Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;14(4):349–357. doi: 10.1111/j.1750-3639.2004.tb00077.x

Hippocampal Pathology in the Human Neuronal Ceroid‐Lipofuscinoses: Distinct Patterns of Storage Deposition, Neurodegeneration and Glial Activation

Jaana Tyynelä 1,2,, Jonathan D Cooper 3,5,6, M Nadeem Khan 4,5, Stephen JA Shemilt 3,5,6, Matti Haltia 2
PMCID: PMC8095893  PMID: 15605981

Abstract

The neuronal ceroid‐lipofuscinoses (NCLs) are recessively inherited lysosomal storage diseases, currently classified into 8 forms (CLN1‐CLN8). Collectively, the NCLs constitute the most common group of progressive encephalopathies of childhood, and present with visual impairment, psychomotor deterioration and severe seizures. Despite recent identification of the underlying disease genes, the mechanisms leading to neurodegeneration and epilepsy in the NCLs remain poorly understood. To investigate these events, we examined the patterns of storage deposition, neurodegeneration, and glial activation in the hippocampus of patients with CLN1, CLN2, CLN3, CLN5 and CLN8 using histochemistry and immunohistochemistry. These different forms of NCL shared distinct patterns of neuronal degeneration in the hippocampus, with heavy involvement of sectors CA2‐CA4 but relative sparing of CA1. This selective pattern of degeneration was also observed in immunohistochemically identified interneurons, which exhibited a graded severity of loss according to phenotype, with calretinin‐positive interneurons relatively spared. Furthermore, glial activation was also regionally specific, with microglial activation most pronounced in areas of greatest neuronal loss, and astrocyte activation prominent in areas where neuronal loss was less evident. In conclusion, the NCLs share a common pattern of selective hippocampal pathology, distinct from that seen in the majority of temporal lobe epilepsies.

Full Text

The Full Text of this article is available as a PDF (836.9 KB).

REFERENCES

  • 1. Ahtiainen L, van Diggelen OP, Jalanko A, Kopra O (2003) Palmitoyl protein thioesterase is targeted to the axons in neurons. J Comp Neurol 455:368–377. [DOI] [PubMed] [Google Scholar]
  • 2. Bellizzi JJ III, Widom J, Kemp C, Lu JY, Das AK, Hofmann SL (2000) The crystal structure of palmitoyl‐protein thioesterase 1 and the molecular basis of infantile neuronal‐ceroid lipofuscinosis. Proc Natl Acad Sci U S A 97:4573–4578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Bible E, Gupta P, Hofmann SL, Cooper JD (2004) Regional and cellular neuropathology in the palmitoyl protein thioesterase‐1 (PPT1) null mutant mouse model of infantile neuronal ceroid lipofuscinosis. Neurobiol Dis 16:346–359. [DOI] [PubMed] [Google Scholar]
  • 4. Braak H, Goebel HH (1978) Loss of pigmentladen stellate cells: a severe alteration of the isocortex in juvenile neuronal ceroid‐lipofuscinosis. Acta Neuropathol 42:53–57. [DOI] [PubMed] [Google Scholar]
  • 5. Braak H, Goebel, HH (1979) Pigmentoarchitectonic pathology of the isocortex in juvenile neuronal ceroid‐lipofuscinosis: axonal enlargements in layer IIIab and cell loss in layer V. Acta Neuropathol 46:79–83. [DOI] [PubMed] [Google Scholar]
  • 6. Camp LA, Hofmann SL (1993) Purification and properties of a palmitoyl‐protein thioesterase that cleaves palmitate from H‐Ras. J Biol Chem 268:22566–22574. [PubMed] [Google Scholar]
  • 7. Chattopadhyay S, Ito M, Cooper JD, Brooks AI, Curran TM, Powers JM, Pearce DA (2002) An autoantibody inhibitory to glutamic acid decarboxylase in the neurodegenerative disorder Batten disease. Hum Mol Genet 11:1421–1431. [DOI] [PubMed] [Google Scholar]
  • 8. Cooper JD, Messer A, Feng AK, Chua‐Couzens J, Mobley WC (1999) Apparent loss and hypertrophy of interneurons in a mouse model of neuronal ceroid lipofuscinosis: evidence for partial response to insulin‐like growth factor‐1 treatment. J Neurosci 19:2556–2567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Cooper JD (2003) Progress towards understanding the neurobiology of Batten disease or neuronal ceroid lipofuscinosis. Curr Opin Neurol 16:121–128. [DOI] [PubMed] [Google Scholar]
  • 10. Das AK, Lu J‐Y, Hoffman SL (2001) Biochemical analysis of mutations in palmitoyl‐protein thioesterase causing infantile and late‐onset forms of neuronal ceroid lipofuscinosis. Hum Mol Genet 10:1431–1439. [DOI] [PubMed] [Google Scholar]
  • 11. De Lanerolle NC, Kim JH, Williamson A, Spencer SS, Zaveri HP, Eid T, Spencer DD (2003) A retrospective analysis of hippocampal pathology in human temporal lobe epilepsy: evidence for distinctive patient subcategories. Epilepsia 44:677–687. [DOI] [PubMed] [Google Scholar]
  • 12. D'Orlando C, Celio MR, Schwaller B (2002) Calretinin and calbindin D‐28k, but not parvalbumin protect against glutamate‐induced delayed excitotoxicity in transfected N18‐RE 105 neuroblastoma‐retina hybrid cells. Brain Res 94:181–190. [DOI] [PubMed] [Google Scholar]
  • 13. Freund TF, Buzsáki G (1996) Interneurons of the Hippocampus. Hippocampus 6:347–470. [DOI] [PubMed] [Google Scholar]
  • 14. Gao H, Boustany RM, Espinola JA, Cotman SL, Srinidhi L, Antonellis KA, Gillis T, Qin X, Liu S, Donahue LR, Bronson RT, Faust JR, Stout D, Haines JL, Lerner TJ, MacDonald ME (2002) Mutations in a novel CLN6‐encoded transmembrane protein cause variant neuronal ceroid lipofuscinosis in man and mouse. Am J Hum Genet 70:324–335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Goebel HH, Sharp JD (1998) The neuronal ceroid‐lipofuscinoses. Recent advances. Brain Pathol 8:151–162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Gupta P, Soyombo AA, Atashband A, Wisniewski KE, Shelton JM, Richardson JA, Hammer RE, Hofmann SL (2001) Disruption of PPT1 or PPT2 causes neuronal ceroid lipofuscinosis in knockout mice. Proc Natl Acad Sci U S A 98:13566–13571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Haltia M, Rapola J, Santavuori P (1973a) Infantile type of so‐called neuronal ceroid‐ lipofuscinosis. Histological and electron microscopic studies. Acta Neuropathol (Berl) 26:157–170. [DOI] [PubMed] [Google Scholar]
  • 18. Haltia M, Rapola J, Santavuori P, Keranen A (1973b) Infantile type of so‐called neuronal ceroid‐lipofuscinosis. 2. Morphological and biochemical studies. J Neurol Sci 18:269–285. [DOI] [PubMed] [Google Scholar]
  • 19. Haltia M (2003) The neuronal ceroid lipofuscinoses. J Neuropathol Exp Neurol 62:1–13. [DOI] [PubMed] [Google Scholar]
  • 20. Hofmann SL, Peltonen L (2001) The neuronal ceroid lipofuscinoses. In: The Metabolic & Molecular Bases of Inherited Disease (8th edition), Scriver CR, Beaudet AL, Sly WS, Valle D (eds.) Vol III, pp 3877–3894, McGraw‐Hill Companies Inc. [Google Scholar]
  • 21. The International Batten Disease Consortium (1995) Isolation of a novel gene underlying Batten disease, CLN3. Cell 82:949–957. [DOI] [PubMed] [Google Scholar]
  • 22. Isosomppi J, Vesa J, Jalanko A, Peltonen L (2002) Lysosomal localization of the neuronal ceroid lipofuscinosis CLN5 protein. Hum Mol Genet 11:885–891. [DOI] [PubMed] [Google Scholar]
  • 23. Lehtovirta M, Kyttälä A, Eskelinen E‐L, Hess M, Heinonen O, Jalanko A (2001) Palmitoyl‐protein thioesterase localizes into synaptosomes and synaptic vesicles in neurons: implications for infantile neuronal‐ceroid‐lipofuscinosis (INCL). Hum Mol Genet 10:69–75. [DOI] [PubMed] [Google Scholar]
  • 24. Lonka L, Kyttälä A, Ranta S, Jalanko A, Lehesjoki A‐E (2000) The neuronal ceroid‐lipofuscinosis CLN8 membrane protein is a resident of the endoplasmic reticulum. Hum Mol Genet 11:1691–1697. [DOI] [PubMed] [Google Scholar]
  • 25. Luiro K, Kopra O, Lehtovirta M, Jalanko A (2001) CLN3 is targeted to neuronal synapses but excluded from synaptic vesicles: new clues to Batten disease. Hum Mol Genet 10:2123–2131. [DOI] [PubMed] [Google Scholar]
  • 26. Mitchison HM, Bernard DJ, Greene NDE, Cooper JD, Junaid MA, Pullarkat RK, Vos N, Breuning MH, Owens JW, Mobley WC, Gardiner RM, Lake BD, Taschner PEM, Nussbaum RL (1999) Targeted Disruption of the Cln3 gene provides a mouse model for Batten Disease. The Batten Mouse Model Consortium. Neurobiol Dis 6:321–334. [DOI] [PubMed] [Google Scholar]
  • 27. Mitchison HM, Lim MJ, Cooper JD (2004) Selectivity and Types of Cell Death in the Neuronal Ceroid Lipofuscinoses (NCLs). Brain Pathol 14:86–96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Mole SE (1999) Batten's disease: eight genes and still counting Lancet 354:443–445. [DOI] [PubMed] [Google Scholar]
  • 29. Mole SE (2004) The Genetic Spectrum of Human Neuronal Ceroid‐lipofuscinosis. Brain Pathol 14:70–76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Oliet SH, Piet R, Poulain DA (2001) Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292:923–926. [DOI] [PubMed] [Google Scholar]
  • 31. Oswald MJ, Kay GW, Palmer DN (2001) Changes in GABAergic neuron distribution in situ and in neuron cultures in ovine (OCL6) Batten disease. EurJ Paediatr Neurol 5 Suppl A:135–142. [DOI] [PubMed] [Google Scholar]
  • 32. Piet R, Poulain DA, Oliet SH (2002) Modulation of synaptic transmission by astrocytes in the rat supraoptic nucleus. J Physiol Paris 96:231–236. [DOI] [PubMed] [Google Scholar]
  • 33. Ranta S, Zhang Y, Ross B, Lonka L, Takkunen E, Messer A, Sharp J, Wheeler R, Kusumi K, Mole S, Liu W, Soares MB, Bonaldo MF, Hirvasniemi A, de la Chapelle A, Gilliam TC, Lehesjoki AE (1999) The neuronal ceroid lipofuscinoses in human EPMR and mnd mutant mice are associated with mutations in CLN8. Nat Genet 23:233–236. [DOI] [PubMed] [Google Scholar]
  • 34. Rezaie P, Male D (2002) Differentiation, ramification and distribution of microglia within the central nervous system examined. Neuroembryology 1:29–43. [Google Scholar]
  • 35. Salonen T, Heinonen‐Kopra O, Vesa J, Jalanko A (2001) Neuronal Trafficking of palmitoyl protein thioesterase (PPT1) provides an excellent model to study the effects of different mutations which cause infantile neuronal ceroid lipofuscinosis (INCL). Mol Cell Neurosci 18:131–140. [DOI] [PubMed] [Google Scholar]
  • 36. Savukoski M, Klockars T, Holmberg V, Santavuori P, Lander ES, Peltonen L (1998) CLN5, a novel gene encoding a putative transmembrane protein mutated in Finnish variant late infantile neuronal ceroid lipofuscinosis. Nat Genet 19:286–288. [DOI] [PubMed] [Google Scholar]
  • 37. Sleat DE, Donnelly RJ, Lackland H, Liu CG, Sohar I, Pullarkat RK, Lobel P (1997) Association of mutations in a lysosomal protein with classical late‐infantile neuronal ceroid‐lipofuscinosis. Science 277:1802–1805. [DOI] [PubMed] [Google Scholar]
  • 38. Suopanki J, Lintunen M, Lahtinen H, Haltia M, Panula P, Baumann M, Tyynelä J (2002) Status epilepticus induces changes in the expression and localization of endogenous palmitoyl‐protein thioesterase 1. Neurobiol Dis 10:247–257. [DOI] [PubMed] [Google Scholar]
  • 39. Vesa J, Hellsten E, Verkruyse LA, Camp LA, Rapola J, Santavuori P, Hofmann SL, Peltonen L (1995) Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroidlipofuscinosis. Nature 376:584–587. [DOI] [PubMed] [Google Scholar]
  • 40. Vesa J, Chin MH, Oelgeschläger K, Isosomppi J, Dell'Angelica EC, Jalanko A, Peltonen L (2002) Neuronal ceroid lipofuscinoses are connected at molecular level: Interaction of the CLN5 protein with CLN2 and CLN3. Mol Biol Cell 13:2410–2420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Vines DJ, Warburton MJ (1999) Classical late infantile neuronal ceroid lipofuscinosis fibroblasts are deficient in lysosomal tripeptidyl peptidase I. FEBS Lett 443:131–135. [DOI] [PubMed] [Google Scholar]
  • 42. Warburton MJ, Bernardini F (2001) The specificity of lysosomal tripeptidyl peptidase‐I determined by its action on angiotensin‐II analogues. FEBS Lett 500:145–148. [DOI] [PubMed] [Google Scholar]
  • 43. Warburton MJ, Bernardini F (2002) Tripeptidyl peptidase‐I is essential for the degradation of sulphated cholecystokinin‐8 (CCK‐8S) by mouse brain lysosomes. Neurosci Lett 331:99–102. [DOI] [PubMed] [Google Scholar]
  • 44. Wheeler RB, Sharp JD, Schultz RA, Joslin JM, Williams RE, Mole, SE (2002) The gene mutated in variant late‐infantile neuronal ceroid lipofuscinosis (CLN6) and in nclf mutant mice encodes a novel predicted transmembrane protein. Am J Hum Genet 70:537–542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Williams RS, Lott IT, Ferrante RJ, Caviness VS (1977) The cellular pathology of neuronal ceroid lipofuscinosis. Arch Neurol 34:298–305. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES