Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;12(1):21–35. doi: 10.1111/j.1750-3639.2002.tb00419.x

The Role of Oxidative Stress in the Pathophysiology of Cerebrovascular Lesions in Alzheimer's Disease

Gjumrakch Aliev 1,3,, Mark A Smith 2, Dilara Seyidova 1,4, Maxwell Lewis Neal 3, Bruce T Lamb 5, Akihiko Nunomura 6, Eldar K Gasimov 7, Harry V Vinters 8, George Perry 2, Joseph C LaManna 3,4, Robert P Friedland 4
PMCID: PMC8095987  PMID: 11770899

Abstract

Alzheimer's disease (AD) and stroke are two leading causes of age‐associated dementia. A rapidly growing body of evidence indicates that increased oxidative stress from reactive oxygen radicals is associated with the aging process and age‐related degenerative disorders such as atherosclerosis, ischemia/reperfusion, arthritis, stroke, and neurodegenerative diseases. New evidence has also indicated that vascular lesions are a key factor in the development of AD. This idea is based on a positive correlation between AD and cardiovascular and cerebrovascular diseases such as arterio‐ and atherosclerosis and ischemia/reperfusion injury. In this review we consider recent evidence supporting the existence of an intimate relationship between oxidative stress and vascular lesions in the pathobiology of AD. We also consider the opportunities for therapeutic interventions based on the molecular pathways involved with these causal relationships.

Full Text

The Full Text of this article is available as a PDF (280.7 KB).

In accordance with Brain Pathology editorial policy, this article was guest edited by Dr Matti Haltia

References

  • 1. Acuna‐Castroviejo D, Martin M, Macias M, Escames G, Leon J, Khaldy H, Reiter RJ (2001) Melatonin, mitochondria, and cellular bioenergetics. J Pineal Res 30:65–74. [DOI] [PubMed] [Google Scholar]
  • 2. Al Abdulla NA, Martin LJ (1998) Apoptosis of retrogradely degenerating neurons occurs in association with the accumulation of perikaryal mitochondria and oxidative damage to the nucleus. Am J Pathol 153:447–456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Aliev G, Bodin P, Burnstock G (1998) Free radical generators cause changes in endothelial and inducible nitric oxide synthases and endothelin‐1 immunoreactivity in endothelial cells from hyperlipidemic rabbits. Mol Genet Metab 63:191–197. [DOI] [PubMed] [Google Scholar]
  • 4. Aliev G, Burnstock G (1998) Watanabe rabbits with heritable hypercholesterolaemia: a model of atherosclerosis. Histol Histopathol 13:797–817. [DOI] [PubMed] [Google Scholar]
  • 5. Aliev G, Cirillo R, Salvatico E, Paro M, Prosdocimi M (1993) Changes in vessel ultrastructure during ischemia and reperfusion of rabbit hindlimb: implications for therapeutic intervention. Microvasc Res 46:65–76. [DOI] [PubMed] [Google Scholar]
  • 6. Aliev G, Miah S, Turmaine M, Burnstock G (1995) An ultrastructural and immunocytochemical study of thoracic aortic endothelium in aged Sprague‐Dawley rats. J Sub-microsc Cytol Pathol 27:477–490. [PubMed] [Google Scholar]
  • 7. Aliev G, Perry G, Lamb BT, Seyidova D, Neal ML, Zimina TV, Siedlak SL, LaManna JC, Smith MA, Friedland RP (2001) Aged YAC AbPP transgenic mice develop atherosclerotic lesions and mitochondria DNA deletions in brain microvessels without exogenous cholesterol supplementation. Society for Neuroscience Abstracts Book In press. [Google Scholar]
  • 8. Aliev G, Ralevic V, Burnstock G (1996) Depression of endothelial nitric oxide synthase but increased expression of endothelin‐1 immunoreactivity in rat thoracic aortic endothelium associated with longterm, but not short‐term, sympathectomy. Circ Res 79:317–323. [DOI] [PubMed] [Google Scholar]
  • 9. Aliev G, Shi J, Lamanna JC, Lamb BT, Friedland RP (2000) Atherosclerotic‐like changes of the wall of cerebral microvessels in transgenic mice overexpressing amyloid B. Neurobiology of Aging 21:1S–S267, p. 1224. [Google Scholar]
  • 10. Aliev G, Shi J, Perry G, Lamb BT, Lamanna JC, Friedland RP (2000) Neuronal mitochondrial abnormalities in yeast artificial chromosome (YAC) transgenic mice overex‐pressing amyloid precursor protein (APP). Society for Neuroscience Abstracts Book 30:26–301.4. [Google Scholar]
  • 11. Aliev G, Shi J, Perry G, Friedland RP, Lamanna JC (2000) Decreased constitutive nitric oxide synthase, but increased inducible nitric oxide synthase and endothelin‐1 immunoreactivity in aortic endothelial cells of Donryu rats on a cholesterol‐enriched diet. Anat Rec 260:16–25. [DOI] [PubMed] [Google Scholar]
  • 12. Aliev G, Smith MA, Turmaine M, Neal ML, Zimina TV, Friedland RP, Perry G, Lamanna JC, Burnstock G (2001) Atherosclerotic lesions are associated with increased immunoreactivity for inducible nitric oxide synthase and endothelin‐1 in thoracic aortic intimal cells of hyperlipi‐demic Watanabe rabbits. Exp Mol Pathol 71:40–54. [DOI] [PubMed] [Google Scholar]
  • 13. Aliev G, Smith MA, Vinters H, Johnson AB, Nunomura A, Perry G (1999) Mitochondria abnormalities mark vulnerable neurons in Alzheimer's disease. J Neuropathol Exp Neurol 58:511. [Google Scholar]
  • 14. Almeida A, Bolanos JP, Medina JM (1999) Nitric oxide mediates glutamate‐induced mitochondrial depolarization in rat cortical neurons. Brain Res 816:580–586. [DOI] [PubMed] [Google Scholar]
  • 15. Barroso CP, Edvinsson L, Zhang W, Sa M, Springall DR, Polak JM, Gulbenkian S (1996) Nitroxidergic innervation of guinea pig cerebral arteries. J Auton Nerv Syst 58:108–114. [DOI] [PubMed] [Google Scholar]
  • 16. Beal MF (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38:357–366. [DOI] [PubMed] [Google Scholar]
  • 17. Beckman JS (1991) The double‐edged role of nitric oxide in brain function and superoxide‐mediated injury. J Dev Physiol 15:53–59. [PubMed] [Google Scholar]
  • 18. Beckman JS, Carson M, Smith CD, Koppenol WH (1993) ALS, SOD and peroxynitrite [letter]. Nature 364:584. [DOI] [PubMed] [Google Scholar]
  • 19. Boger RH, Bode‐Boger SM, Kienke S, Stan AC, Nafe R, Frolich JC (1998) Dietary L‐arginine decreases myointimal cell proliferation and vascular monocyte accumulation in cholesterol‐fed rabbits. Atherosclerosis 136:67–77. [DOI] [PubMed] [Google Scholar]
  • 20. Bogumil R, Knipp M, Fundel SM, Vasak M (1998) Characterization of dimethylargininase from bovine brain: evidence for a zinc binding site. Biochemistry 37:4791–4798. [DOI] [PubMed] [Google Scholar]
  • 21. Bonilla E, Tanji K, Hirano M, Vu TH, DiMauro S, Schon EA (1999) Mitochondrial involvement in Alzheimer's disease. Biochim Biophys Acta 1410:171–182. [DOI] [PubMed] [Google Scholar]
  • 22. Bredt DS, Snyder SH (1994) Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63:175–195. [DOI] [PubMed] [Google Scholar]
  • 23. Brunner F (1997) Interaction of nitric oxide and endothe‐lin‐1 in ischemia/reperfusion injury of rat heart. J Mol Cell Cardiol 29:2363–2374. [DOI] [PubMed] [Google Scholar]
  • 24. Cirillo R, Aliev G, Hornby EJ, Prosdocimi M (1994) Endothelium as a therapeutical target in peripheral occlusive arterial diseases: consideration for pharmacological interventions. Pharmacol Res 29:293–311. [DOI] [PubMed] [Google Scholar]
  • 25. Cirillo R, Salvatico E, Aliev G, Prosdocimi M (1992) Effect of cloricromene during ischemia and reperfusion of rabbit hindlimb: evidence for an involvement of leukocytes in reperfusion‐mediated tissue and vascular injury. J Cardio-vasc Pharmacol 20:969–975. [DOI] [PubMed] [Google Scholar]
  • 26. Cooke JP, Singer AH, Tsao P, Zera P, Rowan RA, Billing‐ham ME (1992) Antiatherogenic effects of L‐arginine in the hypercholesterolemic rabbit. J Clin Invest 90:1168–1172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Corbett JA, Tilton RG, Chang K, Hasan KS, Ido Y, Wang JL, Sweetland MA, Lancaster JRJ, Williamson JR, McDaniel ML (1992) Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes 41:552–556. [DOI] [PubMed] [Google Scholar]
  • 28. Coria F, Castano E, Prelli F, Larrondo‐Lillo M, Van Duinen S, Shelanski ML, Frangione B (1988) Isolation and characterization of amyloid P component from Alzheimer's disease and other types of cerebral amyloidosis. Lab Invest 58:454–458. [PubMed] [Google Scholar]
  • 29. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695. [DOI] [PubMed] [Google Scholar]
  • 30. Crawford JG (1998) Alzheimer's disease risk factors as related to cerebral blood flow: additional evidence. Med Hypotheses 50:25–36. [DOI] [PubMed] [Google Scholar]
  • 31. Dawson VL, Dawson TM (1996) Nitric oxide in neuronal degeneration. Proc Soc Exp Biol Med 211:33–40. [DOI] [PubMed] [Google Scholar]
  • 32. De Jong GI, De Vos RA, Steur EN, Luiten PG (1997) Cerebrovascular hypoperfusion: a risk factor for Alzheimer's disease? Animal model and postmortem human studies. Ann N Y Acad Sci 826:56–74. [DOI] [PubMed] [Google Scholar]
  • 33. de la Torre JC (1997) Hemodynamic consequences of deformed microvessels in the brain in Alzheimer's disease. Ann N Y Acad Sci 826:75–91. [DOI] [PubMed] [Google Scholar]
  • 34. de la Torre JC (2000) Critically attained threshold of cerebral hypoperfusion: the CATCH hypothesis of Alzheimer's pathogenesis. Neurobiol Aging 21:331–342. [DOI] [PubMed] [Google Scholar]
  • 35. de la Torre JC, Stefano GB (2000) Evidence that Alzheimer's disease is a microvascular disorder: the role of constitutive nitric oxide. Brain Res Brain Res Rev 34:119–136. [DOI] [PubMed] [Google Scholar]
  • 36. Eliasson MJ, Sampei K, Mandir AS, Hurn PD, Traystman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder SH, Dawson VL (1997) Poly(ADP‐ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3:1089–1095. [DOI] [PubMed] [Google Scholar]
  • 37. Ellis RJ, Olichney JM, Thal LJ, Mirra SS, Morris JC, Beekly D, Heyman A (1996) Cerebral amyloid angiopathy in the brains of patients with Alzheimer's disease: the CERAD experience, Part XV. Neurology 46:1592–1596. [DOI] [PubMed] [Google Scholar]
  • 38. Estrada C, DeFelipe J (1998) Nitric oxide‐producing neurons in the neocortex: morphological and functional relationship with intraparenchymal microvasculature. Cereb Cortex 8:193–203. [DOI] [PubMed] [Google Scholar]
  • 39. Etiene D, Kraft J, Ganju N, Gomez‐Isla T, Gemelli B, Hyman BT, Hedley‐Whyte T, Wands JR, de la Monte SM (1998) Cerebrovascular pathology contributes to the heterogeneity of Alzheimer's disease. Journal of Alzheimer's Disease 1:119–134. [DOI] [PubMed] [Google Scholar]
  • 40. Faraci FM (1991) Role of endothelium‐derived relaxing factor in cerebral circulation: large arteries vs. microcirculation. Am J Physiol 261(4 Pt 2): H1038–H1042. [DOI] [PubMed] [Google Scholar]
  • 41. Faraci FM, Brian JE (1994) Nitric oxide and the cerebral circulation. Stroke 25:692–703. [DOI] [PubMed] [Google Scholar]
  • 42. Fiskum G, Murphy AN, Beal MF (1999) Mitochondria in neurodegeneration: acute ischemia and chronic neurode‐generative diseases. J Cereb Blood Flow Metab 19:351–369. [DOI] [PubMed] [Google Scholar]
  • 43. Friston KJ, Frackowiak RS (1991) Cerebral function in aging and Alzheimer's disease: the role of PET. Electroencephalogr Clin Neurophysiol Suppl 42: 355–365. [PubMed] [Google Scholar]
  • 44. Galle J, Bengen J, Schollmeyer P, Wanner C (1995) Impairment of endothelium‐dependent dilation in rabbit renal arteries by oxidized lipoprotein(a). Role of oxygen‐derived radicals. Circulation 92:1582–1589. [DOI] [PubMed] [Google Scholar]
  • 45. Granger DN, Benoit JN, Suzuki M, Grisham MB (1989) Leukocyte adherence to venular endothelium during ischemia‐reperfusion. Am J Physiol 257(5 Pt 1):G683–G688. [DOI] [PubMed] [Google Scholar]
  • 46. Grant DN (1997) Dietary links to Alzheimer's disease. Alzheimer's Disease Review 2:42–55. [Google Scholar]
  • 47. Hamada Y, Hayakawa T, Hattori H, Mikawa H (1994) Inhibitor of nitric oxide synthesis reduces hypoxic‐ischemic brain damage in the neonatal rat. Pediatr Res 35:10–14. [DOI] [PubMed] [Google Scholar]
  • 48. Hammes HP, Brownlee M, Edelstein D, Saleck M, Martin S, Federlin K (1994) Aminoguanidine inhibits the development of accelerated diabetic retinopathy in the spontaneous hypertensive rat. Diabetologia 37:32–35. [DOI] [PubMed] [Google Scholar]
  • 49. Harik N, Harik SI, Kuo NT, Sakai K, Przybylski RJ, Lamanna JC (1996) Time‐course and reversibility of the hypoxia‐induced alterations in cerebral vascularity and cerebral capillary glucose transporter density. Brain Res 737:335–338. [DOI] [PubMed] [Google Scholar]
  • 50. Hayashi T, Abe K, Itoyama Y (1998) Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia. J Cereb Blood Flow Metab 18:887–895. [DOI] [PubMed] [Google Scholar]
  • 51. Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M, Shimohama S, Cash AD, Siedlak SL, Harris PL, Jones PK, Petersen RB, Perry G, Smith MA (2001) Mitochondrial abnormalities in Alzheimer's disease. J Neurosci 21:3017–3023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Hofman A, Ott A, Breteler MM, Bots ML, Slooter AJ, Van Harskamp F, Van Duijn CN, Van Broeckhoven C, Grobbee DE (1997) Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer's disease in the Rotterdam Study. Lancet 349:151–154. [DOI] [PubMed] [Google Scholar]
  • 53. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, A beta elevation, and amyloid plaques in transgenic mice [see comments]. Science 274:99–102. [DOI] [PubMed] [Google Scholar]
  • 54. Iadecola C (1992) Does nitric oxide mediate the increases in cerebral blood flow elicited by hypercapnia Proc Natl Acad Sci U S A 89:3913–3916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Iadecola C, Zhang F, Casey R, Clark HB, Ross ME (1996) Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke 27:1373–1380. [DOI] [PubMed] [Google Scholar]
  • 56. Iadecola C, Zhang F, Niwa K, Eckman C, Turner SK, Fischer E, Younkin S, Borchelt DR, Hsiao KK, Carlson GA (1999) SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nat Neurosci 2:157–161. [DOI] [PubMed] [Google Scholar]
  • 57. Iadecola C, Zhang F, Xu S, Casey R, Ross ME (1995) Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J Cereb Blood Flow Metab 15:378–384. [DOI] [PubMed] [Google Scholar]
  • 58. Iadecola C, Zhang F, Xu X (1995) Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am J Physiol 268:R286–R292. [DOI] [PubMed] [Google Scholar]
  • 59. Isner JM, Pieczek A, Schainfeld R, Blair R, Haley L, Asahara T, Rosenfield K, Razvi S, Walsh K, Symes JF (1996) Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 348:370–374. [DOI] [PubMed] [Google Scholar]
  • 60. Iwamoto N, Nishiyama E, Ohwada J, Arai H (1997) Distribution of amyloid deposits in the cerebral white matter of the Alzheimer's disease brain: relationship to blood vessels. Acta Neuropathol (Berl) 93:334–340. [DOI] [PubMed] [Google Scholar]
  • 61. Jagust WJ (1988) Neuroimaging of dementing disorders In: Neuropathology of Dementing Disorders, Markesbery WR (ed.), PP. 25–55, Amold: London . [Google Scholar]
  • 62. Joachim CL, Morris JH, Selkoe DJ (1989) Diffuse senile plaques occur commonly in the cerebellum in Alzheimer's disease. Am J Pathol 135:309–319. [PMC free article] [PubMed] [Google Scholar]
  • 63. Kalaria RN (1999) The blood‐brain barrier and cerebrovascular pathology in Alzheimer's disease. Ann N Y Acad Sci 893:113–125. [DOI] [PubMed] [Google Scholar]
  • 64. Kalaria RN (2000) The role of cerebral ischemia in Alzheimer's disease. Neurobiol Aging 21:321–330. [DOI] [PubMed] [Google Scholar]
  • 65. Kawai M, Kalaria RN, Harik SI, Perry G (1990) The relationship of amyloid plaques to cerebral capillaries in Alzheimer's disease. Am J Pathol 137:1435–1446. [PMC free article] [PubMed] [Google Scholar]
  • 66. Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, Germeyer A, Steiner SM, Bruce‐Keller AJ, Hutchins JB, Mattson MP (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18:687–697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. Kimoto M, Tsuji H, Ogawa T, Sasaoka K (1993) Detection of NG,NG‐dimethylarginine dimethylaminohydrolase in the nitric oxide‐generating systems of rats using monoclonal antibody. Arch Biochem Biophys 300:657–662. [DOI] [PubMed] [Google Scholar]
  • 68. Kimoto M, Whitley GS, Tsuji H, Ogawa T (1995) Detection of NG,NG‐dimethylarginine dimethylaminohydrolase in human tissues using a monoclonal antibody. J Biochem (Tokyo) 117:237–238. [DOI] [PubMed] [Google Scholar]
  • 69. Kumar A, Schapiro MB, Haxby JV, Grady CL, Friedland RP (1990) Cerebral metabolic and cognitive studies in dementia with frontal lobe behavioral features. J Psychiatr Res 24:97–109. [DOI] [PubMed] [Google Scholar]
  • 70. LaManna JC, Boehm KD, Mironov V, Hudetz AG, Hritz MA, Yun JK, Harik SI (1994) Increased basic fibroblastic growth factor mRNAin the brains of rats exposed to hypobaric hypoxia. Adv Exp Med Biol 361:497–502. [DOI] [PubMed] [Google Scholar]
  • 71. Lamb BT, Bardel KA, Kulnane LS, Anderson JJ, Holtz G, Wagner SL, Sisodia SS, Hoeger EJ (1999) Amyloid production and deposition in mutant amyloid precursor protein and presenilin‐1 yeast artificial chromosome transgenic mice. Nat Neurosci 2:695–697. [DOI] [PubMed] [Google Scholar]
  • 72. Lamb BT, Call LM, Slunt HH, Bardel KA, Lawler AM, Eckman CB, Younkin SG, Holtz G, Wagner SL, Price DL, Sisodia SS, Gearhart JD (1997) Altered metabolism of familial Alzheimer's disease‐linked amyloid precursor protein variants in yeast artificial chromosome transgenic mice. Hum Mol Genet 6:1535–1541. [DOI] [PubMed] [Google Scholar]
  • 73. Landmesser U, Merten R, Spiekermann S, Buttner K, Drexler H, Hornig B (2000) Vascular extracellular superoxide dismutase activity in patients with coronary artery disease: relation to endothelium‐dependent vasodilation. Circulation 101:2264–2270. [DOI] [PubMed] [Google Scholar]
  • 74. Lerman A, Burnett JCJ (1992) Intact and altered endothelium in regulation of vasomotion. Circulation 86(6 Suppl): III12–III19. [PubMed] [Google Scholar]
  • 75. Lerman A, Sandok EK, Hildebrand FL, Burnett JC (1992) Inhibition of endothelium‐derived relaxing factor enhances endothelin‐mediated vasoconstriction. Circulation 85:1894–1898. [DOI] [PubMed] [Google Scholar]
  • 76. Lovell MA, Xie C, Markesbery WR (1998) Decreased glutathione transferase activity in brain and ventricular fluid in Alzheimer's disease. Neurology 51:1562–1566. [DOI] [PubMed] [Google Scholar]
  • 77. Lum H, Roebuck KA (2001) Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol 280:C719–C741. [DOI] [PubMed] [Google Scholar]
  • 78. Lyons TJ, Li W, Wojciechowski B, Wells‐Knecht MC, Wells‐Knecht KJ, Jenkins AJ (2000) Aminoguanidine and the effects of modified LDL on cultured retinal capillary cells. Invest Ophthalmol Vis Sci Apr 41:1176–1180. [PubMed] [Google Scholar]
  • 79. MacAllister RJ, Parry H, Kimoto M, Ogawa T, Russell RJ, Hodson H, Whitley GS, Vallance P (1996) Regulation of nitric oxide synthesis by dimethylarginine dimethylaminohydrolase. Br J Pharmacol 119:1533–1540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer's disease. Free Radic Biol Med 23:134–147. [DOI] [PubMed] [Google Scholar]
  • 81. Markesbery WR, Carney JM (1999) Oxidative alterations in Alzheimer's disease. Brain Pathol 9:133–146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. Marletta MA (1994) Nitric oxide synthase: aspects concerning structure and catalysis. Cell 78:927–930. [DOI] [PubMed] [Google Scholar]
  • 83. Matz RL, Schott C, Stoclet JC, Andriantsitohaina R (2000) Age‐related endothelial dysfunction with respect to nitric oxide, endothelium‐derived hyperpolarizing factor and cyclooxygenase products. Physiol Res 49:11–18. [PubMed] [Google Scholar]
  • 84. Mecocci P, Beal MF, Cecchetti R, Polidori MC, Cherubini A, Chionne F, Avellini L, Romano G, Senin U (1997) Mitochondrial membrane fluidity and oxidative damage to mitochondrial DNA in aged and AD human brain. Mol Chem Neuropathol 31:53–64. [DOI] [PubMed] [Google Scholar]
  • 85. Mecocci P, MacGarvey U, Beal MF (1994) Oxidative damage to mitochondrial DNAis increased in Alzheimer's disease. Ann Neurol 36:747–751. [DOI] [PubMed] [Google Scholar]
  • 86. Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM, Wallace DC, Beal MF (1993) Oxidative damage to mitochondrial DNAshows marked age‐dependent increases in human brain. Ann Neurol 34:609–616. [DOI] [PubMed] [Google Scholar]
  • 87. Mironov V, Hritz MA, Lamanna JC, Hudetz AG, Harik SI (1994) Architectural alterations in rat cerebral microvessels after hypobaric hypoxia. Brain Res 660:73–80. [DOI] [PubMed] [Google Scholar]
  • 88. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142. [PubMed] [Google Scholar]
  • 89. Montine TJ, Montine KS, Swift LL (1997) Central nervous system lipoproteins in Alzheimer's disease. Am J Pathol 151:1571–1575. [PMC free article] [PubMed] [Google Scholar]
  • 90. Morris SM, Billiar TR (1994) New insights into the regulation of inducible nitric oxide synthesis. Am J Physiol 266(6 Pt 1): E829–E839. [DOI] [PubMed] [Google Scholar]
  • 91. Nagata K, Maruya H, Yuya H, Terashi H, Mito Y, Kato H, Sato M, Satoh Y, Watahiki Y, Hirata Y, Yokoyama E, Hatazawa J (2000) Can PET data differentiate Alzheimer's disease from vascular dementia Ann N Y Acad Sci 903:252–261. [DOI] [PubMed] [Google Scholar]
  • 92. Nelson JB, Hedican SP, George DJ, Reddi AH, Piantadosi S, Eisenberger MA, Simons JW (1995) Identification of endothelin‐1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat Med 1:944–949. [DOI] [PubMed] [Google Scholar]
  • 93. Neve RL, Robakis NK (1998) Alzheimer's disease: a reexamination of the amyloid hypothesis. Trends Neurosci 21:15–19. [DOI] [PubMed] [Google Scholar]
  • 94. Niwa K, Carlson GA, Iadecola C (2000) Exogenous A beta1‐40 reproduces cerebrovascular alterations resulting from amyloid precursor protein overexpression in mice. J Cereb Blood Flow Metab 20:1659–1668. [DOI] [PubMed] [Google Scholar]
  • 95. Nozaki K, Moskowitz MA, Maynard KI, Koketsu N, Dawson TM, Bredt DS, Snyder SH (1993) Possible origins and distribution of immunoreactive nitric oxide synthase‐containing nerve fibers in cerebral arteries. J Cereb Blood Flow Metab 13:70–79. [DOI] [PubMed] [Google Scholar]
  • 96. Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, Chiba S, Atwood CS, Petersen RB, Smith MA (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol Aug 60:759–767. [DOI] [PubMed] [Google Scholar]
  • 97. Nunomura A, Perry G, Pappolla MA, Wade R, Hirai K, Chiba S, Smith MA (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer's disease. J Neurosci 19:1959–1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98. Panagiotopoulos S, O'Brien RC, Bucala R, Cooper ME, Jerums G (1998) Aminoguanidine has an anti‐atherogenic effect in the cholesterol‐fed rabbit. Atherosclerosis 136:125–131. [DOI] [PubMed] [Google Scholar]
  • 99. Perry G, Smith MA (1998) The case for vascular abnormalities in AD. Current Research in AD 3:181–186. [Google Scholar]
  • 100. Perry G, Nunomura A, Hirai K, Takeda A, Aliev G, Smith MA (2000) Oxidative damage in Alzheimer's disease: the metabolic dimension. Int J Dev Neurosci 18:417–421. [DOI] [PubMed] [Google Scholar]
  • 101. Perry G, Smith MA, McCann CE, Siedlak SL, Jones PK, Friedland RP (1998) Cerebrovascular muscle atrophy is a feature of Alzheimer's disease. Brain Res 791:63–66. [DOI] [PubMed] [Google Scholar]
  • 102. Plate KH (1999) Mechanisms of angiogenesis in the brain. J Neuropathol Exp Neurol 58:313–320. [DOI] [PubMed] [Google Scholar]
  • 103. Prasad MR, Lovell MA, Yatin M, Dhillon H, Markesbery WR (1998) Regional membrane phospholipid alterations in Alzheimer's disease. Neurochem Res 23:81–88. [DOI] [PubMed] [Google Scholar]
  • 104. Prelli F, Castano EM, Van Duinen SG, Bots GT, Luyendijk W, Frangione B (1988) Different processing of Alzheimer's beta‐protein precursor in the vessel wall of patients with hereditary cerebral hemorrhage with amyloidosis‐Dutch type. Biochem Biophys Res Commun 151:1150–1155. [DOI] [PubMed] [Google Scholar]
  • 105. Price JM, Sutton ET, Hellermann A, Thomas T (1997) beta‐Amyloid induces cerebrovascular endothelial dysfunction in the rat brain. Neurol Res 19:534–538. [DOI] [PubMed] [Google Scholar]
  • 106. Ralevic V, Burnstock G (1993) Neural‐endothelial interactions in the control of local vascular tone. CRC Press: 1–118. [Google Scholar]
  • 107. Refolo LM, Pappolla MA, Malester B, LaFrancois J, Bryant‐Thomas T, Wang R, Tint GS, Sambamurti K, Duff K (2000) Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol Dis 7:321–331. [DOI] [PubMed] [Google Scholar]
  • 108. Rosenstein JM, Mani N, Silverman WF, Krum JM (1998) Patterns of brain angiogenesis after vascular endothelial growth factor administration in vitro and in vivo. Proc Natl Acad Sci U S A 95:7086–7091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109. Roses AD (1995) On the metabolism of apolipoprotein E and the Alzheimer diseases. Exp Neurol 132:149–156. [DOI] [PubMed] [Google Scholar]
  • 110. Sala A, Aliev GM, Rossoni G, Berti F, Buccellati C, Burnstock G, Folco G, Maclouf J (1996) Morphological and functional changes of coronary vasculature caused by transcellular biosynthesis of sulfidopeptide leukotrienes in isolated heart of rabbit. Blood 87:1824–1832. [PubMed] [Google Scholar]
  • 111. Salvatico E, Aliev GM, Novello D, Prosdocimi M (1994) Functional depression of isolated perfused rat heart mediated by activated leukocytes: protective effect of cloricromene. J Cardiovasc Pharmacol 24:638–647. [DOI] [PubMed] [Google Scholar]
  • 112. Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, Smith MA (1997) 4‐Hydroxynonenal‐derived advanced lipid peroxidation end products are increased in Alzheimer's disease. J Neurochem 68:2092–2097. [DOI] [PubMed] [Google Scholar]
  • 113. Schulz JB, Matthews RT, Klockgether T, Dichgans J, Beal MF (1997) The role of mitochondrial dysfunction and neuronal nitric oxide in animal models of neurodegenerative diseases. Mol Cell Biochem 174:193–197. [PubMed] [Google Scholar]
  • 114. Schumacher B, Pecher P, von Specht BU, Stegmann T (1998) Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease [see comments]. Circulation 97:645–650. [DOI] [PubMed] [Google Scholar]
  • 115. Shankar A, Loizidou M, Aliev G, Fredericks S, Holt D, Boulos PB, Burnstock G, Taylor I (1998) Raised endothelin 1 levels in patients with colorectal liver metastases. Br J Surg 85:502–506. [DOI] [PubMed] [Google Scholar]
  • 116. Shi J, Perry G, Aliev G, Smith MA, Ashe KH, Friedland RP (1999) Serum amyloid P is not present in amyloid beta deposits of a transgenic animal model. Neuroreport 10:3229–3232. [DOI] [PubMed] [Google Scholar]
  • 117. Skoog I, Kalaria RN, Breteler MM (1999) Vascular factors and Alzheimer disease. Alzheimer Dis Assoc Disord 13 Suppl 3:S106–S114. [DOI] [PubMed] [Google Scholar]
  • 118. Smith JD, Breslow JL (1997) The emergence of mouse models of atherosclerosis and their relevance to clinical research. J Intern Med 242:99–109. [DOI] [PubMed] [Google Scholar]
  • 119. Smith MA, Perry G, Richey PL, Sayre LM, Anderson VE, Beal MF, Kowall N (1996) Oxidative damage in Alzheimer's [letter]. Nature 382:120–121. [DOI] [PubMed] [Google Scholar]
  • 120. Smith MA, Petot GJ, Perry G (1997) Diet and oxidative stress: A novel synthesis of epidemiological data on Alzheimer's disease. Alzheimer's Disease Review 2:58–60. [DOI] [PubMed] [Google Scholar]
  • 121. Smith MA, Richey Harris PL, Sayre LM, Beckman JS, Perry G (1997) Widespread peroxynitrite‐mediated damage in Alzheimer's disease. J Neurosci 17:2653–2657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122. Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G (2000) Oxidative stress in Alzheimer's disease. Biochim Biophys Acta 1502:139–144. [DOI] [PubMed] [Google Scholar]
  • 123. Smith MA, Sayre LM, Perry G (1996) Is Alzheimer's disease of oxidative stress Alzheimer's Disease Review 1: 63–67. [Google Scholar]
  • 124. Smith MA, Taneda S, Richey PL, Miyata S, Yan SD, Stern D, Sayre LM, Monnier VM, Perry G (1994) Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc Natl Acad Sci U S A 91:5710–5714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125. Smith MA, Vasak M, Knipp M, Castellani RJ, Perry G (1998) Dimethylargininase, a nitric oxide regulatory protein, in Alzheimer disease. Free Radic Biol Med 25:898–902. [DOI] [PubMed] [Google Scholar]
  • 126. Sparks DL (1997) Coronary artery disease, hypertension, ApoE, and cholesterol: a link to Alzheimer's disease Ann N Y Acad Sci 826:128–146. [DOI] [PubMed] [Google Scholar]
  • 127. Sparks DL, Kuo YM, Roher A, Martin T, Lukas RJ (2000) Alterations of Alzheimer's disease in the cholesterol‐fed rabbit, including vascular inflammation. Preliminary observations. Ann N Y Acad Sci 903:335–344. [DOI] [PubMed] [Google Scholar]
  • 128. Stewart‐Lee AL, Ferns GA, Anggard EE (1995) Differences in onset of impaired endothelial responses and in effects of vitamin E in the hypercholesterolemic rabbit carotid and renal arteries. J Cardiovasc Pharmacol 25:906–913. [DOI] [PubMed] [Google Scholar]
  • 129. Stewart PA, Hayakawa K, Akers MA, Vinters HV (1992) A morphometric study of the blood‐brain barrier in Alzheimer's disease. Lab Invest 67:734–742. [PubMed] [Google Scholar]
  • 130. Stewart PA, Isaacs H, Lamanna JC, Harik SI (1997) Ultrastructural concomitants of hypoxia‐induced angiogenesis. Acta Neuropathol (Berl) 93:579–584. [DOI] [PubMed] [Google Scholar]
  • 131. Sutsch G, Bertel O, Kiowski W (1997) Acute and shortterm effects of the nonpeptide endothelin‐1 receptor antagonist bosentan in humans. Cardiovasc Drugs Ther 10:717–725. [DOI] [PubMed] [Google Scholar]
  • 132. Tagliavini F, Ghiso J, Timmers WF, Giaccone G, Bugiani O, Frangione B (1990) Coexistence of Alzheimer's amyloid precursor protein and amyloid protein in cerebral vessel walls. Lab Invest 62:761–767. [PubMed] [Google Scholar]
  • 133. Thomas AJ, Morris CM, Ferrier IN, Kalaria RN (2000) Distribution of amyloid beta 42 in relation to the cerebral microvasculature in an elderly cohort with Alzheimer's disease. Ann N Y Acad Sci 903:83–88. [DOI] [PubMed] [Google Scholar]
  • 134. Thorns V, Hansen L, Masliah E (1998) nNOS expressing neurons in the entorhinal cortex and hippocampus are affected in patients with Alzheimer's disease. Exp Neurol 150:14–20. [DOI] [PubMed] [Google Scholar]
  • 135. Vinters HV, Miller BL, Pardridge WM (1988) Brain amyloid and Alzheimer disease. Ann Intern Med 109:41–54. [DOI] [PubMed] [Google Scholar]
  • 136. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283(5407): 1482–1488. [DOI] [PubMed] [Google Scholar]
  • 137. Wang RMF, Pelligrio DA, Baughman VL, Koenig HM, Albrecht RF (1995) The role of neuronal nitric oxide synthase in regulation of cerebral blood flow in normocapnia and hypercapnia in rats. J Cereb Blood Flow Metab 15: 774–778. [DOI] [PubMed] [Google Scholar]
  • 138. Weinbrecht P, Longmuir I, Knopp J, Mills M (1987) Cerebral microcirculatory changes during exposure to hypoxia. Adv Exp Med Biol 215: 259–263. [DOI] [PubMed] [Google Scholar]
  • 139. Wong‐Riley M, Antuono P, Ho KC, Egan R, Hevner R, Liebl W, Huang Z, Rachel R, Jones J (1997) Cytochrome oxidase in Alzheimer's disease: biochemical, histochemical, and immunohistochemical analyses of the visual and other systems. Vision Res 37:3593–3608. [DOI] [PubMed] [Google Scholar]
  • 140. Wu TW, Fung KP, Wu J, Yang CC, Lo J, Weisel RD (1996) Morin hydrate inhibits azo‐initiator induced oxidation of human low density lipoprotein. Arteriosclerosis 58:L–22. [DOI] [PubMed] [Google Scholar]
  • 141. Wu TW, Zeng LH, Wu J, Fung KP (1994) Morin: a wood pigment that protects three types of human cells in the cardiovascular system against oxyradical damage. Biochem Pharmacol 47:1099–1103. [DOI] [PubMed] [Google Scholar]
  • 142. Yanagisawa M, Kurihara H, Kimura S, Goto K, Masaki T (1988) A novel peptide vasoconstrictor, endothelin, is produced by vascular endothelium and modulates smooth muscle Ca2+ channels. J Hypertens Suppl 6:S188–S191. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES