Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;12(1):95–107. doi: 10.1111/j.1750-3639.2002.tb00426.x

Tissue Microarrays: Applications in Neuropathology Research, Diagnosis, and Education

Huamin Wang 1, Hua Wang 2, Wei Zhang 2, Gregory N Fuller 2,
PMCID: PMC8095954  PMID: 11770905

Abstract

Tissue microarrays (TMAs) are composite paraf‐fin blocks constructed by extracting cylindrical tissue core “biopsies” from different paraffin donor blocks and re‐embedding these into a single recipient (microarray) block at defined array coordinates. Using this technique, up to 1000 or more tissue samples can be composited into a single paraffin block. Tissue microarrays permit high‐volume simultaneous analysis of molecular targets at the DNA, mRNA, and protein levels under identical, standardized conditions on a single glass slide, and also provide maximal preservation and utilization of limited and irreplaceable archival tissue samples. This versatile technique facilitates retrospective and prospective human tissue studies, animal tissue studies, and cell line cytospin cell block studies. In this review, we present the technical aspects of TMA construction and sectioning, validation aspects of the technique, TMA advantages and limitations, and a sampling of the broad range of TMA uses in modern neuropathologic clinical diagnosis, research, and education. A specific illustration of the most widely employed and increasingly important TMA application is also presented: confirmation via TMA‐based immunohisto‐chemistry of the differential expression of a marker (IGFBP2) initially identified by gene expression pro‐filing to be overexpressed in glioblastoma.

Full Text

The Full Text of this article is available as a PDF (855.4 KB).

References

  • 1. Barlund M, Forozan F, Kononen J, Bubendorf L, Chen Y, Bittner ML, Torhorst J, Haas P, Bucher C, Sauter G, Kallioniemi OP, and Kallioniemi A (2000) Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis. J Natl Cancer Inst 92:1252–1259. [DOI] [PubMed] [Google Scholar]
  • 2. Battifora H (1986) The multitumor (sausage) tissue block: novel method for immunohistochemical antibody testing. Lab Invest 55:244–248. [PubMed] [Google Scholar]
  • 3. Bova GS, Parmigiani G, Epstein JI, Wheeler T, Mucci NR, and Rubin MA (2001) Web‐based tissue microarray image data analysis: initial validation testing through prostate cancer Gleason grading. Hum Pathol 32:417–427. [DOI] [PubMed] [Google Scholar]
  • 4. Bubendorf L, Kolmer M, Kononen J, Koivisto P, Mousses S, Chen Y, Mahlamaki E, Schraml P, Moch H, Willi N, Elkahloun AG, Pretlow TG, Gasser TC, Mihatsch MJ, Sauter G, and Kallioniemi OP (1999) Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue microarrays. J Natl Cancer Inst 91:1758–1764. [DOI] [PubMed] [Google Scholar]
  • 5. Bubendorf L, Kononen J, Koivisto P, Schraml P, Moch H, Gasser TC, Willi N, Mihatsch MJ, Sauter G, and Kallioniemi OP (1999) Survey of gene amplifications during prostate cancer progression by high‐throughput fluorescence in situ hybridization on tissue microarrays. Cancer Res 59:803–806. [PubMed] [Google Scholar]
  • 6. Camp RL, Charette LA, and Rimm DL (2000) Validation of tissue microarray technology in breast carcinoma. Lab Invest 80:1943–1949. [DOI] [PubMed] [Google Scholar]
  • 7. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, and Chin‐naiyan AM (2001) Delineation of prognostic biomarkers in prostate cancer. Nature 412:822–826. [DOI] [PubMed] [Google Scholar]
  • 8. Fuller C, Fuller G, and Perry A (2001) High‐throughput molecular profiling of high‐grade gliomas: the utility of fluorescence in situ hybridization (FISH) on tissue microarrays. (Abstract) J Neuropathol Exp Neurol 60:538. [DOI] [PubMed] [Google Scholar]
  • 9. Fuller GN, Rhee CH, Hess KR, Caskey LS, Wang R, Bruner JM, Yung WK, and Zhang W (1999) Reactivation of insulin‐like growth factor binding protein 2 expression in glioblastoma multiforme: a revelation by parallel gene expression profiling. Cancer Res 59:4228–4232. [PubMed] [Google Scholar]
  • 10. Hoos A, and Cordon‐Cardo C (2001) Tissue microarray profiling of cancer specimens and cell lines: opportunities and limitations. Lab Invest 81:1331–1338. [DOI] [PubMed] [Google Scholar]
  • 11. Hoos A, Urist MJ, Stojadinovic A, Mastorides S, Dudas ME, Leung DH, Kuo D, Brennan MF, Lewis JJ, and Cordon‐Cardo C (2001) Validation of tissue microarrays for immunohistochemical profiling of cancer specimens using the example of human fibroblastic tumors. Am J Pathol 158:1245–1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Horvath L, and Henshall S (2001) The application of tissue microarrays to cancer research. Pathology 33:125–129. [DOI] [PubMed] [Google Scholar]
  • 13. Kallioniemi OP, Wagner U, Kononen J, and Sauter G (2001) Tissue microarray technology for high‐throughput molecular profiling of cancer. Hum Mol Genet 10:657–662. [DOI] [PubMed] [Google Scholar]
  • 14. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, and Kallioniemi OP (1998) Tissue microarrays for high‐throughput molecular profiling of tumor specimens. Nat Med 4:844–847. [DOI] [PubMed] [Google Scholar]
  • 15. Manley S, Mucci NR, De Marzo AM, and Rubin MA (2001) Relational database structure to manage high‐density tissue microarray data and images for pathology studies focusing on clinical outcome: the prostate specialized program of research excellence model. Am J Pathol 159:837–843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Miettinen HE, Jarvinen TA, Kellner U, Kauraniemi P, Par‐waresch R, Rantala I, Kalimo H, Paljarvi L, Isola J, and Haapasalo H (2000) High topoisomerase II alpha expression associates with high proliferation rate and and poor prognosis in oligodendrogliomas. Neuropathol Appl Neurobiol 26:504–512. [DOI] [PubMed] [Google Scholar]
  • 17. Miller RT, and Groothuis CL (1991) Multitumor “sausage” blocks in immunohistochemistry: simplified method of preparation, practical uses, and roles in quality assurance. Am J Clin Pathol 96:228–232. [DOI] [PubMed] [Google Scholar]
  • 18. Moch H, Schraml P, Bubendorf L, Mirlacher M, Kononen J, Gasser T, Mihatsch MJ, Kallioniemi OP, and Sauter G (1999) High‐throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma. Am J Pathol 154:981–986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Mucci NR, Akdas G, Manely S, and Rubin MA (2000) Neuroendocrine expression in metastatic prostate cancer: evaluation of high throughput tissue microarrays to detect heterogeneous protein expression. Hum Pathol 31:406–414. [DOI] [PubMed] [Google Scholar]
  • 20. Nocito A, Bubendorf L, Maria Tinner E, Suess K, Wagner U, Forster T, Kononen J, Fijan A, Bruderer J, Schmid U, Ackermann D, Maurer R, Alund G, Knonagel H, Rist M, Anabitarte M, Hering F, Hardmeier T, Schoenenberger AJ, Flury R, Jager P, Luc Fehr J, Schraml P, Moch H, Mihatsch MJ, Gasser T, and Sauter G (2001) Microarrays of bladder cancer tissue are highly representative of proliferation index and histological grade. J Pathol 194:349–357. [DOI] [PubMed] [Google Scholar]
  • 21. Oka T, Yoshino T, Hayashi K, Ohara N, Nakanishi T, Yamaai Y, Hiraki A, Sogawa CA, Kondo E, Teramoto N, Takahashi K, Tsuchiyama J, and Akagi T (2001) Reduction of hematopoietic cell‐specific tyrosine phosphatase SHP‐1 gene expression in natural killer cell lymphoma and various types of lymphomas/leukemias: combination analysis with cDNA expression array and tissue microarray. Am J Pathol 159:1495–1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Perrone EE, Theoharis C, Mucci NR, Hayasaka S, Taylor JM, Cooney KA, and Rubin MA (2000) Tissue microarray assessment of prostate cancer tumor proliferation in African‐American and white men. J Natl Cancer Inst 92:937–939. [DOI] [PubMed] [Google Scholar]
  • 23. Plate KH, Breier G, and Risau W (1994) Molecular mechanisms of developmental and tumor angiogenesis. Brain Pathol 4:207–218. [DOI] [PubMed] [Google Scholar]
  • 24. Plate KH, Breier G, Weich HA, Mennel HD, and Risau W (1994) Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int J Cancer 59:520–529. [DOI] [PubMed] [Google Scholar]
  • 25. Plate KH, Breier G, Weich HA, and Risau W (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359:845–848. [DOI] [PubMed] [Google Scholar]
  • 26. Richter J, Wagner U, Kononen J, Fijan A, Bruderer J, Schmid U, Ackermann D, Maurer R, Alund G, Knonagel H, Rist M, Wilber K, Anabitarte M, Hering F, Hardmeier T, Schonenberger A, Flury R, Jager P, Fehr JL, Schraml P, Moch H, Mihatsch MJ, Gasser T, Kallioniemi OP, and Sauter G (2000) High‐throughput tissue microarray analysis of cyclin E gene amplification and overexpression in urinary bladder cancer. Am J Pathol 157:787–794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Rimm DL, Camp RL, Charette LA, Olsen DA, and Provost E (2001) Amplification of tissue by construction of tissue microarrays. Exp Mol Pathol 70:255–264. [DOI] [PubMed] [Google Scholar]
  • 28. Sallinen SL, Sallinen PK, Haapasalo HK, Helin HJ, Helen PT, Schraml P, Kallioniemi OP, and Kononen J (2000) Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res 60:6617–6622. [PubMed] [Google Scholar]
  • 29. Schraml P, Kononen J, Bubendorf L, Moch H, Bissig H, Nocito A, Mihatsch MJ, Kallioniemi OP, and Sauter G (1999) Tissue microarrays for gene amplification surveys in many different tumor types. Clin Cancer Res 5:1966–1975. [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES