Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;15(1):35–45. doi: 10.1111/j.1750-3639.2005.tb00098.x

Ephrin A Receptors and Ligands in Lesions and Normal‐Appearing White Matter in Multiple Sclerosis

Raymond A Sobel 1,
PMCID: PMC8095972  PMID: 15779235

Abstract

Complexes of the tyrosine kinase ephrin ligands (ephrins) and their receptors (Ephs) provide critical cell recognition signals in CNS development. Complementary ephrin/Eph expression gradients present topographic guidance cues that may either stimulate or repulse axon growth. Some ephrin/Ephs are upregulated in adult CNS injury models. To assess their involvement in multiple sclerosis (MS), ephrin A1‐5 and Eph A1‐8 expression was analyzed in CNS tissues using immunohistochemistry. Control samples showed distinct expression patterns for each ephrin/Eph on different cell types. Perivascular mononuclear inflammatory cells, reactive astrocytes and macrophages expressed ephrin A1‐4, Eph A1, ‐A3, ‐A4, ‐A6 and ‐A7 in active MS lesions. Axonal ephrin A1 and Eph A3, ‐A4, and ‐A7 expression was increased in active lesions and was greater in normal‐appearing white matter (NAWM) adjacent to active lesions than within or adjacent to chronic MS lesions, in contralateral NAWM, or in control samples. As in development, therefore, there are temporally dynamic, lesion‐associated axonal ephrin/Eph A expression gradients in the CNS of MS patients. These results indicate that ephrin/Eph As are useful cell markers in human CNS tissue samples; they likely are involved in the immunopathogenesis of active lesions and in neurodegeneration in MS NAWM; and they represent potential therapeutic targets in MS.

Full Text

The Full Text of this article is available as a PDF (812.9 KB).

REFERENCES

  • 1. Aasheim H‐C, Munthe E, Funderud S, Smeland EB, Beiske K, Logtenberg T (2000) A splice variant of human ephrin‐A4 encodes a soluble molecule that is secreted by activated human B lymphocytes. Blood 95:221–230. [PubMed] [Google Scholar]
  • 2. Aboul‐Enein F, Rauschka H, Kornek B, Stadelmann C, Stefferl A, Brück W, Lucchinetti C, Schmidbauer M, Jellinger K, Lassmann H (2003) Preferential loss of myelin‐associated glycoprotein reflects hypoxia‐like white matter damage in stroke and inflammatory brain diseases. J Neuropathol Exp Neurol 62:25–33. [DOI] [PubMed] [Google Scholar]
  • 3. Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468. [DOI] [PubMed] [Google Scholar]
  • 4. Bolz J, Uziel D, Muhlfriedel S, Gullmar A, Peuckert C, Zarbalis K, Wurst W, Torii M, Levitt P (2004) Multiple roles of ephrins during the formation of thalamocortical projections: maps and more. J Neurobiol 59:82–94. [DOI] [PubMed] [Google Scholar]
  • 5. Brittis PA, Lu Q, Flanagan JG (2002) Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target. Cell 110:223–235. [DOI] [PubMed] [Google Scholar]
  • 6. Bundesen LQ, Scheel TA, Bregman BS, Kromer LF (2003) Ephrin‐B2 and EphB2 regulation of astrocyte‐meningeal fibroblast interactions in response to spinal cord lesions in adult rats. J Neuroscience 23:7789–7800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Carter N, Nakamoto T, Hirai H, Hunter T (2002) Ephrin A1‐induced cytoskeletal re‐organization requires FAK and p130 (cas). Nat Cell Biol 4:565–573. [DOI] [PubMed] [Google Scholar]
