Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;14(4):388–398. doi: 10.1111/j.1750-3639.2004.tb00082.x

Abnormal Metabotropic Glutamate Receptor Expression and Signaling in the Cerebral Cortex in Diffuse Lewy Body Disease is Associated with Irregular α‐Synuclein/Phospholipase C (PLCβ1) Interactions

E Dalfó 1, J L Albasanz 3, M Martín 3, I Ferrer 1,2,
PMCID: PMC8095885  PMID: 15605986

Abstract

Diffuse Lewy body disease (DLBD) is a degenerative disease of the nervous system, involving the brain stem, diencephalic nuclei and cerebral cortex, associated with abnormal α‐synuclein aggregation and widespread formation of Lewy bodies and Lewy neurites. DLBD presents as pure forms (DLBDp) or in association with Alzheimer disease (AD) in the common forms (DLBDc). Several neurotransmitter abnormalities have been reported including those of the nigrostriatal and mesocorticolimbic dopaminergic system, and central noradrenergic, serotoninergic and cholinergic pathways. The present work examines metabotropic glutamate receptor (mGluR) expression and signaling in the frontal cortex of DLBDp and DLBDc cases in comparison with age‐matched controls. Abnormal L‐[3H]glutamate specific binding to group I and II mGluRs, and abnormal mGluR1 levels have been found in DLBD. This is associated with reduced expression levels of phospholipase C β1 (PLCβ1), the effector of group I mGluRs following protein G activation upon glutamate binding. Additional modification in the solubility of PLCβ1 and reduced PLCβ1 activity in pure and common DLBD further demonstrates for the first time abnormal mGluR signaling in the cerebral cortex in DLBD. In order to look for a possible link between abnormal mGluR signaling and α‐synuclein accumulation in DLBD, immunoprecipitation studies have shown α‐synuclein/PLCβ1 binding in controls and decreased α‐synuclein/PLCβ1 binding in DLBD. This is accompanied by a shift in the distribution of α‐synuclein, but not of PLCβ1, in DLBD when compared with controls. Together, these results support the concept that abnormal α‐synuclein in DLBD produces functional effects on cortical glutamatergic synapses, which are associated with reduced α‐synuclein/PLCβ1 interactions, and, therefore, that mGluRs are putative pharmacological targets in DLBD. Finally, these results emphasize the emergence of a functional neuropathology that has to be explored for a better understanding of the effects of abnormal protein interactions in degenerative diseases of the nervous system.

Full Text

The Full Text of this article is available as a PDF (409.3 KB).

REFERENCES

  • 1. Ahn BH, Rhim H, Kim SY, Sung YM, Lee MY, Choi JY, Wolozin B, Chang JS, Lee YH, Kwon TK, Chung KC, Yoon SH, Hahn SJ, Kim MS, Jo YH, Min DS (2002) α‐synuclein interacts with phospholipase D isozymes and inhibits pervadanate‐induced phospholipase D activation in human embryonic kidney‐293 cells. J Biol Chem 277:12334–12342. [DOI] [PubMed] [Google Scholar]
  • 2. Albasanz JL, Leon D, Ruiz MA, Fernandez M, Martin M (2002) Adenosine A1 receptor agonist treatment up‐regulates rat brain metabotropic glutamate receptors. Biochim Biophys Acta 1593:69–75. [DOI] [PubMed] [Google Scholar]
  • 3. Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VMY, Trojanowski JQ, Iwatsubo T (1998) Aggregation of α‐synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am J Pathol 152:879–884. [PMC free article] [PubMed] [Google Scholar]
  • 4. Böhm D, Schwegler H, Kotthaus L, Nayernia K, Rickmann M, Köhler M, Rosenbusch J, Engel W, Flügge G, Burfeind P (2002) Disruption of PLCβ1‐mediated signal transduction in mutant mice causes age‐dependent hippocampal mossy fiber sprouting and neurodegeneration. Mol Cell Neurosci 21:584–601. [DOI] [PubMed] [Google Scholar]
  • 5. Braak H, Braak E (1999) Temporal sequence of Alzheimer's disease‐related pathology. In: Cerebral cortex vol 14: Neurodegenerative and age‐related changes in structure and function of cerebral cortex. Peters A, Morrison JH (eds.), pp 475–512, Kluwer Academic/Plenum Press: New York , Boston , Dordrecht , London , Moscow . [Google Scholar]
  • 6. Bradley SR, Marino MJ, Wittmann M, Rouse ST, Awad H, Levey AI, Conn. PJ (2000) Activation of group II metabotropic glutamate receptors inhibit synaptic excitation of the substantia nigra pars reticulata. J Neurosci 20:3085–3094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Breysse N, Baunez C, Spooren W, Gasparini F, Amalric M (2002) Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in a rat model of parkinsonism. J Neurosci 22:5669–5678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Campbell BC, Li QX, Culvenor JG, Jakala P, Cappai R, Beyreuther K, Masters CL, McLean CA (2000) Accumulation of insoluble α‐synuclein in dementia with Lewy bodies. Neurobiol Dis 7:192–200. [DOI] [PubMed] [Google Scholar]
  • 9. Cha JHJ, Farrell LA, Ahmed SF, Frey A, Hsiao‐Ashe KK, Young AB, Penney JB, Locascio JJ, Hyman BT, Irizarry MC (2001) Glutamate receptor dysregulation in the hippocampus of transgenic mice carrying mutated human amyloid precursor protein. Neurobiol Dis 8:90–102. [DOI] [PubMed] [Google Scholar]
  • 10. Churchyard A, Lees AJ (1997) The relationship between dementia and direct involvement of the hippocampus and amygdala in Parkinson's disease. Neurology 49:1570–1576. [DOI] [PubMed] [Google Scholar]
  • 11. Colley WC, Sung TC, Roll R, Jenco J, Hammond SM, Altshuller Y, Bar‐Sagi D, Morris AJ, Frohman MA (1997) Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr Biol 7:191–201. [DOI] [PubMed] [Google Scholar]
  • 12. Conn P, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Ann Rev Pharmacol Toxicol 37:205–237. [DOI] [PubMed] [Google Scholar]
  • 13. Cowburn RF, O'Neill C, Bonkale WL, Ohm TG, Fatbom J (2001) Receptor‐G‐protein signalling in Alzheimer's disease. Biochem Soc Symp 67:163–175. [DOI] [PubMed] [Google Scholar]
  • 14. Dalfó E, Barrachina M, Rosa JL, Ambrosio S, Ferrer I (2004) Abnormal α‐synuclein interactions with rab3a and rabphilin in diffuse Lewy body disease. Neurobiol Dis 16:92–97. [DOI] [PubMed] [Google Scholar]
  • 15. Dalfó E, Gómez‐Isla T, Rosa JL, Nieto Bodelón M, Cuadrado Tejedor M, Barrachina M, Ambrosio S, Ferrer I (2004) Abnormal synuclein interactions with Rab proteins in synuclein A30P transgenic mice. J Neuropathol Exp Neurol 63:302–313. [DOI] [PubMed] [Google Scholar]
  • 16. Dewar D, Chalmers DT, Graham DI, McCulloch J (1991) Glutamate metabotropic and AMPA binding sites are reduced in Alzheimer's disease: An autoradiographic study of the hippocampus. Brain Res 553:58–64. [DOI] [PubMed] [Google Scholar]
  • 17. Duda JE, Giasson BI, Chen Q, Gur TL, Hurtig HI, Stern MB, Gollomp SM, Ischiropoulos H, Lee VMY, Trojanowski JQ (2000) Widespread nitration of pathological inclusions in neurodegenerative synucleinopathies. Am J Pathol 157:1439–1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Duda JE, Giasson BI, Mabon ME, Lee VMY, Trojanowski JQ (2002) Novel antibodies to synuclein show abundant striatal pathology in Lewy body diseases. Ann Neurol 52:205–210. [DOI] [PubMed] [Google Scholar]
  • 19. Duda JE, Lee VMY, Trojanowski JQ (2000) Neuropathology of synuclein aggregates: new insights into mechanisms of neurodegenerative diseases. J Neurosci Res 61:121–127. [DOI] [PubMed] [Google Scholar]
  • 20. Feeley Kearney JA, Albin RL (2003) mGluRs: a target for pharmacotherapy in Parkinson's disease. Exp Neurol 184, suppl 1:S30–36. [DOI] [PubMed] [Google Scholar]
  • 21. Ferrer I (2002) The neuropathological spectrum of Lewy body disorders. In: Neurodegenerative disorders associated with α‐synuclein pathology, Tolosa E, Schulz JB, McKeith IG, Ferrer I (eds.), pp. 83–98, Ars Medica: Barcelona . [Google Scholar]
  • 22. Fujiwara H, Hasegawa M, Dohmae N, Ka‐washima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) α‐synuclein is phosphorylated in synucleinopathy lesions. Nature Cell Biol 4:160–164. [DOI] [PubMed] [Google Scholar]
  • 23. Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurrig HI, Ischiropoulos H, Trojanowski IQ, Lee VM (2000) Oxidative damage linked to neurodegeneration by selective α‐synuclein nitration in synucleinopathy lesions. Science 290:985–989. [DOI] [PubMed] [Google Scholar]
  • 24. Hamm HE (1998) The many faces of G protein signaling. J Biol Chem 273:669–672. [DOI] [PubMed] [Google Scholar]
  • 25. Hammond C (2003) Cellular and Molecular Neurobiology. Chapter 14: The metabotropic glutamate receptors, pp. 314–326, Academic Press: Amsterdam , Boston , Heidelberg , London , New York , Oxford , Paris , San Diego , San Francisco , Singapore , Sydney , Tokyo . [Google Scholar]
  • 26. Hansen LA, Daniel SE, Wilcock GK, Love S (1998) Frontal cortical synaptophysin in Lewy body diseases: relation to Alzheimer's disease and dementia. J Neurol Neurosurg Psychiatr 64:653–656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Hansen LA, Samuel W (1997) Criteria for Alzheimer's disease and the nosology of dementia with Lewy bodies. Neurology 48:126–132. [DOI] [PubMed] [Google Scholar]
  • 28. Hashimoto M, Masliah E (1999) Alphasynuclein in Lewy body disease and Alzheimer's disease. Brain Pathol 9:707–720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Hölscher C (1998) Possible causes of Alzheimer's disease: amyloid fragments, free radicals, and calcium homeostasis. Neurobiol Dis 5:129–141. [DOI] [PubMed] [Google Scholar]
  • 30. Hurtig HI, Trojanowski JQ, Galvin J, Ewbank D, Schmidt ML, Lee VM, Clark CM, Gloser G, Stern MB, Gollomp SM, Arnold SE (2000) α‐synuclein cortical Lewy bodies correlate with dementia in Parkinson's disease. Neurology 54:1916–1921. [DOI] [PubMed] [Google Scholar]
  • 31. Ince PG, McKeith IG (2003) Dementia with Lewy bodies. In: Neurodegeneration: The molecular pathology of dementia and movement disorders, Dickson D (eds.), pp 188–197, ISN Neuropath Press: Basel . [Google Scholar]
  • 32. Ince PG, Perry EK, Morris CM (1998) Dementia with Lewy bodies. A distinct non‐Alzheimer dementia syndrome. Brain Pathol 8:299–324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Iwatsubo T (2003) Aggregation of α‐synuclein in the pathogenesis of Parkinson's disease. J Neurol 250 S3:11–14. [DOI] [PubMed] [Google Scholar]
  • 34. Jellinger K (1997) Morphological substrates of dementia in parkinsonism. A critical update. J Neural Transm 52:57–82. [DOI] [PubMed] [Google Scholar]
  • 35. Jellinger K, Mizuno Y (2003) Parkinson's disease. In: Neurodegeneration: The molecular pathology of dementia and movement disorders, Dickson D (eds.), pp 159–187, ISN Neuropath Press: Basel . [Google Scholar]
  • 36. Jenko JM, Rawlingson A, Daniels B, Morris AJ (1998) Regulation of phospholipase D2: selective inhibition of phospholipase D isoenzymes by alpha‐ and beta‐synucleins. Biochemistry 37:4901–4909. [DOI] [PubMed] [Google Scholar]
  • 37. Jolly‐Tornetta C, Gao ZY, Lee V, Wolf BA (1998) Regulation of amyloid precursor protein secretion by glutamate receptors in human Ntera 2 neurons. J Biol Chem 273:14015–14021. [DOI] [PubMed] [Google Scholar]
  • 38. Kahle P, Haass C, Kretszchmar HA, Neumann M (2002) Sructure/function of α‐synuclein in health and disease: rational development of animal models for Parkinson's disease and related disorders. J Neurochem 82:449–457. [DOI] [PubMed] [Google Scholar]
  • 39. Kessler M, Terramani T, Lynch G, Baudry M (1989) A glycine site associated with N‐methyl‐D‐aspartic acid receptors: characterization and identification of a new class of antagonist. J Neurochem 52:1319–28. [DOI] [PubMed] [Google Scholar]
  • 40. Kim D, Jun KS, Lee SB, Kang NG, Min DS, Kim YH, Ryu SH, Suh PG, Shin SH (1997) Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature 389:290–293. [DOI] [PubMed] [Google Scholar]
  • 41. Kimelberg HK, Pang S, Treble DH (1989) Excitatory amino acid‐stimulated uptake of 22Na+ in primary astrocyte cultures. J Neurosci 9:1141–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Kolakowski LF (1994) GCRDb: a G‐protein‐coupled receptor database. Receptor Channels 2:1–7. [PubMed] [Google Scholar]
  • 43. Kosaka K (1993) Dementia and neuropathology in Lewy body disease. Adv Neurol 60:456–463. [PubMed] [Google Scholar]
  • 44. Kosaka K, Iseki E (1996) Diffuse Lewy body disease within the spectrum of Lewy body disease. In: Dementia with Lewy bodies, Perry RH, McKeith IG, Perry EK (eds.), pp. 238–247, Cambridge University Press: Cambridge . [Google Scholar]
  • 45. Lee RK, Jimenez J, Cox AJ, Wurtman RJ (1996) Metabotropic glutamate receptors regulate APP processing in hippocampal neurons and cortical astrocytes derived from fetal rats. Ann NY Acad Sci 777:338–343. [DOI] [PubMed] [Google Scholar]
  • 46. Lennox G, Lowe J, Landon M, Byrne EJ, Mayer RJ, Godwin‐Austen RB (1989) Diffuse Lewy body disease: correlative neuropathology using antiubiquitin immunohistochemistry. J Neurol Neurosurg Psychiatr 52:1236–1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Louzada PR, Paula Lima AC, de Mello FG, Ferreira ST (2001) Dual role of glutamatergic neurotransmission on amyloid beta (1–42) aggregation and neurotoxicity in embryonic avian retina. Neurosci Lett 301:59–63. [DOI] [PubMed] [Google Scholar]
  • 48. Marinissen MJ, Gutkind JS (2001) G‐protein‐coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22:368–376. [DOI] [PubMed] [Google Scholar]
  • 49. Martin M, Albasanz JL, Fernandez M, Ros M (1998) Cross‐talk between beta‐adrenergic and metabotropic glutamate receptors in rat C6 glioma cells. Biochem Biophys Acta 1393:186–192. [DOI] [PubMed] [Google Scholar]
  • 50. Martin M, Sanz JM, Cubero A (1993) Characterization of metabotropic glutamate receptors coupled to a pertussis toxin sensitive G‐protein in bovine brain coated vesicles. FEBS Lett 316:191–196. [DOI] [PubMed] [Google Scholar]
  • 51. Martin‐Ruiz C, Lawrence S, Piggott M, Kuryatov A, Lindstrom J, Gotti C, Cookson MR, Perry RH, Jaros E, Perry EK, Court JA (2002) Nicotinic receptors in the putamen of patients with dementia with Lewy bodies and Parkinson's disease: relation to changes in alpha‐synuclein expression. Neurosci Lett 335:134–138. [DOI] [PubMed] [Google Scholar]
  • 52. Mattila PM, Rinne JO, Helenius H, Dickson DW, Roytta M (2000) synuclein‐immunoreactive cortical Lewy bodies are associated with cognitive impairment in Parkinson's disease. Acta Neuro-pathol 100:285–290. [DOI] [PubMed] [Google Scholar]
  • 53. McKeith IG, Ballard CG, Pery RH, Ince PG, O'Brien JT, Neill D, Lowery K, Jaros E, Barber R, Thompson P, Swann A, Fairbairn AF, Perry EK (2000) Prospective validation of consensus criteria for the diagnosis of dementia with Lewy bodies. Neurology 54:1050–1058. [DOI] [PubMed] [Google Scholar]
  • 54. McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, Salmon DP, Lowe J, Mirra SS, Byrne EJ, Lenox G, Quinn NP, Edwardson JA, Ince PG, Bergeron C, Burns A, Miller BL, Lovestone S, Collerton D, Jansen EN, Ballard C, de Vos RA, Wilcock GK, Jellinger KA, Perry RH (1996) Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 47:1113–1124. [DOI] [PubMed] [Google Scholar]
  • 55. Michaelis EK (1998) Molecular biology of glutamate receptors in the central nervous system and their role in excitoxicity, oxidative stress and aging. Progr Neurobiol 54:369–415. [DOI] [PubMed] [Google Scholar]
  • 56. Ossowska K, Wardas J, Pietraszek M, Konieczny J, Wolfarth S (2003) The striatopallidal pathway is involved in antiparkinsonian‐like effects of the blockade of group I metabotropic glutamate receptors in rats. Neurosci Lett 342:21–24. [DOI] [PubMed] [Google Scholar]
  • 57. Ozawa S, Kamiya H, Tsuzuki K (1998) Glutamate receptors in the mammalian central nervous system. Progr Neurobiol 54:518–618. [DOI] [PubMed] [Google Scholar]
  • 58. Perry EK, Marshall E, Kerwin J, Smith CJ, Jabeen S, Cheng AV, Perry RH (1990) Evidence of a monoaminergic‐cholinergic imbalance related to visual hallucinations in Lewy body dementia. J Neurochem 55:1454–1456. [DOI] [PubMed] [Google Scholar]
  • 59. Perry EK, Marshall E, Perry RH, Irving D, Smith CJ, Blessed G, Fairbain AF (1990) Cholinergic and dopaminergic activities in senile dementia of the Lewy body type. Alzheimer's Dis Assoc Dis 4:87–95. [PubMed] [Google Scholar]
  • 60. Perry EK, Marshall E, Thompson P, McKeith IG, Collerton D, Fairbain AF, Ferrier IN, Irving D, Perry RH (1993) Monoaminergic activities in Lewy body dementia: relation to hallucinations and extrapyramidal features. J Neural Transm 6:167–177. [DOI] [PubMed] [Google Scholar]
  • 61. Pimlott SL, Piggott M, Owens J, Greally E, Court JA, Jaros E, Perry RH, Perry EK, Wyper D (2004) Nicotinic acetylcholine receptor distribution in Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease, and vascular dementia: in vitro binding study using 5‐[(125)i]‐a‐85380. Neuropsychopharmacology 29:108–116. [DOI] [PubMed] [Google Scholar]
  • 62. Pin JP, Acher F (2002) The metabotropic glutamate receptors: structure, activation, mechanisms and pharmacology. Curr Drug Target CNS Neural Disord 1:297–317. [DOI] [PubMed] [Google Scholar]
  • 63. Pisani A, Bonsi P, Centonze D, Gubellini P, Bernardi G, Calabresi P (2003) Targeting striatal cholinergic interneurons in parkinson's disease. Focus on metabotropic glutamate receptors. Neuropharmacology 45:45–56. [DOI] [PubMed] [Google Scholar]
  • 64. Pronin AN, Morris AJ, Surgunchov A, Benovic JL (2000) Synucleins are a novel class of substrates for G protein‐coupled receptor kinases. J Biol Chem 275:26515–26522. [DOI] [PubMed] [Google Scholar]
  • 65. Rebecchi MJ, Pentyala SN (2000) Structure, function, and control of phosphoinositide‐specific phospholipase C. Physiol Rev 80:1291–1335. [DOI] [PubMed] [Google Scholar]
  • 66. Rhee SG (2001) Regulation of phosphoinositide‐specific phospholipase C. Annu Rev Biochem 70:281–312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. Samuel W, Galasko D, Masliah E, Hansen LA (1996) Neocortical Lewy body counts correlate with dementia in the Lewy body variant of Alzheimer's disease. J Neuropathol Exp Neurol 55:44–52. [DOI] [PubMed] [Google Scholar]
  • 68. Sharma N, McLean P, Kawamata H, Irizarry MC, Hyman BT (2001) Alpha‐synuclein has an altered conformation and shows a tight intermolecular interaction with uqbiquitin in Lewy bodies. Acta Neuropathol 102:329–334. [DOI] [PubMed] [Google Scholar]
  • 69. Smith Y, Charara A, Hanson JE, Paquet M, Levey AI (2000) GABA (B) and group I metabotropic glutamate receptors in the striatopallidal complex in primates. J Anat 196:555–576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Sweet RA, Hamilton RL, Healy MT, Wisniewski SR, Henteleff R, Pollock BG, Lewis DA, DeKosky ST (2001) Alterations of striatal dopamine receptor binding in Alzheimer's disease are associated with Lewy body pathology and antemortem psychosis. Arch Neurol 58:466–472. [DOI] [PubMed] [Google Scholar]
  • 71. Takeda A, Mallory M, Sundsmo M, Honer W, Hansen L, Masliah E (1998) Abnormal accumulation of NACP/alpha‐synuclein in neurodegenerative diseases. Am J Pathol 152:367–72. [PMC free article] [PubMed] [Google Scholar]
  • 72. Tiger G, Bjorklund PE, Cowburn RF, Garlind A, O'Neill C, Wiehager B, Fowler CJ (1990) Effect of monovalent ions upon G proteins coupling muscarinic receptors to phosphoinositide hydrolysis in the rat cerebral cortex. Eur J Pharmacol 188:51–62. [DOI] [PubMed] [Google Scholar]
  • 73. Valenti O, Marino MJ, Wittmann M, Lis E, DiLella AG, Kinnery GG, Conn PJ (2003) Group III metabotropic glutamate receptor‐mediated modulation of the striatopallidal synapse. J Neurosci 23:7218–7226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Young RA, Talbot K, Gao ZY, Trojanowski JQ, Wolf BA (1999) Phospholipase pathway in Alzheimer's disease brains: decreased Ga1 in dorsal prefrontal cortex. Mol Brain Res 66:188–190. [DOI] [PubMed] [Google Scholar]
  • 75. Yuzaki M (2003) The delta2 glutamate receptor: 10 years later. Neurosci Res 46:11–22. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES