Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;12(1):67–86. doi: 10.1111/j.1750-3639.2002.tb00424.x

Fluorescence In Situ Hybridization (FISH) in Diagnostic and Investigative Neuropathology

Christine E Fuller 1, Arie Perry 1,
PMCID: PMC8095867  PMID: 11770903

Abstract

Over the last decade, fluorescence in situ hybridization (FISH) has emerged as a powerful clinical and research tool for the assessment of target DNA dosages within interphase nuclei. Detectable alterations include aneusomies, deletions, gene amplifications, and translocations, with primary advantages to the pathologist including its basis in morphology, its applicability to archival, formalin‐fixed paraffin‐embedded (FFPE) material, and its similarities to immunohistochemistry. Recent technical advances such as improved hybridization protocols, markedly expanded probe availability resulting from the human genome sequencing initiative, and the advent of high‐throughput assays such as gene chip and tissue microarrays have greatly enhanced the applicability of FISH. In our lab, we currently utilize only a limited battery of DNA probes for routine diagnostic purposes, with determination of chromosome 1p and 19q dosage in oligodendroglial neoplasms representing the most common application. However, research applications are numerous and will likely translate into a growing list of clinically useful markers in the near future. In this review, we highlight the advantages and disadvantages of FISH and familiarize the reader with current applications in diagnostic and investigative neuropathology.

Full Text

The Full Text of this article is available as a PDF (470.9 KB).

References

  • 1. Agamanolis DP, Malone JM (1995) Chromosomal abnormalities in 47 pediatric brain tumors. Cancer Genet Cytogenet 81:125–134. [DOI] [PubMed] [Google Scholar]
  • 2. Amalfitano G, Chatel M, Paquis P, Michiels JF (2000) Fluorescence in situ hybridization study of aneuploidy of chromosomes 7, 10, X, and Y in primary and secondary glioblastomas. Cancer Genet Cytogenet 116:6–9. [DOI] [PubMed] [Google Scholar]
  • 3. Arnoldus EPJ, Noordermeer IA, Peters ACB, Raap AK, van der Ploeg M (1991) Interphase cytogenetics reveals somatic pairing of chromosome 17 centromeres in normal human brain tissue, but no trisomy 7 or sex‐chromosome loss. Cytogenet Cell Genet 56:214–216. [DOI] [PubMed] [Google Scholar]
  • 4. Arnoldus EPJ, Noordermeer IA, Peters ACB, Voormolen JHC, Bots GTAM, Raap AK, van der Ploeg M (1991) Interphase cytogenetics of brain tumors. Genes Chrom Cance 3:101–107. [DOI] [PubMed] [Google Scholar]
  • 5. Arnoldus EPJ, Peters ACB, Bots GTAM, Raap AK, van der Ploeg M (1989) Somatic pairing of chromosome 1 centromeres in interphase nuclei of human cerebellum. Hum Genet 83:231–234. [DOI] [PubMed] [Google Scholar]
  • 6. Arnoldus EPJ, Wolters LBT, Voormolen JHC, Van Duinen SG, Raap AK, van der Ploeg M, Peters ACB (1992) Interphase cytogenetics: a new tool for the study of genetic changes in brain tumors. J Neurosurg 76:997–1003. [DOI] [PubMed] [Google Scholar]
  • 7. Balesaria S, Brock C, Bower M, Clark J, Nicholson SK, Lewis P, De Sanctis S, Evans H, Peterson D, Mendoza N, Glaser MG, Newlands ES, Fisher RA (1999) Loss of chromosome 10 is an independent prognostic factor in high‐grade gliomas. Br J Cancer 81:1371–1377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Bauman GS, Ino Y, Ueki K, Zlatescu MC, Fisher MC, Macdonald DR, Stitt L, Louis DN, Cairncross JG (2000) Allelic loss of chromosome 1p and radiotherapy plus chemotherapy in patients with oligodendrogliomas. Int J Radiat Oncol Biol Phys 48:825–830. [DOI] [PubMed] [Google Scholar]
  • 9. Bayani J, Squire JA (2001) Advances in the detection of chromosomal aberrations using spectral karyotyping. Clin Genet 59:65–73. [DOI] [PubMed] [Google Scholar]
  • 10. Bello MJ, Leone PE, Vaquero J, De Campos JM, Kusak ME, Sarasa JL, Pestana A, Rey JA (1995) Allelic loss at 1p and 19q frequently occurs in association and may represent early oncogenic events in oligodendroglial tumors. Int J Cancer 64:207–210. [DOI] [PubMed] [Google Scholar]
  • 11. Biegel JA (1997) Genetics of pediatric central nervous system tumors. J Pediatric Hematol Oncol 19:492–501. [DOI] [PubMed] [Google Scholar]
  • 12. Biegel JA, Allen CS, Kawasaki K, Shimizu N, Budarf ML, Bell CJ (1996) Narrowing the critical region for a rhabdoid tumor locus in 22q11. Genes Chromosomes Cancer 16:94–105. [DOI] [PubMed] [Google Scholar]
  • 13. Biegel JA, Janss AJ, Raffel C, Sutton L, Rorke LB, Harper JM, Phillips PC (1997) Prognostic significance of chromosome 17p deletions in childhood primitive neuroectodermal tumors (medulloblastomas) of the central nervous system. Clin Cancer Res 3:473–478. [PubMed] [Google Scholar]
  • 14. Biegel JA, Fogelgren B, Wainwright LM, Zhou JY, Beban H, Rorke LB (2000) Germline INI1 mutation in a patient with central nervous system atypical teratoid tumor and renal rhabdoid tumor. Genes Chromosomes Cancer 28:31–37. [DOI] [PubMed] [Google Scholar]
  • 15. Biegel JA, Rorke LB, Packer RJ, Sutton LN, Schut L, Bon‐ner K, Emanuel BS (1989) Isochromosome 17q in primitive neuroectodermal tumors of the central nervous system. Genes Chromosomes Cancer 1:139–147. [DOI] [PubMed] [Google Scholar]
  • 16. Bigner SH, Mark J, Bigner DD (1990) Cytogenetics of human brain tumors. Cancer Genet Cytogenet. 39:253–279. [DOI] [PubMed] [Google Scholar]
  • 17. Bigner SH, Matthews MR, Rasheed BK, Wiltshire RN, Friedman HS, Friedman AH, Stenzel TT, Dawes DM, McLendon RE, Bigner DD (1999) Molecular genetic aspects of oligodendrogliomas including analysis by comparative genomic hybridization. Am J Pathol 155:375–386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Bigner SH, McLendon RE, Fuchs H, McKeever PE, Friedman HS (1997) Chromosomal characteristics of childhood brain tumors. Cancer Genet Cytogenet 97:125–134. [DOI] [PubMed] [Google Scholar]
  • 19. Bigner SH, Vogelstein B (1990) Cytogenetics and molecular genetics of malignant gliomas and medulloblastoma. Brain Pathol 1:12–18. [DOI] [PubMed] [Google Scholar]
  • 20. Bijleveld EH, Voesten AM, Troost D, Westerveld A, Merel P, Thomas G, Hulsebos TJM (1995) Molecular analysis of genetic changes in ependymomas. Genes Chrom Cance 13:272–277. [DOI] [PubMed] [Google Scholar]
  • 21. Birch BD, Johnson JP, Parsa A, Desai RD, Yoon JT, Lycette CA, Li YM, Bruce JN (1996) Frequent Type 2 Neurofibromatosis Gene Transcript Mutations in Sporadic Intramedullary Spinal Cord Ependymomas. Neurosurg 39:135–140. [DOI] [PubMed] [Google Scholar]
  • 22. Birdsall S, Osin P, Lu Y‐J, Fisher C, Shipley J (1999) Syn‐ovial sarcoma specific translocation associated with both epithelial and spindle cell components. Int J Cancer 82:605–608. [DOI] [PubMed] [Google Scholar]
  • 23. Boerman RH, Anderl K, Herath J, Borell T, Hohnson N, Schaeffer‐Klein J, Kirchhof A, Raap AK, Scheithauer BW, Jenkins RB (1996) The glial and mesenchymal elements of gliosarcomas share similar genetic alteration. J Neuropathol Exp Neurol 55:973–981. [DOI] [PubMed] [Google Scholar]
  • 24. Bostrom J, Meyer‐Puttlitz B, Wolter M, Blaschke B, Weber RG, Lichter P, Ichimura K, Collins P, Reifenberger G (2001) Alterations of the tumor suppressor genes CDKN2A (p16INK4a), p14ARF, CDKN2B (p15INK4b), and CDKN2C (p18INK4c) in atypical and anaplastic meningiomas. Am J Pathol 159:661–669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Brown HG, Kepner JL, Perlman EJ, Friedman HS, Strother DR, Duffner PK, Kun LE, Goldthwaite PT, Burger PC (2000) “Large cell/anaplastic” medulloblastomas: A Pediatric Oncology Group study. J Neuropathol Exp Neurol 59:857–865. [DOI] [PubMed] [Google Scholar]
  • 26. Bruch LA, Hill DA, Cai DX, Levy BK, Dehner LP, Perry A (2001) A role for fluorescence in situ hybridization detection of chromosome 22q dosage in distinguishing atypical teratoid/rhabdoid tumors from medulloblastoma/central primitive neuroectodermal tumors. Hum Pathol 32:156–162. [DOI] [PubMed] [Google Scholar]
  • 27. Burger PC, Pearl DK, Aldape K, Yates AJ, Scheithauer BW, Passe SM, Jenkins RB, James CD (2001) Small cell architecture: a histological equivalent of EGFR amplification in GBM J Neuropathol Exp Neurol 60:1099–1104. [DOI] [PubMed] [Google Scholar]
  • 28. Burger PC, Yu I‐T, Tihan T, Friedman HS, Strother DR, Kepner JL, Duffner PK, Kun LE, Perlman EJ (1998) Atypical teratoid/rhabdoid tumor of the central nervous system: a highly malignant tumor of infancy and childhood frequently mistaken for medulloblastoma. A Pediatric Oncology Group study. Am J Surg Pathol 22:1083–1092. [DOI] [PubMed] [Google Scholar]
  • 29. Burnett ME, White EC, Sih S, von Haken MS, Cogen PH (1997) Chromosome arm 17p deletion analysis reveals molecular genetic heterogeneity in supratentorial and infratentorial primitive neuroectodermal tumors of the central nervous system. Cancer Genet Cytogenet 97:25–31. [DOI] [PubMed] [Google Scholar]
  • 30. Cai DX, Banerjee R, Scheithauer BW, Lohse CM, Klein‐schmidt‐DeMasters BK, Perry A (2001) Chromosome 1p and 14q FISH analysis in clinicopathologic subsets of meningioma: diagnostic and prognostic implications. J Neuropathol Exp Neurol 60:628–636. [DOI] [PubMed] [Google Scholar]
  • 31. Cai DX, James CD, Scheithauer BW, Couch FJ, Perry A (2001) PS6K amplification characterizes a small subset of anaplastic meningiomas. Am J Clin Pathol 115:213–218. [DOI] [PubMed] [Google Scholar]
  • 32. Cairncross JG, Macdonald DR (1988) Successful chemotherapy for recurrent malignant oligodendroglioma. Ann Neurol 23:360–364. [DOI] [PubMed] [Google Scholar]
  • 33. Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR, Silver JS, Stark PC, Macdonald DR, Ino Y, Ramsay DA, Louis DN (1998) Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 90:1473–1479. [DOI] [PubMed] [Google Scholar]
  • 34. Camp RL, Charette LA, Rimm DL (2000) Validation of tissue microarray technology in breast carcinoma. Lab Invest 80:1943–1949. [DOI] [PubMed] [Google Scholar]
  • 35. Cheng Y, Ng H‐K, Zhang S‐F, Ding M, Pang JC‐S, Zheng J, Poon W‐S (1999) Genetic alteration in pediatric high‐grade astrocytomas. Hum Pathol 30:1284–1290. [DOI] [PubMed] [Google Scholar]
  • 36. Cheng Y, Pang JC, Ng H, Ding M, Zhang SF, Zheng J, Liu DG, Poon WS (2000) Pilocytic astrocytomas do not show most genetic changes commonly seen in diffuse astrocytomas. Histopathology 37:437–444. [DOI] [PubMed] [Google Scholar]
  • 37. Cianciulli AM, Morace E, Coletta AM, Occhipinti E, Gandolfo GM, Leonardo G, Carapella CM (2000) Investigation of genetic alterations associated with development and adverse outcome in patients with astrocytic tumor. J Neuro-Oncol 48:95–101. [DOI] [PubMed] [Google Scholar]
  • 38. Colman SD, Williams CA, Wallace MR (1995) Benign neurofibromas in type 1 neurofibromatosis (NF1) show somatic deletions of the NF1 gene. Nature Genet 11:90–92. [DOI] [PubMed] [Google Scholar]
  • 39. Dalrymple SJ, Herath JF, Borell TJ, Moertel CA, Jenkins RB (1994) Correlation of cytogenetic and fluorescence in situ hybridization (FISH) studies in normal and gliotic brain. J Neuropathol Exp Neurol 53:448–456. [DOI] [PubMed] [Google Scholar]
  • 40. Dalrymple SJ, Herath JF, Ritland SR, Moertel CA, Jenkins RB (1995) Use of fluorescence in situ hybridization to detect loss of chromosome 10 in astrocytomas. J Neurosurg 83:316–323. [DOI] [PubMed] [Google Scholar]
  • 41. Daumas‐Duport C, Varlet P, Tucker ML, Beuvon F, Cervera P, Chodkiewicz JP (1997) Oligodendrogliomas. Part I: Patterns of growth, histological diagnosis, clinical and imaging correlations: a study of 153 cases. J Neuro-Oncol 34:37–59. [DOI] [PubMed] [Google Scholar]
  • 42. Desmaze C, Zucman J, Delattre O, Melot T, Thomas G, Aurias A (1994) Interphase molecular cytogenetics of Ewing's sarcoma and peripheral neuroepithelioma t(11;22) with flanking and overlapping cosmid probes. Cancer Genet Cytogenet 74:13–18. [DOI] [PubMed] [Google Scholar]
  • 43. De Vitis LR, Vitelli ATF, Mennonna FAP, Montali UBE, Papi L (1996) Screening for mutations in the neurofibromatosis type 2 (NF2) gene in sporadic meningiomas. Hum Genet 97:632–637. [DOI] [PubMed] [Google Scholar]
  • 44. Dobyns WB, Reiner O, Carrozo R, Ledbetter DH (1993) Lissencephaly‐ A human brain malformation associated with deletion of the LIS1 gene located at chromosome‐17p13. JAMA 270:2838–2842. [DOI] [PubMed] [Google Scholar]
  • 45. Eberhart CG, Kaufman WE, Tihan T, Burger PC (2001) Apoptosis, neuronal maturation, and neurotrophin expression within medulloblastoma nodules. J Neuropathol Exp Neurol 60:462–469. [DOI] [PubMed] [Google Scholar]
  • 46. Ebert C, von Haken MS, Meyer‐Puttlitz B, Wiestler OD, Reifenberger G, Pietsch T, von Deimling A (1999) Molecular genetic analysis of ependymal tumors. Am J Pathol 155:627–632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Eisenbarth I, Beyer K, Krone W, Assum G (2000) Toward a survey of somatic mutation of the NF1 gene in benign neurofibromas of patients with neurofibromatosis type 1. Am J Hum Genet 66:393–401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Emory TS, Scheithauer BW, Hirose T, Wood M, Onofrio BM, Jenkins RB (1995) Intraneural perineurioma. A clonal neoplasm associated with abnormalities of chromosome 22. Am J Clin Pathol 103:696–704. [DOI] [PubMed] [Google Scholar]
  • 49. Figarella‐Branger D, Civatte M, Bouvier‐Labit C, Gouver‐net J, Gambarelli D, Pellissier JF (2000) Prognostic factors in intracranial ependymomas in children. J Neurosurg 93:605–613. [DOI] [PubMed] [Google Scholar]
  • 50. Fortin D, Cairncross JG, Hammond RR (1999) Oligodendroglioma: an appraisal of recent data pertaining to diagnosis and treatment. Neurosurg 45:1279–1291. [DOI] [PubMed] [Google Scholar]
  • 51. Fuller C, Fuller G, Perry A (2001) High‐throughput molecular profiling of high‐grade gliomas: the utility of fluorescence in situ hybridization (FISH) on tissue microarrays (Abstract). J Neuropathol Exp Neurol 60:538. [DOI] [PubMed] [Google Scholar]
  • 52. Fuller CE, Pfeifer J, Humphrey P, Bruch LA, Dehner LP, Perry A (2001) Chromosome 22q dosage in composite extrarenal rhabdoid tumors: Clonal evolution or a phenotypic mimic Hum Pathol 32:1102–1108. [DOI] [PubMed] [Google Scholar]
  • 53. Gall JG, Pardue ML (1969) Formation and detection of RNA‐DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci U S A 63:378–383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Ganju V, Jenkins RB, O'Fallon JR, Scheithauer BW, Ransom DT, Katzmann JA, Kimmel DW (1994) Prognostic factors in gliomas. A multivariate analysis of clinical, pathologic, flow cytometric, cytogenetic, and molecular markers. Cancer. 74:920–927. [DOI] [PubMed] [Google Scholar]
  • 55. Giangaspero F, Cenacchi G, Roncaroli F, Rigobello L, Manetto V, Gambacorta M, Allegranza A (1996) Medullocytoma (lipidized medulloblastoma). A cerebellar neoplasm of adults with favorable prognosis. Am J Surg Pathol. 20:656–664. [DOI] [PubMed] [Google Scholar]
  • 56. Giangaspero F, Perilongo G, Fondelli PM, Brisigotti M, Carollo C, Burnelli R, Burger PC, Garre ML (1999) Medulloblastoma with extensive nodularity: a variant with favorable prognosis. J Neurosurg 91:971–977. [DOI] [PubMed] [Google Scholar]
  • 57. Giannini C, Scheithauer BW, Jenkins RB, Erlandson RA, Perry A, Borell TJ, Hoda RS, Woodruff JM (1997) Soft‐tissue perineurioma. Evidence for an abnormality of chromosome 22, criteria for diagnosis, and review of the literature. Am J Surg Pathol 21:164–173. [DOI] [PubMed] [Google Scholar]
  • 58. Giordana MT, Migheli A, Pavanelli E (1998) Isochromosome 17q is a constant finding in medulloblastoma. An interphase cytogenetic study on tissue sections. Neuropathol Appl Neurobiol 24:233–238. [DOI] [PubMed] [Google Scholar]
  • 59. Giovannini M, Biegel JA, Serra M, Wang JY, Wei YH, Nycum L, Emanuel BS, Evans GA (1994) EWS‐erg and EWS‐Fli1 fusion transcripts in Ewing's sarcoma and primitive neuroectodermal tumors with variant translocations. J Clin Invest. 94:489–496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Glass J, Hochberg FH, Gruber ML, Louis DN, Smith D, Rattner RN (1992) The treatment of oligodendrogliomas and mixed oligodendroglioma‐astrocytomas with PCV chemotherapy. J Neurosurg 76:741–745. [DOI] [PubMed] [Google Scholar]
  • 61. Griffin CA, Long PP, Carson BS, Brem H (1992) Chromosome abnormalities in low‐grade central nervous system tumors. Cancer Genet Cytogenet. 60:67–73. [DOI] [PubMed] [Google Scholar]
  • 62. Grotzer MA, Janss AJ, Fung K‐M, Biegel JA, Sutton LN, Rorke LB, Zhao H, Cnaan A, Philips PC, Lee VM‐Y, Trojanowski JQ (2000) TrkC Expression predicts good clinical outcome in primitive neuroectodermal brain tumors. J Clin Oncol 18:1027–1035. [DOI] [PubMed] [Google Scholar]
  • 63. Gutmann DH, Donahoe J, Brown T, James CD, Perry A (2000) Loss of neurofibromatosis 1 (NF1) gene expression in NF1‐associated pilocytic astrocytomas. Neuropathol Appl Neurobiol 26:361–367. [DOI] [PubMed] [Google Scholar]
  • 64. Gutmann DH, Donahoe J, Perry A, Lemke L, Gorse K, Kittiniyom K, Rempel SA, Gutierrez JA, Newsham IF (2000) Loss of DAL‐1, a protein 4.1‐related tumor suppressor, is an important early event in the pathogenesis of meningioma. Hum Mol Genet. 9:1495–1500. [DOI] [PubMed] [Google Scholar]
  • 65. Gutmann DH, Giordano MJ, Fishback AS, Guha A (1997) Loss of merlin expression in sporadic meningiomas, ependymomas, and schwannomas. Neurology 49:267–270. [DOI] [PubMed] [Google Scholar]
  • 66. Hachitanda Y, Saito M, Mori T, Hamazaki M (1997) Application of fluorescence in situ hybridization to detect N‐myc (MYCN) gene amplification on paraffin‐embedded tissue sections of neuroblastomas. Med Pediatr Oncol 29:135–138. [DOI] [PubMed] [Google Scholar]
  • 67. Hamilton RL, Pollack IF (1997) The Molecular Biology of Ependymomas. Brain Pathol 7:807–822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. He J, Olson JJ, James CD (1995) Lack of p16INK4 or retinoblastoma protein (pRb), or amplification ‐associated overexpression of cdk4 is observed in distinct subsets of malignant glial tumors and cell lines. Cancer Res 55:4833–4836. [PubMed] [Google Scholar]
  • 69. Henke R‐P, Ayhan N (1994) Enhancement of hybridization efficiency in interphase cytogenetics on paraffin‐embedded tissue sections by microwave treatment. Analytical Cell Pathol 6:319–25. [PubMed] [Google Scholar]
  • 70. Herms J, Neidt I, Luscher B, Sommer A, Schurmann P, Schroder T, Bergmann M, Wilken B, Probst‐Cousin S, Hernaiz‐Driever P, Benhnke J, Hanefeld F, Pietsch T, Kretzschmar HA (2000) C‐MYC expression in medulloblastoma and its prognostic value. Int J Cancer 89:395–402. [PubMed] [Google Scholar]
  • 71. Hirose Y, Aldape KD, Bollen A, James CD, Brat D, Lam‐born KR, Berger MS, Feuerstein BG (2001) Chromosomal Abnormalities Subdivide Ependymal Tumors into Clinically Relevant Groups. Am J Pathol. 158:1137–1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Hoos A, Urist MJ, Stojadinovic A, Mastorides S, Dudas ME, Leung DHY, Kuo D, Brennan MF, Lewis JJ, Cordon‐Cardo C (2001) Validation of tissue microarrays for immunohistochemical profiling of cancer specimens using the example of human fibroblastic tumors. Am J Pathol 158:1245–1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. Horiguchi H, Hirose T, Sano T, Nagahiro S (1999) Loss of chromosome 10 in glioblastoma: Relation to proliferation and angiogenesis. Pathol Int 49:681–686. [DOI] [PubMed] [Google Scholar]
  • 74. Hulsebos TJM, Oskam NT, Bijleveld EH, Westerveld A, van den Ouweland AMW, Hamel BC, Tijssen CC (1999) Evidence for an ependymoma tumour suppressor gene in chromosome region 22pter‐22q11.2. Br J Cancer 81:1150–1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Ino Y, Zlatescu MC, Sasaki H, MacDonald DR, Stemmer‐Rachamimov AO, Jhung S, Ramsay DA, von Deimling A, Louis DN, Cairncross JG (2000) Long survival and therapeutic responses in patients with histologically disparate high‐grade gliomas demonstrating chromosome 1p loss. J Neurosurg 92:983–990. [DOI] [PubMed] [Google Scholar]
  • 76. Irving RM, Moffat DA, Hardy DG, Barton DE, Xuereb JH, Maher ER (1994) Somatic NF2 gene mutations in familial and non‐familial vestibular schwannoma. Hum Mol Genet 3:347–350. [DOI] [PubMed] [Google Scholar]
  • 77. Ishii N, Hiraga H, Sawamura Y, Shinohe Y, Nagashima K (2001) Alternative EWS‐FLI1 fusion gene and MIC2 expression in peripheral and central neuroectodermal tumors. Neuropathology 21:40–44. [DOI] [PubMed] [Google Scholar]
  • 78. Iwadate Y, Mochizuki S, Fujimoto S, Namba H, Sakiyama S, Tagawa M, Yamaura A (2000) Alteration of CDKN2/p16 in human astrocytic tumors is related with increased susceptibility to antimetabolite anticancer agents. Int J Oncol 17:501–505. [DOI] [PubMed] [Google Scholar]
  • 79. James CD, Carlbom E, Nordenskjold M, Collins VP, Cavenee WK (1989) Mitotic recombination of chromosome 17 in astrocytomas. Proc Natl Acad Sci U S A 86:2858–2862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. James LA (1999) Comparative genomic hybridization as a tool in tumour cytogenetics. J Pathol 187:385–395. [DOI] [PubMed] [Google Scholar]
  • 81. Jay V, Pienkowska M, Becker L, Zielenska M (1995) Primitive neuroectodermal tumors of the cerebrum and cerebellum: absence of t(11;22) translocation by RT‐PCR analysis. Mod Pathol 8:488–491. [PubMed] [Google Scholar]
  • 82. Jenkins RB, Kimmel DW, Moertel CA, Schultz CG, Scheithauer BW, Kelly PJ, Dewald GW (1989) A cytogenetic study of 53 human gliomas. Cancer Genet Cytogenet 39:253–279. [DOI] [PubMed] [Google Scholar]
  • 83. Jeuken JWM, Sprenger SHE, Boerman RH, von Deimling A, Teepen HLJM, Van Overbeeke JJ, Wesseling P (2001) Subtyping of oligo‐astrocytic tumours by comparative genomic hybridization. J Pathol. 194:81–87. [DOI] [PubMed] [Google Scholar]
  • 84. John HA, Birnstiel ML, Jones KW (1969) RNA‐DNA hybrids at the cytological level. Nature 223:582–587. [DOI] [PubMed] [Google Scholar]
  • 85. Kirla R, Salminen E, Huhtala S, Nuutinen J, Talve L, Haapasalo H, Kalim H. 2000. Prognostic value of the expression of tumor suppressor genes p53, p21, p16, pRb, and Ki‐67 labelling in high grade astrocytomas treated with radiotherapy. J Neuro-Oncol 46:71–80. [DOI] [PubMed] [Google Scholar]
  • 86. Kleihues P, Cavenee WK (eds) (2000) World Health Organization classification of tumours. Pathology and genetics of tumours of the nervous system. IARC Press, Lyon , France . [Google Scholar]
  • 87. Kluwe L, Friedrich RE, Mautner VF (1999) Allelic loss of the NF1 gene in NF1‐associated plexiform neurofibromas. Cancer Genet Cytogenet 113:65–69. [DOI] [PubMed] [Google Scholar]
  • 88. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi O‐P (1998) Tissue microarrays for high‐throughput molecular profiling of tumor specimens. Nature Med 4:844–847. [DOI] [PubMed] [Google Scholar]
  • 89. Kramer DL, Parmiter AH, Rorke LB, Sutton LN, Biegel JA (1998) Molecular Cytogenetic Studies of Pediatric Ependymomas. J Neuro-Oncol 37:25–33. [DOI] [PubMed] [Google Scholar]
  • 90. Kraus JA, Koopmann J, Kaskel P, Maintz D, Brandner S, Louis DN, Wiestler OD, von Deimling A (1995) Shared allelic losses on chromosomes 1p and 19q suggest a common origin of oligodendroglioma and oligoastrocy‐toma. J Neuropathol Exp Neurol 54:91–95. [DOI] [PubMed] [Google Scholar]
  • 91. Kraus JA, Lamszus K, Glesmann N, Beck M, Wolter M, Sabel M, Krex D, Klockgether T, Reifenberger G, Schlegel U (2001) Molecular genetic alterations in glioblastomas with oligodendroglial component. Acta Neuropathol 101:311–320. [DOI] [PubMed] [Google Scholar]
  • 92. Kros JM, Van Eden CG, Stefanko SZ, Waayer‐Van Batenburg M, van der Kwast TH (1990) Prognostic implications of glial fibrillary acidic protein containing cell types in oligodendrogliomas. Cancer 66:1204–1212. [DOI] [PubMed] [Google Scholar]
  • 93. Kumar S, Pack S, Kumar D, Walker R, Quezado M, Zhuang Z, Meltzer P, Tsokos M (1999) Detection of EWS‐FLI‐1 fusion in Ewing's sarcoma/peripheral primitive neuroectodermal tumor by fluorescence in situ hybridization using formalin‐fixed paraffin‐embedded tissue. Hum Pathol 30:324–330. [DOI] [PubMed] [Google Scholar]
  • 94. Ladanyi M, Lewis R, Garin‐Chesa P, Rettig WJ, Huvos AG, Healey JH, Jhanwar SC (1993) EWS rearrangement in Ewing's sarcoma and peripheral neuroectodermal tumor. Molecular detection and correlation with cytogenetic analysis and MIC2 expression. Diagn Mol Pathol 2:141–146. [PubMed] [Google Scholar]
  • 95. Lamszus K, Kluwe L, Matschke J, Meissner H, Laas R, Westphal M (1999) Allelic losses at 1p, 9q, 10q, 14q, and 22q in sporadic meningiomas. Cancer Genet Cytogenet 110:103–110. [DOI] [PubMed] [Google Scholar]
  • 96. Lamszus K, Lachenmayer L, Heinemann U, Kluwe L, Finckh U, Hoppner W, Stavrou D, Fillbrandt R, Westphal M (2001) Molecular genetic alterations on chromosomes 11 and 22 in ependymomas. Int J Cancer 91:803–808. [DOI] [PubMed] [Google Scholar]
  • 97. Lamszus K, Lachenmayer L, Heinemann U, and Westphal M (2000). Cranial and spinal ependymomas show different molecular genetic alterations on chromosomes 11 and 22 (Abstract). Neuro-Oncol 2:277. [DOI] [PubMed] [Google Scholar]
  • 98. Lasota J, Fetsch JF, Wozniak A, Wasag B, Sciot R, Miettinen M (2001) The neurofibromatosis type 2 gene is mutated in perineurial cell tumors. A molecular genetic study of eight cases. Am J Pathol 158:1223–1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99. Lasota J, Wozniak A, Debiec‐Rychter M, Fetsch JF, Miettinen M (2001) Loss of chromosome 22q and lack of NF2 mutations in perineuriomas (Abstract) Mod Pathol 13:11A. [Google Scholar]
  • 100. Lee M, Rezai AR, Freed D, Epstein FJ (1996) Intramedullary spinal cord tumors in neurofibromatosis. Neurosurg 38:32–37. [DOI] [PubMed] [Google Scholar]
  • 101. Leonard JR, Cai DX, Rivet DJ, Kaufman BA, Park TS, Levy BK, Perry A (2001) Large cell/anaplastic medulloblastomas and medullomyoblastomas: clinicopathological and genetic features. J Neurosurg 95:82–88. [DOI] [PubMed] [Google Scholar]
  • 102. Leone PE, Bello MJ, De Campos JM, Vaquero J, Sarasa JL, Pestana A, Rey JA (1999) NF2 gene mutations and allelic status of 1p, 14q and 22q in sporadic meningiomas. Oncogene 18:2231–2239. [DOI] [PubMed] [Google Scholar]
  • 103. Leone PE, Bello MJ, Mendiola M, Kusak ME, De Campos JM, Vaquero J, Sarasa JL, Pestana A, Rey JA (1998) Allelic status of 1p, 14q, and 22q and NF2 gene mutation in sporadic schwannomas. Int J Mol Med 1:889–892. [DOI] [PubMed] [Google Scholar]
  • 104. Li J, Perry A, James CD, Gutmann DH (2001) Cancer‐related gene expression profiles in NF1‐associated pilocytic astrocytomas. Neurology 56:885–890. [DOI] [PubMed] [Google Scholar]
  • 105. Lin H, Bondy ML, Langford LA, Hess KR, Delclos GL, Wu X, Chan W, Pershouse MA, Yung WK, Steck PA (1998) Allelic deletion analyses of MMAC/PTEN and DMBT1 loci in gliomas: Relationship to prognostic significance. Clin Cancer Res 4:2447–2454. [PubMed] [Google Scholar]
  • 106. Lothe RA, Slettan A, Saeter G, Brogger A, Borresen A‐L, Nesland JM (1995) Alterations at chromosome 17 loci in peripheral nerve sheath tumors. J Neuropathol Exp Neurol 54:65–73. [DOI] [PubMed] [Google Scholar]
  • 107. MacDonald DR, Gaspar LE, Cairncross JG (1990) Successful chemotherapy for newly diagnosed aggressive oligodendroglioma. Ann Neurol 27:573–574. [DOI] [PubMed] [Google Scholar]
  • 108. Macechko PT, Krueger L, Hirsch B, Erlandsen SL (1997) Comparison of immunologic amplification vs enzymatic deposition of fluorochrome‐conjugated tyramide as detection systems for FISH. J Histochem Cytochem 45:359–363. [DOI] [PubMed] [Google Scholar]
  • 109. MacGregor DN, Ziff EB (1990) Elevated c‐myc expression in childhood medulloblastomas. Pediatr Res 28:63–68. [DOI] [PubMed] [Google Scholar]
  • 110. Maintz D, Fiedler K, Koopmann J, Rollbrocker B, Nechev S, Lenartz D, Stangl AP, Louis DN, Schramm J, Wiestler OD, von Deimling A (1997) Molecular genetic evidence for subtypes of oligoastrocytomas. J Neuropathol Exp Neurol 56:1098–1104. [DOI] [PubMed] [Google Scholar]
  • 111. Mazewski C, Soukup S, Ballard E, Gotwals B, Lampkin B (1999) Karyotype Studies in 18 ependymomas with literature review of 107 cases. Cancer Genet Cytogenet 113:1–8. [DOI] [PubMed] [Google Scholar]
  • 112. Merel P, Hoang‐Xuan K, Sanson M, Moreau‐Aubry A, Bijlsma EK, Lazaro C, Moisan JP, Resche F, Nishisho I, Estivill X, Delattre JY, Poisson M, Theillet C, Hulsebos T, Delattre O, Thomas G (1995) Predominant occurrence of somatic mutations of the NF2 gene in meningiomas and schwannomas. Genes Chrom Cance 13:211–216. [DOI] [PubMed] [Google Scholar]
  • 113. Mertens F, Cin PD, De Wever I, Fletcher CDM, Mandahl N, Mitelman F, Rosai J, Rydholm A, Sciot R, Tallini G, van den Berghe H, Vanni R, Willen H (2000) Cytogenetic characterization of peripheral nerve sheath tumours: a report of the CHAMP study group. J Pathol 190:31–38. [DOI] [PubMed] [Google Scholar]
  • 114. Mezzelani A, Tornielli S, Minoletti F, Pierotti MA, Sozzi G, Pilotti S (1999) Esthesioneuroblastoma is not a member of the primitive peripheral neuroectodermal tumour‐Ewing's group. Br J Cancer 81:586–591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115. Miettinen HE, Kononen J, Sallinen PK, Alho H, Helen PT, Helin HJ, Kalimo H, Paljarvi L, Isola J, Haapasalo H (1999) CDKN2/p16 predicts survival in oligodendrogliomas: comparison with astrocytomas. J Neuro-Oncol 41:205–211. [DOI] [PubMed] [Google Scholar]
  • 116. Moch H, Kallioniemi O‐P, Sauter G (2001) Tissue microarrays: What will they bring to molecular and anatomic pathology Adv Anat Pathol 8:14–20. [DOI] [PubMed] [Google Scholar]
  • 117. Monforte‐Munoz H, Lopez‐Terrada D, Affendie H, Rowland JM, Triche TJ (1999) Documentation of the EWS gene rearrangements by fluorescence in situ hybridization (FISH) in frozen sections of Ewing's sarcoma‐peripheral primitive neuroectodermal tumor. Am J Pathol 23:309–315. [DOI] [PubMed] [Google Scholar]
  • 118. Nolte M, Werner M, Vonwasielewski R, Nietgen G, Wilkens L, Georgii A (1996) Detection of numerical karyotype changes in the giant cells of Hodgkins lymphomas by a combination of FISH and immunohistochemistry applied to paraffin sections. Histochem Cell Biol 105:401–404. [DOI] [PubMed] [Google Scholar]
  • 119. O'Sullivan MJ, Kyriakos M, Zhu X, Wick MR, Swanson PE, Dehner LP, Humphrey PA, Pfeifer JD (2000) Malignant peripheral nerve sheath tumors with t(X;18). A pathologic and molecular genetic study. Mod Pathol 13:1336–1346. [DOI] [PubMed] [Google Scholar]
  • 120. Patel AS, Hawkins AL, Griffin CA (2000) Cytogenetics and cancer. Curr Opinion Oncol 12:62–67. [DOI] [PubMed] [Google Scholar]
  • 121. Pauletti G, Dandekar S, Rong H, Ramos L, Peng H, Seshadri R, Slamon DJ (2000) Assessment of methods for tissue‐based detection of the Her‐2/neu alteration in human breast cancer: A direct comparison of fluorescence in situ hybridization and immunohistochemistry. J Clin Oncol 18:3651–3664. [DOI] [PubMed] [Google Scholar]
  • 122. Paulus W, Bayas A, Ott G, Roggendorf W (1994) Interphase cytogenetics of glioblastoma and gliosarcoma. Acta Neuropathol 88:420–425. [DOI] [PubMed] [Google Scholar]
  • 123. Pilz DT, Macha ME, Precht KS, Smith ACM, Dobyns WB, Ledbetter DH (1998) Fluorescence in situ hybridization analysis with LIS1 specific probes reveals a high deletion mutation rate in isolated lissencephaly sequence. Genet Med 1:29–33. [DOI] [PubMed] [Google Scholar]
  • 124. Perry A (2001) Oligodendroglial neoplasms: current concepts, misconceptions, and folklore. Adv Anat Pathol 8:183–199. [DOI] [PubMed] [Google Scholar]
  • 125. Perry A, Anderl KA, Borell TJ, Kimmel DW, Wang CH, O'Fallon JR, Feuerstein BG, Scheithauer BW, Jenkins RB (1999) Detection of p16, RB, CDK4, and p53 gene deletion / amplification by fluorescence in situ hybridization (FISH) in 96 gliomas. Am J Clin Pathol 112:801–809. [DOI] [PubMed] [Google Scholar]
  • 126. Perry A, Cai DX, Scheithauer BW, Swanson PE, Lohse CM, Newsham IF, Weaver A, Gutmann DH. Merlin, DAL‐1, and progesterone receptor expression in clinicopathologic subsets of meningioma: A correlative immunohistochemical study of 175 cases (2000) J Neuropathol Exp Neurol 59:872–879. [DOI] [PubMed] [Google Scholar]
  • 127. Perry A, Giannini C, Raghavan R, Scheithauer BW, Banerjee R, Margraf L, Bowers DC, Lytle RA, Newsham IF, Gutmann DH. Aggressive phenotypic and genotypic features in pediatric and NF2‐associated meningiomas: A clinicopathologic study of 53 cases. J Neuropathol Exp Neurol (in press). [DOI] [PubMed] [Google Scholar]
  • 128. Perry A, Jenkins RB, Dahl RJ, Moertel CA, Scheithauer BW (1996) Cytogenetic analysis of aggressive meningiomas. Possible diagnostic and prognostic implications. Cancer 77:2567–2573. [DOI] [PubMed] [Google Scholar]
  • 129. Perry A, Nobori T, Ru N, Anderl K, Borell TJ, Mohapatra G, Feuerstein BG, Jenkins RB, Carson DA (1997) Detection of p16 gene deletions in gliomas: Fluorescence in situ hybridization (FISH) versus quantitative PCR. J Neuropathol Exp Neurol 56:999–1008. [DOI] [PubMed] [Google Scholar]
  • 130. Perry A, Roth KA, Banerjee R, Fuller CE, Gutmann DH (2001) NF1 deletions in S‐100 protein‐positive and negative cells of sporadic and neurofibromatosis 1 (NF1)‐associated plexiform neurofibromas and MPNSTs. Am J Pathol 159:57–61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131. Perry A, Tonk V, Bigio E, White C (1994) Interphase cytogenetic (in situ hybridization) detection of trisomy 21 in autopsy brains from patients with suspected Down syndrome (Abstract). Brain Pathol 4:584. [Google Scholar]
  • 132. Perry A, Tonk V, McIntire D, White C (1997) Interphase cytogenetic (in situ hybridization) analysis of astrocytomas using archival formalin‐fixed, paraffin‐embedded tissue and light microscopy. Am J Clin Pathol 108:166–174. [DOI] [PubMed] [Google Scholar]
  • 133. Peter M, Couturier J, Pacquement H, Michon J, Thomas G, Magdelenat H, Delattre O (1997) Anew member of the ETS family fused to EWS in Ewing tumors. Oncogene 14:1159–1164. [DOI] [PubMed] [Google Scholar]
  • 134. Platten M, Giordano MJ, Dirven CMF, Gutmann DH, Louis DN (1996) Up‐regulation of specific NF1 gene transcripts in sporadic pilocytic astrocytomas. Am J Pathol 149:621–627. [PMC free article] [PubMed] [Google Scholar]
  • 135. Pollack IF, Gerszten PC, Martinez AJ, Lo KH, Shultz B, Albright AL, Janosky J, Deutsch M (1995) Intracranial ependymomas of childhood. Long term outcome and prognostic factors. Neurosurgery 37:655–666. [DOI] [PubMed] [Google Scholar]
  • 136. Pollack IF, Hamilton RL, Finkelstein SD, Campbell JW, Martinez AJ, Sherwin RN, Bozik ME, Gollin SM (1997) The relationship between TP53 mutations and overexpression of p53 and prognosis in malignant gliomas in childhood. Cancer Res. 57:304–309. [PubMed] [Google Scholar]
  • 137. Raffel C, Frederick L, O'Fallon JR, Atherton‐Skaff P, Perry A, Jenkins RB, James CD (1999) Analysis of oncogene and tumor suppressor gene alterations in pediatric malignant astrocytomas reveals reduced survival for patients with PTEN mutations. Clin Cancer Res 5:4085–4090. [PubMed] [Google Scholar]
  • 138. Rasheed BK, Stenzel TT, McLendon RE, Parsons R, Friedman AH, Friedman HS, Bigner DD, Bigner SH (1997) PTEN gene mutations are seen in high‐grade but not low‐grade gliomas. Cancer Res 57:4187–4190. [PubMed] [Google Scholar]
  • 139. Rasmussen SA, Overman J, Thomson SAM, Colman SD, Abernathy CR, Trimpert RE, Moose R, Virdi G, Roux K, Bauer M, Rojiani AM, Maria BL, Muir D, Wallace MR (2000) Chromosome 17 loss‐of‐heterozygosity studies in benign and malignant tumors in neurofibromatosis type 1. Genes Chrom Cance 28:425–431. [PubMed] [Google Scholar]
  • 140. Reardon DA, Entrekin RE, Sublett J, Ragsdale S, Li H, Boyett J, Kepner JL, Look AT (1999) Chromosome arm 6q loss is the most common recurrent autosomal alteration detected in primary pediatric ependymoma. Genes Chrom Cance 24:230–237. [DOI] [PubMed] [Google Scholar]
  • 141. Reardon DA, Jenkins JJ, Sublett JE, Burger PC, Kun LK (2000) Multiple genomic alterations including N‐myc amplification in a primary large cell medulloblastoma. Pediatr Neurosurg 32:187–191. [DOI] [PubMed] [Google Scholar]
  • 142. Reardon DA, Michalkiewicz E, Boyett JM, Sublett JE, Entrekin RE, Ragsdale ST, Valentine MB, Behm FG, Li H, Heideman RL, Kun LE, Shapiro DN, Look AT (1997) Extensive genomic abnormalities in childhood medulloblastoma by comparative genomic hybridization. Cancer Res 57:4042–4047. [PubMed] [Google Scholar]
  • 143. Reifenberger J, Reifenberger G, Liu L, James CD, Wechsler W, Collins VP (1994) Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol 145:1175–1190. [PMC free article] [PubMed] [Google Scholar]
  • 144. Ritland SR, Ganju V, Jenkins RB (1995) Region‐specific loss of heterozygosity on chromosome 19 is related to the morphologic type of human glioma. Genes Chrom Cance 12:277–282. [DOI] [PubMed] [Google Scholar]
  • 145. Rorke LB, Packer RJ, Biegel JA (1996) Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood: definition of an entity. Neurosurg 85:56–65. [DOI] [PubMed] [Google Scholar]
  • 146. Russo C, Pellarin M, Tingby O, Bollen AW, Lamborn KR, Mohapatra G, Collins VP, Feuerstein BG (1999) Comparative genomic hybridization in patients with supratentorial and infratentorial primitive neuroectodermal tumors. Cancer 86:331–339. [DOI] [PubMed] [Google Scholar]
  • 147. Ruttledge MH, Sarrazin J, Rangaratnam S, Phelan CM, Twist E, Merel P, Delattre O, Thomas G, Nordenskjold M, Collins VP, Dumanski JP, Rouleau GA (1994) Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nature Genet 6:180–184. [DOI] [PubMed] [Google Scholar]
  • 148. Sainz J, Huynh DP, Figueroa K, Ragge NK, Baser ME, Pulst SM (1994) Mutations of the neurofibromatosis type 2 gene and lack of the gene product in vestibular schwannomas. Hum Mol Genet 3:885–891. [DOI] [PubMed] [Google Scholar]
  • 149. Sallinen S‐L, Sallinen PK, Haapasalo HK, Helin HJ, Helen PT, Schraml P, Kallioniemi O‐P, Kononen J (2000) Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res 60:6617–6622. [PubMed] [Google Scholar]
  • 150. Sanoudou D, Tingby O, Ferguson‐Smith MA, Collins VP, Coleman N (2000) Analysis of pilocytic astrocytoma by comparative genomic hybridization. Br J Cancer 82:1216–1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151. Sasaki H, Zlatescu MC, Betensky RA, Ino Y, Cairncross JG, Louis DN (2001) PTEN is a target of chromosome 10q loss in anaplastic oligodendrogliomas and PTEN alterations are associated with poor prognosis. Am J Pathol 159:359–367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152. Scheurlen WG, Schwabe GC, Joos S, Mollenhauer J, Sorensen N, Kuhl J (1998) Molecular analysis of childhood primitive neuroectodermal tumors defines markers associated with poor outcome. J Clin Oncol 16:2478–2485. [DOI] [PubMed] [Google Scholar]
  • 153. Schmidt BF, Chao J, Zhu Z, DeBiasio RL, Fisher G (1997) Signal amplification in the detection of single‐copy DNA and RNA by enzyme‐catalyzed deposition (CARD) of the novel fluorescent reporter substrate Cy3.29‐tyramide. J Histochem Cytochem 45:365–373. [DOI] [PubMed] [Google Scholar]
  • 154. Schmidt EE, Ichimura K, Goike HM, Moshref A, Liu L, Collins VP (1999) Mutational profile of the PTEN gene in primary human astrocytic tumors and cultivated xenografts. J Neuropathol Exp Neurol 58:1170–1183. [DOI] [PubMed] [Google Scholar]
  • 155. Schmidt EE, Ichimura K, Reifenberger G, Collins VP (1994) CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res 54:6321–6324. [PubMed] [Google Scholar]
  • 156. Schneider BF, Shashi V, von Kap H, Golde WL (1995) Loss of chromosomes 22 and 14 in the malignant progression of meningiomas: Acomparative study of fluores‐cence in situ hybridization (FISH) and standard cytogenetic analysis. Cancer Genet Cytogenet. 85:101–104. [DOI] [PubMed] [Google Scholar]
  • 157. Schraml P, Kononen J, Bubendorf L, Moch H, Bissig H, Nocito A, Mihatsch MJ, Kallioniemi O‐P, Sauter G (1999) Tissue microarrays for gene amplification surveys in many different tumor types. Clin Cancer Res 5:1966–1975. [PubMed] [Google Scholar]
  • 158. Schriml LM, Padilla‐Nash HM, Coleman A, Moen P, Nash WG, Menninger J, Jones G, Ried T, Dean M (1999) Tyra‐mide signal amplification (TSA)‐FISH applied to mapping PCR‐labeled probes less than 1 Kb in size. Biotechniques. 27:608–613. [DOI] [PubMed] [Google Scholar]
  • 159. Serra E, Puig S, Otero D, Gaona A, Kruyer H, Ars E, Estivill X, Lazaro C (1997) Confirmation of a double‐hit model for the NF1 gene in benign neurofibromas. Am J Hum Genet 61:512–519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160. Shaw EG, Scheithauer BW, O'Fallon J, Davis DH (1994) Mixed oligoastrocytomas: a survival and prognostic factor analysis. Neurosurgery 34:577–582. [DOI] [PubMed] [Google Scholar]
  • 161. Shaw EG, Scheithauer BW, O'Fallon J, Tazelaar HD, Davis DH (1992) Oligodendrogliomas: the Mayo Clinic experience. J Neurosurg 76:428–434. [DOI] [PubMed] [Google Scholar]
  • 162. Shi S‐R, Cote RJ, Taylor CR (2001) Antigen retrieval techniques: Current perspectives. J Histochem Cytochem 49:931–937. [DOI] [PubMed] [Google Scholar]
  • 163. Simon M, von Deimling A, Larson JJ, Wellenreuther R, Kaskel P, Waha A, Warnick RE, Tew JM, Jr. , Menon AG (1995) Allelic losses on chromosomes 14, 10, and 1 in atypical and malignant meningiomas: a genetic model of meningioma progression. Cancer Res 55:4696–4701. [PubMed] [Google Scholar]
  • 164. Simmons ML, Lamborn KR, Takahashi M, Chen P, Israel MA, Berger MS, Godfrey T, Nigro J, Prados M, Chang S, Barker FG, Aldape K (2001) Analysis of complex relationships between age, p53, epidermal growth factor receptor, and survival in glioblastoma patients. Cancer Res 61:1122–1128. [PubMed] [Google Scholar]
  • 165. Sinkre P, Perry A, Cai D, Raghavan R, Watson M, Wilson K, Rogers BB. Deletion of the NF2 region in both menin‐gioma and juxtaposed meningioangiomatosis, a case report supporting a neoplastic relationship. Ped Develop Pathol (in press). [DOI] [PubMed] [Google Scholar]
  • 166. Skuse GR, Kosciolek BA, Rowley PT (1989) Molecular genetic analysis of tumors in von Recklinghausen neu‐rofibromatosis: Loss of heterozygosity for chromosome 17. Genes Chrom Cance 1:36–41. [DOI] [PubMed] [Google Scholar]
  • 167. Smith JS, Alderete B, Minn Y, Borell TJ, Perry A, Mohap‐atra G, Smith SM, Kimmel D, Yates A, Feuerstein BG, Burger PC, Scheithauer BW, Jenkins RB (1999) Localization of common deletion regions on 1p and 19q in human gliomas and their association with histological subtype. Oncogene 18:4144–4152. [DOI] [PubMed] [Google Scholar]
  • 168. Smith JS, Jenkins RB (2000) Genetic alterations in adult diffuse glioma: Occurrence, significance, and prognostic implications. Front Biosci 5:213–231. [DOI] [PubMed] [Google Scholar]
  • 169. Smith JS, Perry A, Borell TJ, Lee HK, O'Fallon J, Hosek SM, Kimmel D, Yates A, Burger PC, Scheithauer BW, Jenkins RB (2000) Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol 18:636–645. [DOI] [PubMed] [Google Scholar]
  • 170. Smith JS, Tachibana I, Lee HK, Qian J, Pohl U, Mohren‐weiser HW, Borell TJ, Hosek SM, Soderberg CL, von Deimling A, Perry A, Scheithauer BW, Louis DN, Jenkins RB (2000) Mapping of the chromosome 19 q‐arm glioma tumor suppressor gene using fluorescence in situ hybridization and novel microsatellite markers. Genes Chrom Cance. 29:16–25. [DOI] [PubMed] [Google Scholar]
  • 171. Smith JS, Tachibana I, Passe SM, Huntley BK, Borell TJ, Iturria N, O'Fallon J, Schaefer PL, Scheithauer BW, James CD, Buckner JC, Jenkins RB (2001) PTEN mutations, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst 93:1246–1256. [DOI] [PubMed] [Google Scholar]
  • 172. Soylemezoglu F, Soffer D, Onol B, Schwechheimer K, Kleihues P (1996) Lipomatous medulloblastoma in adults. A distinct clinicopathological entity. Am J Surg Pathol 20:413–418. [DOI] [PubMed] [Google Scholar]
  • 173. Speel EJM (1999) Detection and amplification systems for sensitive, multiple‐target DNA and RNA in situ hybridization: looking inside cells with a spectrum of colors. Histochem Cell Biol 112:89–113. [DOI] [PubMed] [Google Scholar]
  • 174. Speel EJM, Hopman AHN, Komminoth P (1999) Amplification methods to increase the sensitivity of in situ hybridization: Play CARD(S). J Histochem Cytochem 47:281–288. [DOI] [PubMed] [Google Scholar]
  • 175. Steilen‐Gimbel H, Henn W, Kolles H, Moringlane J‐R, Feiden W, Steudel W‐I, Zang KD (1996) Early proliferation enhancement by monosomy 10 and intratumor heterogeneity in malignant human gliomas as revealed by smear preparations from biopsies. Genes Chrom Cance 16:180–184. [DOI] [PubMed] [Google Scholar]
  • 176. Stratton MR, Darling J, Lanton PL, Cooper CS, Reeves BR (1989) Cytogenetic abnormalities in human ependymomas. Int J Cancer 44:579–581. [DOI] [PubMed] [Google Scholar]
  • 177. Sung T, Miller DC, Hayes RL, Alonso M, Yee H, Newcomb EW (2000) Preferential inactivation of the p53 tumor suppressor pathway and lack of EGFR amplification distinguish de novo high grade pediatric astrocytomas from de novo adult astrocytomas. Brain Pathol 10:249–59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178. Tajiri T, Shono K, Fujii Y, Noguchi S, Kinoshita Y, Tsuneyoshi M, Suita S (1999) Highly sensitive analysis for N‐myc amplification in neuroblastoma based on fluorescence in situ hybridization. J Pediatr Surg 34:1615–1619. [DOI] [PubMed] [Google Scholar]
  • 179. Taylor CPF, Bown NP, McGuckin AG, Lunec J, Malcolm AJ, Pearson ADJ, Sheer D (2000) Fluorescence in situ hybridization techniques for the rapid detection of genetic prognostic factors in neuroblastoma. Br J Cancer 83:40–49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180. Thiel G, Losanowa T, Kintzel D, Nisch G, Martin H, Vor‐pahl K, Witkowski R (1992) Karyotypes in 90 human gliomas. Cancer Genet Cytogenet 58:109–120. [DOI] [PubMed] [Google Scholar]
  • 181. Tomlinson FH, Jenkins RB, Scheithauer BW, Keelan PA, Ritland S, Parisi JE, Cunningham J, Olsen KD (1994) Aggressive medulloblastoma with high‐level N‐myc amplification. Mayo Clin Proc 69:359–365. [DOI] [PubMed] [Google Scholar]
  • 182. Tsokos M (1992) Peripheral primitive neuroectodermal tumors. Diagnosis, classification, and prognosis. Perspect Pediatr Pathol 16:27–98. [PubMed] [Google Scholar]
  • 183. Tubbs RR, Pettay JD, Roche PC, Stoler MH, Jenkins RB, Grogan TM (2001) Discrepancies in clinical laboratory testing of eligibility for trastuzumab therapy: apparent immunohistochemical false‐positives do not get the message. J Clin Oncol 19:2714–2721. [DOI] [PubMed] [Google Scholar]
  • 184. Turc‐Carel C, Aurias A, Mugneret F, Lizard S, Sidaner I, Volk C, Thiery JP, Olschwang S, Philip I, Berger MP (1988) Chromosomes in Ewing's sarcoma. I. An evaluation of 85 cases of remarkable consistency of t(11;22)(q24;q12). Cancer Genet Cytogenet 32:229–238. [DOI] [PubMed] [Google Scholar]
  • 185. Ueki K, Ono Y, Henson JW, Efird JT, von Deimling A, Louis DN (1996) CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res 56:150–153. [PubMed] [Google Scholar]
  • 186. Ueki K, Wen‐Bin C, Narita Y, Asai A, Kirino T (1999) Tight association of loss of merlin expression with loss of heterozygosity at chromosome 22q in sporadic meningiomas. Cancer Res 59:5995–5998. [PubMed] [Google Scholar]
  • 187. Vagner‐Capodano AM, Zattara‐Cannoni H, Gambarelli D, Figarella‐Branger D, Lena G, Dufour H, Grisoli FCM (1999) Cytogenetic study of 33 ependymomas. Cancer Genet Cytogenet 115:96–99. [DOI] [PubMed] [Google Scholar]
  • 188. Van Gijlswijk RPM, Zijlmans HJMAA, Wiegant J, Bobrow MN, Erickson TJ, Adler DE, Tanke HJ, Raap AK (1997) Fluorochrome‐labeled tyramides: use in immunocyto‐chemistry and fluorescence in situ hybridization. J His-tochem Cytochem 45:375–382. [DOI] [PubMed] [Google Scholar]
  • 189. Versteege I, Sevenet N, Lange J, Rousseau‐Merck MF, Ambros P, Handgretinger R, Aurias A, Delattre O (1998) Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer . Nature 394:203–206. [DOI] [PubMed] [Google Scholar]
  • 190. von Deimling A, Bender B, Jahnke R, Waha A, Kraus JA, Albrecht SA, Wellenreuther R, Fassbender F, Nagel J, Menon AG (1994) Loci associated with malignant progression in astrocytomas: a candidate on chromosome 19q . Cancer Res 54:1397–1401. [PubMed] [Google Scholar]
  • 191. von Deimling A, Louis DN, Menon AG, von Ammon K, Petersen I, Ellison D, Wiestler OD, Seizinger BR (1993) Deletions on the long arm of chromosome 17 in pilocytic astrocytoma. Acta Neuropathol 86:81–85. [DOI] [PubMed] [Google Scholar]
  • 192. von Deimling A, Louis DN, von Ammon K, Petersen I, Wiestler OD, Seizinger BR (1992) Evidence for a tumor suppressor gene on chromosome 19q associated with human astrocytomas, oligodendrogliomas, and mixed gliomas. Cancer Res 52:4277–4279. [PubMed] [Google Scholar]
  • 193. von Deimling A, Louis DN, Wiestler OD (1995) Molecular pathways in the formation of gliomas. Glia 15:328–338. [DOI] [PubMed] [Google Scholar]
  • 194. von Haken MS, White EC, Daneshvar‐Shyesther L, Sih S, Choi E, Karla R, Cogen PH (1996) Molecular genetic analysis of chromosome arm 17p and chromosome arm 22q DNA sequences in sporadic pediatric ependymomas. Genes Chrom Cance 17:37–44. [DOI] [PubMed] [Google Scholar]
  • 195. Watanabe K, Tachibana O, Sato K, Yonekawa Y, Kleihues P, Ohgaki H (1996) Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6:217–223. [DOI] [PubMed] [Google Scholar]
  • 196. Weber RG, Bostrom J, Wolter M, Baudis M, Collins VP, Reifenberger G, Lichter P (1997) Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: Toward a genetic model of meningioma progression. Proc Natl Acad Sci U S A 94:14719–14724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 197. Weiss MM, Hermsen MAJA, Meijer GA, Van Grieken NCT, Baak JPA, Kuipers EJ, Van Diest PJ (1999) Demysti‐fied…: Comparative genomic hybridisation. Mol Pathol 52:243–251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198. Weremowicz S, Kupsky WJ, Morton CC, Fletcher JA (1992) Cytogenetic evidence for a chromosome 22 tumor suppressor gene in ependymoma. Cancer Genet Cytogenet 61:193–196. [DOI] [PubMed] [Google Scholar]
  • 199. Wernicke C, Gundula T, Lozanova T, Vogel S, Kintzel D, Janisch W, Lehmann K, Witkowski R (1995) Involvement of chromosome 22 in ependymomas. Cancer Genet Cyto-genet 79:173–178. [DOI] [PubMed] [Google Scholar]
  • 200. White FV, Anthony DC, Yunis EJ, Tarbell NJ, Scott RM, Schofield DE (1995) Nonrandom chromosomal gains in pilocytic astrocytomas of childhood. Hum Pathol 26:979–986. [DOI] [PubMed] [Google Scholar]
  • 201. Zheng P, Pang JC, Hui AB, (2000) Comparative genomic hybridization detects losses of chromosomes 22 and 16 as the most common recurrent genetic alterations in primary ependymomas. Cancer Genet Cytogenet 122:18–25. [DOI] [PubMed] [Google Scholar]
  • 202. Zhou X‐P, Li Y‐J, Hoang‐Xuan K, Laurent‐Puig P, Mokhtari K, Longy M, Sanson M, Delattre J‐Y, Thomas G, Hamelin R (1999) Mutational analysis of the PTEN gene in gliomas: Molecular and pathological correlations. Int J Cancer. 83:150–154. [DOI] [PubMed] [Google Scholar]
  • 203. Zilmer M, Harris CP, Steiner DS, Meisner LF (1998) Use of nonbreakpoint DNA probes to detect the t(X;18) in interphase cells from synovial sarcoma. Implications for detection of diagnostic tumor translocations. Am J Pathol 152:1171–1177. [PMC free article] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES