992) Granule cell disorganization in the dentate gyrus: possible alterations of neuronal migration in human temporal lobe epilepsy. Epilepsy Res Suppl 9:41–48. [PubMed] [Google Scholar]
  • 42. Hudson LP, Munoz DG, Miller L, McLachlan RS, Girvin JP, Blume WT (1993) Amygdaloid sclerosis in temporal lobe epilepsy. Ann Neurol 33:622–631. [DOI] [PubMed] [Google Scholar]
  • 43. Kalviainen R, Salmenpera T, Partanen K, Vainio P, Riekkinen P, Pitkanen A (1998) Recurrent seizures may cause hippocampal damage in temporal lobe epilepsy. Neurology 50:1377–1382. [DOI] [PubMed] [Google Scholar]
  • 44. Kasper BS, Stefan H, Buchfelder M, Paulus W (1999) Temporal lobe microdysgenesis in epilepsy versus control brains. J Neuropathol Exp Neurol 58:22–28. [DOI] [PubMed] [Google Scholar]
  • 45. Kaufmann WE, Galaburda AM (1989) Cerebrocortical microdysgenesis in neurologically normal subjects: a histopathologic study. Neurology 39:238–244. [DOI] [PubMed] [Google Scholar]
  • 46. Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495. [DOI] [PubMed] [Google Scholar]
  • 47. Kendal C, Everall I, Polkey C, Al‐Sarraj S (1999) Glial cell changes in the white matter in temporal lobe epilepsy. .Epilepsy Res 36:43–51. [DOI] [PubMed] [Google Scholar]
  • 48. Krishnan B, Armstrong DL, Grossman RG, Zhu ZQ, Rutecki PA, Mizrahi EM (1994) Glial cell nuclear hypertrophy in complex partial seizures. J Neuropathol Exp Neurol 53:502–507. [DOI] [PubMed] [Google Scholar]
  • 49. Kuhn HG, Dickinson‐Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age‐related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Kukekov VG, Laywell ED, Suslov O, Davies K, Scheffler B, Thomas LB, O'Brien TF, Kusakabe M, Steindler DA (1999) Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp Neurol 156:333–344. [DOI] [PubMed] [Google Scholar]
  • 51. Kuzniecky R, Hetherington H, Pan J, Hugg J, Palmer C, Gilliam F, Faught E, Morawetz R (1997) Proton spectroscopic imaging at 4.1 tesla in patients with malformations of cortical development and epilepsy. Neurology 48:1018–1024 issn: 0028–3878. [DOI] [PubMed] [Google Scholar]
  • 52. Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595. [DOI] [PubMed] [Google Scholar]
  • 53. Levesque MF, Nakasato N, Vinters HV, Babb TL (1991) Surgical treatment of limbic epilepsy associated with extrahippocampal lesions: the problem of dual pathology. J Neurosurg 75:364–370. [DOI] [PubMed] [Google Scholar]
  • 54. Li LM, Cendes F, Andermann F, Watson C, Fish DR, Cook MJ, Dubeau F, Duncan JS, Shorvon SD, Berkovic SF, Free S, Olivier A, Harkness W, Arnold DL (1999) Surgical outcome in patients with epilepsy and dual pathology. Brain 122 (Pt 5):799–805. [DOI] [PubMed] [Google Scholar]
  • 55. Lurton D, El Bahh B, Sundstrom L, Rougier A (1998) Granule cell dispersion is correlated with early epileptic events in human temporal lobe epilepsy. J Neurol Sci 154:133–136. [DOI] [PubMed] [Google Scholar]
  • 56. Lurton D, Sundstrom L, Brana C, Bloch B, Rougier A (1997) Possible mechanisms inducing granule cell dispersion in humans with temporal lobe epilepsy. Epilepsy Res 26:351–361. [DOI] [PubMed] [Google Scholar]
  • 57. Magloczky Z, Wittner L, Borhegyi Z, Halasz P, Vajda J, Czirjak S, Freund TF (2000) Changes in the distribution and connectivity of interneurons in the epileptic human dentate gyrus. Neuroscience 96:7–25. [DOI] [PubMed] [Google Scholar]
  • 58. Mathern GW, Babb TL, Mischel PS, Vinters HV, Pretorius JK, Leite JP, Peacock WJ (1996) Childhood generalized and mesial temporal epilepsies demonstrate different amounts and patterns of hippocampal neuron loss and mossy fibre synaptic reorganization. Brain 119:965–987. [DOI] [PubMed] [Google Scholar]
  • 59. Mathern GW, Kuhlman PA, Mendoza D, Pretorius JK (1997) Human fascia dentata anatomy and hippocampal neuron densities differ depending on the epileptic syndrome and age at first seizure. J Neuropathol Exp Neurol 56:199–212. [DOI] [PubMed] [Google Scholar]
  • 60. Meencke HJ, Janz D (1984) Neuropathological findings in primary generalized epilepsy: a study of eight cases. Epilepsia 25:8–21. [DOI] [PubMed] [Google Scholar]
  • 61. Meiners LC, van der Grond J, Van Rijen PC, Springorum R, De Kort GA, Jansen GH (2000) Proton magnetic resonance spectroscopy of temporal lobe white matter in patients with histologically proven hippocampal sclerosis. J Magn Reson Imaging 11:25–31. [DOI] [PubMed] [Google Scholar]
  • 62. Meiners LC, Witkamp TD, De Kort GA, van Huffelen AC, van der Graaf Y, Jansen GH, van der Grond J, Van Veelen CW (1999) Relevance of temporal lobe white matter changes in hippocampal sclerosis. Magnetic resonance imaging and histology. Invest Radiol 34:38–45. [DOI] [PubMed] [Google Scholar]
  • 63. Meyer G, Wahle P, Castaneyra‐Perdomo A, Ferres‐Torres R (1992) Morphology of neurons in the white matter of the adult human neocortex. Exp Brain Res 88:204–212. [DOI] [PubMed] [Google Scholar]
  • 64. Miller LA, McLachlan RS, Bouwer MS, Hudson LP, Munoz DG (1994) Amygdalar sclerosis: preoperative indicators and outcome after temporal lobectomy. J Neurol Neurosurg Psychiatry 57:1099–1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Mischel PS, Nguyen LP, Vinters HV (1995) Cerebral cortical dysplasia associated with pediatric epilepsy. Review of neuropathologic features and proposal for a grading system. J Neuropathol Exp Neurol 54:137–153. [DOI] [PubMed] [Google Scholar]
  • 66. Mitchell LA, Jackson GD, Kalnins RM, Saling MM, Fitt GJ, Ashpole RD, Berkovic SF (1999) Anterior temporal abnormality in temporal lobe epilepsy: a quantitative MRI and histopathologic study. Neurology 52:327–336. [DOI] [PubMed] [Google Scholar]
  • 67. Molnar Z, Adams R, Blakemore C (1998) Mechanisms underlying the early establishment of thalamocortical connections in the rat. J Neurosci 18:5723–5745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Moran NF, Lemieux L, Kitchen ND, Fish DR, Shorvon SD (2001) Extrahippocampal temporal lobe atrophy in temporal lobe epilepsy and mesial temporal sclerosis. Brain 124:167–175. [DOI] [PubMed] [Google Scholar]
  • 69. Nakasato N, Levesque MF, Babb TL (1992) Seizure outcome following standard temporal lobectomy: correlation with hippocampal neuron loss and extrahippocampal pathology. J Neurosurg 77:194–200. [DOI] [PubMed] [Google Scholar]
  • 70. Palmini A, Lüders HO (2002) Classification issues in malformations caused by abnormalities of cortical development. Neurosurg Clin N Am 13:1–16. [DOI] [PubMed] [Google Scholar]
  • 71. Parent JM, Tada E, Fike JR, Lowenstein DH (1999) Inhibition of dentate granule cell neurogenesis with brain irradiation does not prevent seizure‐induced mossy fiber synaptic reorganization in the rat. J Neurosci 19:4508–4519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17:3727–3738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. Penfield W, Baldwin M (1952) Temporal lobe seizures and the technique of subtotal temporal lobectomy. Ann Surg 136:625–634. [PMC free article] [PubMed] [Google Scholar]
  • 74. Pitkanen A, Tuunanen J, Kalviainen R, Partanen K, Salmenpera T (1998) Amygdala damage in experimental and human temporal lobe epilepsy. Epilepsy Res 32:233–253. [DOI] [PubMed] [Google Scholar]
  • 75. Rakic P (1988) Defects of neuronal migration and the pathogenesis of cortical malformations. Prog Brain Res 73:15–37. [DOI] [PubMed] [Google Scholar]
  • 76. Raymond AA, Fish DR, Stevens JM, Cook MJ, Sisodiya SM, Shorvon SD (1994) Association of hippocampal sclerosis with cortical dysgenesis in patients with epilepsy. Neurology 44:1841–1845. [DOI] [PubMed] [Google Scholar]
  • 77. Rice DS, Curran T (2001) Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 24:1005–1039. [DOI] [PubMed] [Google Scholar]
  • 78. Rietze RL, Valcanis H, Brooker GF, Thomas T, Voss AK, Bartlett PF (2001) Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 412:736–739. [DOI] [PubMed] [Google Scholar]
  • 79. Rojiani AM, Emery JA, Anderson KJ, Massey JK (1996) Distribution of heterotopic neurons in normal hemispheric white matter: a morphometric analysis. J Neuropathol Exp Neurol 55:178–183. [DOI] [PubMed] [Google Scholar]
  • 80. Sagar HJ, Oxbury JM (1987) Hippocampal neuron loss in temporal lobe epilepsy: correlation with early childhood convulsions. Ann Neurol 22:334–340. [DOI] [PubMed] [Google Scholar]
  • 81. Scheffler B, Horn M, Blümcke I, Laywell ED, Coomes D, Kukekov V, Steindler DA (1999) Marrow‐mindedness: a perspective on neuropoiesis. Trends Neurosci 22:348–357. [DOI] [PubMed] [Google Scholar]
  • 82. Senzaki K, Ogawa M, Yagi T (1999) Proteins of the CNR family are multiple receptors for Reelin. Cell 99:635–647. [DOI] [PubMed] [Google Scholar]
  • 83. Shumate MD, Lin DD, Gibbs JWr, Holloway KL, Coulter DA (1998) GABA(A) receptor function in epileptic human dentate granule cells: comparison to epileptic and control rat. Epilepsy Res 32:114–128. [DOI] [PubMed] [Google Scholar]
  • 84. Sisodiya SM, Moran N, Free SL, Kitchen ND, Stevens JM, Harkness WF, Fish DR, Shorvon SD (1997) Correlation of widespread preoperative magnetic resonance imaging changes with unsuccessful surgery for hippocampal sclerosis. Ann Neurol 41:490–496. [DOI] [PubMed] [Google Scholar]
  • 85. Sommer W (1880) Die Erkrankung des Ammonshorns als aetiologisches Moment der Epilepsie. Arch Psychiat Nervenkr 308:631–675. [Google Scholar]
  • 86. Stefan H, Feichtinger M, Pauli E, Schafer I, Eberhardt KW, Kasper BS, Hopp P, Buchfelder M, Huk J, Paulus W (2001) Magnetic resonance spectroscopy and histopathological findings in temporal lobe epilepsy. Epilepsia 42:41–46. [DOI] [PubMed] [Google Scholar]
  • 87. Tasch E, Cendes F, Li LM, Dubeau F, Andermann F, Arnold DL (1999) Neuroimaging evidence of progressive neuronal loss and dysfunction in temporal lobe epilepsy. Ann Neurol 45:568–576. [DOI] [PubMed] [Google Scholar]
  • 88. Thom M, D'Arrigo C, Scaravilli F (1999) Hippocampal sclerosis with hypertrophy of end folium pyramidal cells. Acta Neuropathol 98:107–110. [DOI] [PubMed] [Google Scholar]
  • 89. Thom M, Griffin B, Sander JW, Scaravilli F (1999) Amygdala sclerosis in sudden and unexpected death in epilepsy. Epilepsy Res 37:53–62. [DOI] [PubMed] [Google Scholar]
  • 90. Thom M, Holton JL, D'Arrigo C, Griffin B, Beckett A, Sisodiya S, Alexiou D, Sander JW (2000) Microdysgenesis with abnormal cortical myelinated fibres in temporal lobe epilepsy: a histopathological study with calbindin D‐28‐K immunohistochemistry. Neuropathol Appl Neurobiol 26:251–257. [DOI] [PubMed] [Google Scholar]
  • 91. Thom M, Sisodiya S, Harkness W, Scaravilli F (2001) Microdysgenesis in temporal lobe epilepsy. A quantitative and immunohistochemical study of white matter neurones. Brain 124:2299–2309. [DOI] [PubMed] [Google Scholar]
  • 92. Tohyama T, Lee VM, Rorke LB, Marvin M, McKay RD, Trojanowski JQ (1992) Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells. Lab Invest 66:303–313. [PubMed] [Google Scholar]
  • 93. Tsuji A, Amano S, Yokoyama M, Fukuoka J, Hayase Y, Matsuda M (2001) Neuronal microdysgenesis and acquired lesions of the hippocampal formation connected with seizure activities in Ihara epileptic rat. Brain Res 901:1–11. [DOI] [PubMed] [Google Scholar]
  • 94. Tuunanen J, Halonen T, Pitkanen A (1996) Status epilepticus causes selective regional damage and loss of GABAergic neurons in the rat amygdaloid complex. Eur J Neurosci 8:2711–2725. [DOI] [PubMed] [Google Scholar]
  • 95. Wolf HK, Aliashkevich AF, Blümcke I, Wiestler OD, Zentner J (1997) Neuronal loss and gliosis of the amygdaloid nucleus in temporal lobe epilepsy. A quantitative analysis of 70 surgical specimens. Acta Neuropathol 93:606–610. [DOI] [PubMed] [Google Scholar]
  • 96. Wolf HK, Wellmer J, Müller MB, Wiestler OD, Hufnagel A, Pietsch T (1995) Glioneuronal malformative lesions and dysembryoplastic neuroepithelial tumors in patients with chronic pharmacoresistant epilepsies. J Neuropathol Exp Neurol 54:245–254. [DOI] [PubMed] [Google Scholar]
  • 97. Wolf HK, Wiestler OD (1993) Surgical pathology of chronic epileptic seizure disorders. Brain Pathol 3:371–380. [DOI] [PubMed] [Google Scholar]
  • 98. Wyler AR, Dohan FC, Schweitzer JB, Berry AD (1992) A grading system for mesial temporal pathology (hippocampal sclerosis) from anterior temporal lobectomy. J Epilepsy 5:220–225. [Google Scholar]
  • 99. Yachnis AT, Powell SZ, Olmsted JJ, Eskin TA (1997) Distinct neurodevelopmental patterns of bcl‐2 and bcl‐x expression are altered in glioneuronal hamartias of the human temporal lobe. J Neuropathol Exp Neurol 56:186–198. [DOI] [PubMed] [Google Scholar]
  • 100. Yachnis AT, Roper SN, Love A, Fancey JT, Muir D (2000) Bcl‐2 immunoreactive cells with immature neuronal phenotype exist in the nonepileptic adult human brain. J Neuropathol Exp Neurol 59:113–119. [DOI] [PubMed] [Google Scholar]
  • 101. Yilmazer‐Hanke DM, Wolf HK, Schramm J, Elger CE, Wiestler OD, Blumcke I (2000) Subregional pathology of the amygdala complex and entorhinal region in surgical specimens from patients with pharmacoresistant temporal lobe epilepsy. J Neuropathol Exp Neurol 59:907–920. [DOI] [PubMed] [Google Scholar]
  • 102. Zentner J, Hufnagel A, Wolf HK, Ostertun B, Behrens E, Campos MG, Solymosi L, Elger CE, Wiestler OD, Schramm J (1995) Surgical treatment of temporal lobe epilepsy: clinical, radiological, and histopathological findings in 178 patients. J Neurol Neurosurg Psych 58:666–673. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES