Abstract
The formation of new blood vessels plays an important role in human disease development and progression. For instance, it is well established that the growth of most cancers critically depends on the supply of nutrition and oxygen by newly recruited blood vessels. Similarly, malignant gliomas, the most common primary brain tumors occurring in humans are highly dependent on angiogenesis. In recent years, there has been tremendous effort to uncover the molecular mechanisms that drive blood vessel growth in adult tissues, especially during cancer progression. Vascular endothelial growth factor (VEGF) and other morphogens, such as angiopoietins and ephrins have been shown to be critically involved in the formation of new blood vessels during both developmental and pathological angiogenesis as evidenced by genetic studies in mice. In this review, we focus on angiopoietins, a family of growth factor ligands binding to tie tyrosine kinase receptors with emphasis on their functional consequences during the growth and progression of experimental tumors and malignant human gliomas.
Full Text
The Full Text of this article is available as a PDF (368.2 KB).
References
- 1. Ahmad SA, Liu W, Jung YD, Fan F, Wilson M, Reinmuth N, Shaheen RM, Bucana CD, Ellis LM (2001) The effects of angiopoietin‐1 and ‐2 on tumor growth and angiogenesis in human colon cancer. Cancer Res 61:1255–1259. [PubMed] [Google Scholar]
- 2. Audero E, Cascone I, Maniero F, Napione L, Arese M, Lanfrancone L, Bussolino F (2004) Adaptor ShcA protein binds tyrosine kinase Tie2 receptor and regulates migration and sprouting but not survival of endothelial cells. J Biol Chem 279:13224–13233. [DOI] [PubMed] [Google Scholar]
- 3. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439. [DOI] [PubMed] [Google Scholar]
- 4. Conway EM, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovasc Res 49:507–521. [DOI] [PubMed] [Google Scholar]
- 5. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC et al (1996) Isolation of angiopoietin‐1, a ligand for the TIE2 receptor, by secretion‐trap expression cloning. Cell 87:1161–1169. [DOI] [PubMed] [Google Scholar]
- 6. Dumont DJ, Fong GH, Puri MC, Gradwohl G, Alitalo K, Breitman ML (1995) Vascularization of the mouse embryo: a study of flk‐1, tek, tie, and vascular endothelial growth factor expression during development. Dev Dyn 203:80–92. [DOI] [PubMed] [Google Scholar]
- 7. Dumont DJ, Gradwohl GJ, Fong GH, Auerbach R, Breitman ML (1993) The endothelial‐specific receptor tyrosine kinase, tek, is a member of a new subfamily of receptors. Oncogene 8:1293–1301. [PubMed] [Google Scholar]
- 8. Etoh T, Inoue H, Tanaka S, Barnard GF, Kitano S, Mori M (2001) Angiopoietin‐2 is related to tumor angiogenesis in gastric carcinoma: possible in vivo regulation via induction of proteases. Cancer Res 61:2145–2153. [PubMed] [Google Scholar]
- 9. Ferrara N, Carver‐Moore K, Chen H, Dowd M, Lu L, O'Shea KS, Powell‐Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442. [DOI] [PubMed] [Google Scholar]
- 10. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186. [DOI] [PubMed] [Google Scholar]
- 11. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31. [DOI] [PubMed] [Google Scholar]
- 12. Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J, Martin C, Witte C, Witte MH, Jackson D et al (2002) Angiopoietin‐2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin‐1. Dev Cell 3:411–423. [DOI] [PubMed] [Google Scholar]
- 13. Gamble JR, Drew J, Trezise L, Underwood A, Parsons M, Kasminkas L, Rudge J, Yancopoulos G, Vadas MA (2000) Angiopoietin‐1 is an antipermeability and anti‐inflammatory agent in vitro and targets cell junctions. Circ Res 87:603–607. [DOI] [PubMed] [Google Scholar]
- 14. Guo P, Imanishi Y, Cackowski FC, Jarzynka MJ, Tao HQ, Nishikawa R, Hirose T, Hu B, Cheng SY (2005) Up‐regulation of angiopoietin‐2, matrix metalloprotease‐2, membrane type 1 metalloprotease, and laminin 5 gamma 2 correlates with the invasiveness of human glioma. Am J Pathol 166:877–890. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Hanahan D (1997) Signaling vascular morphogenesis and maintenance. Science 277:48–50. [DOI] [PubMed] [Google Scholar]
- 16. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364. [DOI] [PubMed] [Google Scholar]
- 17. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Hawighorst T, Skobe M, Streit M, Hong YK, Velasco P, Brown LF, Riccardi L, Lange‐Asschenfeldt B, Detmar M (2002) Activation of the tie2 receptor by angiopoietin‐1 enhances tumor ves sel maturation and impairs squamous cell carcinoma growth. Am J Pathol 160:1381–1392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Hayes AJ, Huang WQ, Mallah J, Yang D, Lippman ME, Li LY (1999) Angiopoietin‐1 and its receptor Tie‐2 participate in the regulation of capillary‐like tubule formation and survival of endothelial cells. Microvasc Res 58:224–237. [DOI] [PubMed] [Google Scholar]
- 20. Hayes AJ, Huang WQ, Yu J, Maisonpierre PC, Liu A, Kern FG, Lippman ME, McLeskey SW, Li LY (2000) Expression and function of angiopoietin‐1 in breast cancer. Br J Cancer 83:1154–1160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Hegen A, Koidl S, Weindel K, Marme D, Augustin HG, Fiedler U (2004) Expression of angiopoietin‐2 in endothelial cells is controlled by positive and negative regulatory promoter elements. Arterioscler Thromb Vasc Biol 24:1803–1809. [DOI] [PubMed] [Google Scholar]
- 22. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998. [DOI] [PubMed] [Google Scholar]
- 23. Hu B, Guo P, Fang Q, Tao HQ, Wang D, Nagane M, Huang HJ, Gunji Y, Nishikawa R, Alitalo K et al (2003) Angiopoietin‐2 induces human glioma invasion through the activation of matrix metalloprotease‐2. Proc Natl Acad Sci U S A 100:8904–8909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62. [DOI] [PubMed] [Google Scholar]
- 25. Jones N, Master Z, Jones J, Bouchard D, Gunji Y, Sasaki H, Daly R, Alitalo K, Dumont DJ (1999) Identification of Tek/Tie2 binding partners. Binding to a multifunctional docking site mediates cell survival and migration. J Biol Chem 274:30896–30905. [DOI] [PubMed] [Google Scholar]
- 25a. Kleinhues P, Cavenee W (2000) Astrocytic tumours. In: Pathology and Genetics of Tumors of the Nervous System. World Health Organization Classification of Tumours. ISN Neuropath Press, Basel , Switzerland . pp. 9–52. [Google Scholar]
- 26. Koblizek TI, Weiss C, Yancopoulos GD, Deutsch U, Risau W (1998) Angiopoietin‐1 induces sprouting angiogenesis in vitro. Curr Biol 8:529–532. [DOI] [PubMed] [Google Scholar]
- 27. Koga K, Todaka T, Morioka M, Hamada J, Kai Y, Yano S, Okamura A, Takakura N, Suda T, Ushio Y (2001) Expression of angiopoietin‐2 in human glioma cells and its role for angiogenesis. Cancer Res 61:6248–6254. [PubMed] [Google Scholar]
- 28. Lin P, Buxton JA, Acheson A, Radziejewski C, Maisonpierre PC, Yancopoulos GD, Channon KM, Hale LP, Dewhirst MW, George SE et al (1998) Antiangiogenic gene therapy targeting the endothelium‐specific receptor tyrosine kinase Tie2. Proc Natl Acad Sci U S A 95:8829–8834. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Lin P, Polverini P, Dewhirst M, Shan S, Rao PS, Peters K (1997) Inhibition of tumor angiogenesis using a soluble receptor establishes a role for Tie2 in pathologic vascular growth. J Clin Invest 100:2072–2078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Machein MR, Knedla A, Knoth R, Wagner S, Neuschl E, Plate KH (2004) Angiopoietin‐1 promotes tumor angiogenesis in a rat glioma model. Am J Pathol 165:1557–1570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Machein MR, Plate KH (2000) VEGF in brain tu mors. J Neurooncol 50:109–120. [DOI] [PubMed] [Google Scholar]
- 32. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N et al (1997) Angiopoietin‐2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60. [DOI] [PubMed] [Google Scholar]
- 33. McDonald DM, Thurston G, Baluk P (1999) Endothelial gaps as sites for plasma leakage in inflammation. Microcirculation 6:7–22. [PubMed] [Google Scholar]
- 34. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160:985–1000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35. Morisada T, Oike Y, Yamada Y, Urano T, Akao M, Kubota Y, Maekawa H, Kimura Y, Ohmura M, Miyamoto T et al (2005) Angiopoietin‐1 promotes LYVE‐1‐positive lymphatic vessel formation. Blood 105:4649–4656. [DOI] [PubMed] [Google Scholar]
- 36. Ochiumi T, Tanaka S, Oka S, Hiyama T, Ito M, Kitadai Y, Haruma K, Chayama K (2004) Clinical significance of angiopoietin‐2 expression at the deepest invasive tumor site of advanced colorectal carcinoma. Int J Oncol 24:539–547. [PubMed] [Google Scholar]
- 37. Oh H, Takagi H, Suzuma K, Otani A, Matsumura M, Honda Y (1999) Hypoxia and vascular endothelial growth factor selectively up‐regulate angiopoietin‐2 in bovine microvascular endothelial cells. J Biol Chem 274:15732–15739. [DOI] [PubMed] [Google Scholar]
- 38. Oliner J, Min H, Leal J, Yu D, Rao S, You E, Tang X, Kim H, Meyer S, Han SJ et al (2004) Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin‐2. Cancer Cell 6:507–516. [DOI] [PubMed] [Google Scholar]
- 39. Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, O'Connor DS, Li F, Altieri DC, Sessa WC (2000) Angiopoietin‐1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 275:9102–9105. [DOI] [PubMed] [Google Scholar]
- 40. Partanen J, Armstrong E, Makela TP, Korhonen J, Sandberg M, Renkonen R, Knuutila S, Huebner K, Alitalo K (1992) A novel endothelial cell surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains. Mol Cell Biol 12:1698–1707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41. Plate KH, Risau W (1995) Angiogenesis in malignant gliomas. Glia 15:339–347. [DOI] [PubMed] [Google Scholar]
- 42. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674. [DOI] [PubMed] [Google Scholar]
- 43. Sato TN, Qin Y, Kozak CA, Audus KL (1993) Tie‐1 and tie‐2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proc Natl Acad Sci U S A 90:9355–9358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44. Sato TN, Tozawa Y, Deutsch U, Wolburg‐Buchholz K, Fujiwara Y, Gendron‐Maguire M, Gridley T, Wolburg H, Risau W, Qin Y (1995) Distinct roles of the receptor tyrosine kinases Tie‐1 and Tie‐2 in blood vessel formation. Nature 376:70–74. [DOI] [PubMed] [Google Scholar]
- 45. Scharpfenecker M, Fiedler U, Reiss Y, Augustin HG (2005) The Tie‐2 ligand angiopoietin‐2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci 118:771–780. [DOI] [PubMed] [Google Scholar]
- 46. Schnurch H, Risau W (1993) Expression of tie‐2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development 119:957–968. [DOI] [PubMed] [Google Scholar]
- 47. Sfiligoi C, de Luca A, Cascone I, Sorbello V, Fuso L, Ponzone R, Biglia N, Audero E, Arisio R, Bussolino F et al (2003) Angiopoietin‐2 expression in breast cancer correlates with lymph node invasion and short survival. Int J Cancer 103:466–474. [DOI] [PubMed] [Google Scholar]
- 48. Shim WS, Teh M, Bapna A, Kim I, Koh GY, Mack PO, Ge R (2002) Angiopoietin 1 promotes tumor angiogenesis and tumor vessel plasticity of human cervical cancer in mice. Exp Cell Res 279:299–309. [DOI] [PubMed] [Google Scholar]
- 49. Siemeister G, Schirner M, Weindel K, Reusch P, Menrad A, Marme D, Martiny‐Baron G (1999) Two independent mechanisms essential for tumor angiogenesis: inhibition of human melanoma xenograft growth by interfering with either the vascular endothelial growth factor receptor pathway or the Tie‐2 pathway. Cancer Res 59:3185–3191. [PubMed] [Google Scholar]
- 50. Stoeltzing O, Ahmad SA, Liu W, McCarty MF, Parikh AA, Fan F, Reinmuth N, Bucana CD, Ellis LM (2002) Angiopoietin‐1 inhibits tumour growth and ascites formation in a murine model of peritoneal carcinomatosis. Br J Cancer 87:1182–1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51. Stoeltzing O, Ahmad SA, Liu W, McCarty MF, Wey JS, Parikh AA, Fan F, Reinmuth N, Kawaguchi M, Bucana CD et al (2003) Angiopoietin‐1 inhibits vascular permeability, angiogenesis, and growth of hepatic colon cancer tumors. Cancer Res 63:3370–3377. [PubMed] [Google Scholar]
- 52. Stratmann A, Acker T, Burger AM, Amann K, Risau W, Plate KH (2001) Differential inhibition of tumor angiogenesis by tie2 and vascular endothelial growth factor receptor‐2 dominant‐negative receptor mutants. Int J Cancer 91:273–282. [DOI] [PubMed] [Google Scholar]
- 53. Stratmann A, Risau W, Plate KH (1998) Cell type‐specific expression of angiopoietin‐1 and angiopoietin‐2 suggests a role in glioblastoma angiogenesis. Am J Pathol 153:1459–1466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin‐1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180. [DOI] [PubMed] [Google Scholar]
- 55. Suri C, McClain J, Thurston G, McDonald DM, Zhou H, Oldmixon EH, Sato TN, Yancopoulos GD (1998) Increased vascularization in mice overexpressing angiopoietin‐1. Science 282:468–471. [DOI] [PubMed] [Google Scholar]
- 56. Tait CR, Jones PF (2004) Angiopoietins in tumours: the angiogenic switch. J Pathol 204:1–10. [DOI] [PubMed] [Google Scholar]
- 57. Tammela T, Saaristo A, Lohela M, Morisada T, Tornberg J, Norrmen C, Oike Y, Pajusola K, Thurston G, Suda T et al (2005) Angiopoietin‐1 promotes lymphatic sprouting and hyperplasia. Blood 105:4642–4648. [DOI] [PubMed] [Google Scholar]
- 58. Tanaka S, Mori M, Sakamoto Y, Makuuchi M, Sugimachi K, Wands JR (1999) Biologic significance of angiopoietin‐2 expression in human hepatocellular carcinoma. J Clin Invest 103:341–345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59. Tian S, Hayes AJ, Metheny‐Barlow LJ, Li LY (2002) Stabilization of breast cancer xenograft tumour neovasculature by angiopoietin‐1. Br J Cancer 86:645–651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60. Wang Y, Pampou S, Fujikawa K, Varticovski L (2004) Opposing effect of angiopoietin‐1 on VEGF‐mediated disruption of endothelial cell‐cell interactions requires activation of PKC beta. J Cell Physiol 198:53–61. [DOI] [PubMed] [Google Scholar]
- 61. Ward NL, Dumont DJ (2002) The angiopoietins and Tie2/Tek: adding to the complexity of cardiovascular development. Semin Cell Dev Biol 13:19–27. [DOI] [PubMed] [Google Scholar]
- 62. Wong AL, Haroon ZA, Werner S, Dewhirst MW, Greenberg CS, Peters KG (1997) Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res 81:567–574. [DOI] [PubMed] [Google Scholar]
- 63. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular‐specific growth factors and blood vessel formation. Nature 407:242–248. [DOI] [PubMed] [Google Scholar]
- 64. Yu Q, Stamenkovic I (2001) Angiopoietin‐2 is implicated in the regulation of tumor angiogenesis. Am J Pathol 158:563–570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65. Zadeh G, Guha A (2003) Neoangiogenesis in human astrocytomas: expression and functional role of angiopoietins and their cognate receptors. Front Biosci 8:e128–137. [DOI] [PubMed] [Google Scholar]
- 66. Zadeh G, Qian B, Okhowat A, Sabha N, Kontos CD, Guha A (2004) Targeting the Tie2/Tek receptor in astrocytomas. Am J Pathol 164:467–476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67. Zagzag D, Hooper A, Friedlander DR, Chan W, Holash J, Wiegand SJ, Yancopoulos GD, Grumet M (1999) In situ expression of angiopoietins in astrocytomas identifies angiopoietin‐2 as an early marker of tumor angiogenesis. Exp Neurol 159:391–400. [DOI] [PubMed] [Google Scholar]
- 68. Zagzag D, Amirnovin R, Greco MA, Yee H, Holash J, Wiegand SJ, Zabski S, Yancopoulos GD, Grumet M (2000) Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab Invest 80:837–849. [DOI] [PubMed] [Google Scholar]
- 69. Zhang L, Yang N, Park JW, Katsaros D, Fracchioli S, Cao G, O'Brien‐Jenkins A, Randall TC, Rubin SC, Coukos G (2003) Tumor‐derived vascular endothelial growth factor up‐regulates angiopoietin‐2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res 63:3403–3412. [PubMed] [Google Scholar]