  • 8. Cheng N, Brantley DM, Liu H, Lin Q, Enriquez M, Gale N, Yancopoulos G, Cerretti DP, Daniel TO, Chen J (2002) Blockade of Eph A receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor‐induced angiogenesis. Mol Cancer Res 1:2–11. [PubMed] [Google Scholar]
  • 9. Conover JC, Doetsch F, Garcia‐Verdugo J‐M, Gale NW, Yancopoulos GD, Alvarez‐Buylla A (2000) Disruption of Ephrin/Ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat Neurosci 3:1091–1097. [DOI] [PubMed] [Google Scholar]
  • 10. Cutforth T, Moring L, Mendelsohn M, Nemes A, Shah NM, Kim MM, Frisén J, Axel R (2003) Axonal ephrin‐As and odorant receptors: coordinate determination of the olfactory sensory map. Cell 114:311–322. [DOI] [PubMed] [Google Scholar]
  • 11. Davis S, Gale NW, Aldrich TH, Maisonpierre PC, Lhotak V, Pawson T, Goldfarb M, Yancopoulos GD (1994) Ligands for EPH‐related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266:816–819. [DOI] [PubMed] [Google Scholar]
  • 12. de Saint‐Vis B, Bouchet C, Gautier G, Valladeau J, Caux C, Garrone P (2003) Human dendritic cells express neuronal Eph receptor tyrosine kinases: role of EphA2 in regulating adhesion to fibronectin. Blood 102:4431–4440. [DOI] [PubMed] [Google Scholar]
  • 13. Dufour A, Seibt J, Passante L, Depepe V, Ciossek T, Frisén J, Kullander K, Flanagan JG, Polleux F, Vanderhaeghen P (2003) Area specificity and topography of thalamocortical projections are controlled by ephrin/Eph genes. Neuron 39:453–465. [DOI] [PubMed] [Google Scholar]
  • 14. Eberhart J, Swartz ME, Koblar SA, Pasquale EB, Krull CE. (2002) EphA4 constitutes a population‐specific guidance cue for motor neurons. Devel Biol 247:89–101. [DOI] [PubMed] [Google Scholar]
  • 15. Feldheim DA, Nakamoto M, Osterfield M, Gale NW, DeChiara TM, Rohatgi R, Yancopoulos GD, Flanagan JG (2004) Loss‐of‐function analysis of Eph A receptors in retinotectal mapping. J Neurosci 24:2542–2550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Flanagan JG, Vanderhaeghen P (1998) The ephrins and eph receptors in neural development. Ann Rev Neurosci 21:309–345. [DOI] [PubMed] [Google Scholar]
  • 17. Fox BP, Kandpal RP (2004) Invasiveness of breast carcinoma cells and transcript profile: Eph receptors and ephrin ligands as molecular markers of potential diagnostic and prognostic application. Biochem Biophys Res Commun 318:882–892. [DOI] [PubMed] [Google Scholar]
  • 18. Gao P‐P, Sun C‐H, Zhou X‐F, DiCicco‐Bloom E, Zhou R (2000) Ephrins stimulate or inhibit neurite outgrowth and survival as a function of neuronal cell type. J Neurosci Res 60:427–436. [DOI] [PubMed] [Google Scholar]
  • 19. Gauthier LR, Robbins SM (2003) Ephrin signaling: one raft to rule them all? One raft to sort them? One raft to spread their call and in signaling bind them Life Sci 5:207–216. [DOI] [PubMed] [Google Scholar]
  • 20. Gerlai R (2001) Eph receptors and neural plasticity. Nat Rev Neurosci 2:205–209. [DOI] [PubMed] [Google Scholar]
  • 21. Graumann U, Reynolds R, Steck AJ, Schaeren‐Wiemers N (2003) Molecular changes in normal appearing white matter in multiple sclerosis are characteristic of neuroprotective mechanisms against hypoxic insult. Brain Pathol 13:554–573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Greferath U, Canty AJ, Messenger J, Murphy M (2002) Developmental expression of EphA4‐tyrosine kinase receptor in the mouse brain and spinal cord. Mech Dev 119 Suppl:S231–238. [DOI] [PubMed] [Google Scholar]
  • 23. Grigoriadis N, Ben‐Hur T, Karussis D, Milonas I (2004) Axonal damage in multiple sclerosis: a complex issue in a complex disease. Clin Neurol Neurosurg 106:211–217. [DOI] [PubMed] [Google Scholar]
  • 24. Gu C, Park S (2001) The EphA8 receptor regulates integrin activity through 110 (phosphatidylinositol‐3 kinase in a tyrosine kinase activity‐independent manner. Mol Cell Biol 14:4579–4597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Hafner C, Schmitz G, Meyer S, Bataille F, Hau P, Langmann T, Dietmaier W, Landthaler M, Vogt T (2004) Differential gene expression of Eph receptors and ephrins in benign human tissues and cancers. Clin Chem 50:490–499. [DOI] [PubMed] [Google Scholar]
  • 26. Hansen MJ, Dallal GE, Flanagan JG (2004) Retinal axon response to Ephrin‐As shows a graded, concentration‐dependent transition from growth promotion to inhibition. Neuron 42:717–730. [DOI] [PubMed] [Google Scholar]
  • 27. Himanen J‐P, Chumley MJ, Lackmann M, Li C, Barton WA, Jeffrey PD, Vearing C, Geleick D, Feldheim DA, Boyd AW, Henkemeyer M, Nikolov DB (2004) Repelling class discrimination: ephrin‐A5 binds to and activates EphB2 receptor signaling. Nat Neurosci 7:501–509. [DOI] [PubMed] [Google Scholar]
  • 28. Himanen J‐P, Nikolov DM (2003) Molecules in focus: Eph receptors and ephrins. Int J Biochem Cell Biol 35:130–134. [DOI] [PubMed] [Google Scholar]
  • 29. Holland SJ, Peles E, Pawson T, Schlessinger J (1998) Cell‐contact‐dependent signaling in axon growth and guidance: Eph receptor tyrosine kinases and receptor protein tyrosine phosphatase β. Curr Opin Neurobiol 8:117–127. [DOI] [PubMed] [Google Scholar]
  • 30. Holmberg J, Frisén J (2002) Ephrins are not only unattractive. Trends Neurosci 25:239–243. [DOI] [PubMed] [Google Scholar]
  • 31. Janis LS, Cassidy RM, Kromer LF (1999) Ephrin‐A binding and EphA receptor expression delineate the matrix compartment of the striatum. J Neurosci 19:4962–4971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. King C, Lacey R, Rodger J, Bartlett C, Dunlop S, Beazley L (2004) Characterisation of tectal ephrin‐A2 expression during optic nerve regeneration in goldfish: implications for restoration of topography. Exp Neurol 187:380–387. [DOI] [PubMed] [Google Scholar]
  • 33. Knöll B, Drescher U (2002) Ephrin‐As as receptors in topographic projections. Trends Neurosci 25:145–149. [DOI] [PubMed] [Google Scholar]
  • 34. Knöll B, Isenmann S, Kilic E, Walkenhorst J, Engel S, Wehinger J, Bähr M, Drescher U. (2001) Graded expression patterns of ephrin‐As in the superior colliculus after lesion of the adult mouse optic nerve. Mech Devel 106:119–127. [DOI] [PubMed] [Google Scholar]
  • 35. Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Brück W (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125:2202–2212. [DOI] [PubMed] [Google Scholar]
  • 36. Kullander K, Butt SJB, Lebret JM, Lundfald L, Restrepo CE, Rydström A, Klain R, Kiehn O (2003) Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science 299:1889–1892. [DOI] [PubMed] [Google Scholar]
  • 37. Kullander K, Klein R (2002) Mechanisms and functions of Eph and ephrin signalling. Nat Rev Molec Cell Biol 3:475–486. [DOI] [PubMed] [Google Scholar]
  • 38. Liebl DJ, Morris CJ, Henkemeyer M, Parada LF (2003) mRNA expression of ephrins and Eph receptor tyrosine kinases in the neonatal and adult mouse central nervous system. J Neurosci Res 71:7–22. [DOI] [PubMed] [Google Scholar]
  • 39. Lindberg RL, De Groot CJ, Certa U, Ravid R, Hoffmann F, Kappos L, Leppert D (2004) Multiple sclerosis as a generalized CNS disease‐comparative microarray analysis of normal appearing white matter and lesions in secondary progressive MS. J Neuroimmunol 152:154–167. [DOI] [PubMed] [Google Scholar]
  • 40. Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, Langer‐Gould A, Strober S, Cannella B, Allard J, Klonowski P, Austin A, Lad N, Kaminski N, Galli SJ, Oksenberg JR, Raine CS, Heller R, Steinman L (2002) Gene‐microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8:500–508. [DOI] [PubMed] [Google Scholar]
  • 41. Lucchinetti C, Brück, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717. [DOI] [PubMed] [Google Scholar]
  • 42. Luo H, Yu G, Wu Y, Wu J (2002) EphB6 cross‐linking results in costimulation of T cells. J Clin Invest 110:1141–1150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Mann F, Peuckert V, Dehner F, Zhou R, Jolz J (2002) Ephrins regulate the formation of terminal axonal arbors during the development of thalamocortical projections. Development 129:3445–3955. [DOI] [PubMed] [Google Scholar]
  • 44. Miranda JD, White LA, Marcillo AE, Willson CA, Jagin J, Whittemore SR (1999) Induction of EphB3 after spinal cord injury. Exp Neurol 156:218–222. [DOI] [PubMed] [Google Scholar]
  • 45. Munoz JJ, Alonso‐C LM, Sacedon R, Crompton T, Vicente A, Jimenez E, Varas A, Zapata AG (2002) Expression and function of the Eph A receptors and their ligands ephrins A in the rat thymus. J Immunol 169:177–84. [DOI] [PubMed] [Google Scholar]
  • 46. Murai KK, Nguyen LN, Irie F, Yamaguchi Y, Pasquale EB (2003) Control of hippocampal dendritic spine morphology through ephrin‐A3/EphA4 signaling. Nat Neurosci 6:153–160. [DOI] [PubMed] [Google Scholar]
  • 47. Murai KK, Nguyen LN, Koolpe M, McLennan R, Krull CE, Pasquale EB (2003) Targeting the EphA4 receptor in the nervous system with biologically active peptides. Mol Cell Neurosci 24:1000–1011. [DOI] [PubMed] [Google Scholar]
  • 48. Murai KK, Pasquale EB (2003) Eph'ective signaling: forward, reverse and crosstalk. J Cell Sci 116:2823–2832. [DOI] [PubMed] [Google Scholar]
  • 49. Mycko MP, Papoian R, Boschert U, Raine CS, Selmaj KW (2004) Microarray gene expression profiling of chronic active and inactive lesions in multiple sclerosis. Clin Neurol Neurosurg 106:223–229. [DOI] [PubMed] [Google Scholar]
  • 50. Pratt RL, Kinch MS (2002) Activation of the EphA2 tyrosine kinase stimulates the MAP/ERK kinase signaling cascade. Oncogene 21:7690–7699. [DOI] [PubMed] [Google Scholar]
  • 51. Raza SM, Fuller GN, Rhee CH, Huang S, Hess K, Zhang W, Sawaya R (2004) Identification of necrosis‐associated genes in glioblastoma by cDNA microarray analysis. Clin Cancer Res 10:212–221. [DOI] [PubMed] [Google Scholar]
  • 52. Reichard RR, White CL III, Hladik CL, Dolinak D (2003) Beta‐amyloid precursor protein staining in nonhomicidal pediatric medicolegal autopsies. J Neuropathol Neurol 62:237–247. [DOI] [PubMed] [Google Scholar]
  • 53. Rodger J, Lindsey KA, Leaver SG, King CE, Dunlop SA, Beazley LD (2001) Expression of ephrin‐A2 in the superior colliculus and EphA5 in the retina following optic nerve section in adult rat. Eur J Neurosci 14:1929–1936. [DOI] [PubMed] [Google Scholar]
  • 54. Rodger J, Vitale PN, Tee LB, King CE, Bartlett CA, Fall A, Brennan C, O'Shea JE, Dunlop SA, Beazley LD (2004) EphA/ephrin‐A interactions during optic nerve regeneration: restoration of topography and regulation of ephrin‐A2 expression. Mol Cell Neurosci 25:56–68. [DOI] [PubMed] [Google Scholar]
  • 55. Sharfe N, Freywald A, Toro A, Dadi H, Roifman C (2002) Ephrin stimulation modulates T cell chemotaxis. Eur J Immunol 32:3745–3755. [DOI] [PubMed] [Google Scholar]
  • 56. Sharfe N, Freywald A, Toro A, Roifman CM (2003) Ephrin‐A1 induces c‐Cbl phosphorylation and EphA receptor down‐regulation in T cells. J Immunol 170:6024–6032. [DOI] [PubMed] [Google Scholar]
  • 57. Sieber BA, Kuzmin, Canals JM, Danielsson A, Paratcha G, Arenas E, Alberch J, Ögren SO, Ibáñez CF (2004) Disruption of EphA/ephrin‐A signaling in the nigrostriatal system reduces dopaminergic innervation and dissociates behavioral responses to amphetamine and cocaine. Mol Cell Neurosci 26:418–428. [DOI] [PubMed] [Google Scholar]
  • 58. Smith LM, Walsh PT, Rudiger T, Cotter TG, McCarthy TV, Marx A, O'Connor R (2004) EphA3 is induced by CD28 and IGF‐1 and regulates cell adhesion. Exp Cell Res 292:295–303. [DOI] [PubMed] [Google Scholar]
  • 59. Sobel RA (1995) The pathology of multiple sclerosis. In: Symposium on Multiple Sclerosis, Antel J, ed. Neurol Clin North America 13:1–21. [PubMed] [Google Scholar]
  • 60. Sobel RA, Ahmed AS (2001) White matter extracellular matrix chondroitin sulfate/ dermatan sulfate proteoglycans in multiple sclerosis. J Neuropathol Exper Neurol 60:1198–1207. [DOI] [PubMed] [Google Scholar]
  • 61. Sobel RA, Mitchell ME (1989) Fibronectin in multiple sclerosis lesions. Am J Pathol 135:161–168. [PMC free article] [PubMed] [Google Scholar]
  • 62. John JA St., Pasquale EB, Key B (2002) EphA receptors and ephrin‐A ligands exhibit highly regulated spatial and temporal expression patterns in the developing olfactory system. Dev Brain Res 138:1–14. [DOI] [PubMed] [Google Scholar]
  • 63. Symonds AC, Rodger J, Tan MM, Dunlop SA, Beazley LD, Harvey AR (2001) Reinnervation of the superior colliculus delays down‐regulation of ephrinA2 in neonatal rat. Exp Neurol 170:364–370. [DOI] [PubMed] [Google Scholar]
  • 64. Tajouri L, Mellick AS, Ashton KJ, Tannenberg AE, Nagra RM, Tourtellotte WW, Griffiths LR (2003) Quantitative and qualitative changes in gene expression patterns characterize the activity of plaques in multiple sclerosis. Mol Brain Res 119:170–183. [DOI] [PubMed] [Google Scholar]
  • 65. Thompson SM (2003) Ephrins keep dendritic spines in shape. Nat Neurosci 6:103–104. [DOI] [PubMed] [Google Scholar]
  • 66. Trapp BD, Ransohoff R, Rudick R (1999) Axonal pathology in multiple sclerosis: relationship to neurologic disability. Curr Opin Neurol 12:295–302. [DOI] [PubMed] [Google Scholar]
  • 67. van der Maesen K, Hinojoza JR, Sobel RA (1999) Endothelial cell class II major histocompatibility complex molecule expression in stereotactic brain biopsies of patients with acute inflammatory /demyelinating conditions. J Neuropathol Exp Neurol 58;346–358. [DOI] [PubMed] [Google Scholar]
  • 68. Wang A‐G, Chen C‐H, Yang C‐W, Yen M‐Y, Hsu W‐M, Liu J‐H, Fann M‐Ji (2002) Change of gene expression profiles in the retina following optic nerve injury. Mol Brain Res 101:82–92. [DOI] [PubMed] [Google Scholar]
  • 69. Wang Y, Ying G, Liu X, Zhou C (2003) Semiquantitative expression analysis of ephrin mRNAs in the deafferented hippocampus. Mol Brain Res 120:79–83. [DOI] [PubMed] [Google Scholar]
  • 70. Wilkinson DG (2001) Multiple roles of EPH receptors and ephrins in neural development. Nat Rev Neurosci 3:155–164. [DOI] [PubMed] [Google Scholar]
  • 71. Willson CA, Irizarry‐Ramirez M, Gaskins HE, Cruz‐Orengo L, Figueroa JD, Whittemore SR, Miranda JD (2002) Upregulation of EphA receptor expression in the injured adult rat spinal cord. Cell Transplant 11:229–239. [PubMed] [Google Scholar]
  • 72. Wohlfahrt JG, Karagiannidis C, Kunzmann S, Epstein MM, Kempf W, Blaser K, Schmidt‐Weber CB (2004) Ephrin‐A1 suppresses Th2 cell activation and provides a regulatory link to lung epithelial cells. J Immunol 172:843–850. [DOI] [PubMed] [Google Scholar]
  • 73. Xu B, Li S, Brown A, Gerlai R, Fahnestock M, Racine RJ (2003) EphA/ephrin‐A interactions regulate epileptogenesis and activity‐dependent axonal sprouting in adult rats. Mol Cell Neurosci 24:984–999. [DOI] [PubMed] [Google Scholar]
  • 74. Yu G, Luo H, Wu Y, Wu J (2003) Ephrin B2 induces T cell costimulation. J Immunol 171:106–114. [DOI] [PubMed] [Google Scholar]
  • 75. Yu G, Luo H, Wu Y, Wu J (2003) Mouse ephrin B3 augments T‐cell signaling and responses to T‐cell receptor ligation. J Biol Chem 278:47209–47216. [DOI] [PubMed] [Google Scholar]
  • 76. Yue Y, Chen Z‐Y, Gale NW, Blair‐Flynn J, Hu T‐J, Yue X, Cooper M, Crockett DP, Yancopoulos GD, Tessarollo L, Zhou R (2002) Mistargeting hippocampal axons by expression of a truncated Eph receptor. Proc Natl Acad Sci U S A 99:10777–10782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77. Yun ME, Johnson RR, Antic A, Donoghue MJ (2003) EphA family gene expression in the developing mouse neocortex: regional patterns reveal intrinsic programs and extrinsic influence. J Comp Neurol 456:203–216. [DOI] [PubMed] [Google Scholar]
  • 78. Zheng JQ, Kelly TK, Chang B, Ryazantsev S, Rajasekaran AK, Martin KC, Twiss JL (2001) A functional role for intra‐axonal protein synthesis during axonal regeneration from adult sensory neurons. J Neurosci 21:9291–9303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79. Zhou X, Such J, Ceretti DP, Zhou R, DiCicco‐Bloom E (2001) Ephrins stimulate neurite outgrowth during early cortical neurogenesis. J Neurosci Res 66:1054–1063. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES