Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;13(4):440–451. doi: 10.1111/j.1750-3639.2003.tb00475.x

A1 Adenosine Receptors Accumulate in Neurodegenerative Structures in Alzheimer's Disease and Mediate Both Amyloid Precursor Protein Processing and Tau Phosphorylation and Translocation

Ester Angulo 1, Vicent Casadó 1, Josefa Mallol 1, Enric I Canela 1, Francesc Viñals 2, Isidre Ferrer 3, Carmen Lluis 1, Rafael Franco 1,
PMCID: PMC8095992  PMID: 14655750

Abstract

Immunostaining of adenosine receptors in the hippocampus and cerebral cortex from necropsies of Alzheimer's disease (AD) patients shows that there is a change in the pattern of expression and a redistribution of receptors in these brain areas when compared with samples from controls. Adenosine A1 receptor (A1R) immunoreactivity was found in degenerating neurons with neurofibrillary tangles and in dystrophic neurites of senile plaques. A high degree of colocalization for A1R and pA4 amyloid in senile plaques and for A1R and tau in neurons with tau deposition, but without tangles, was seen. Additionally, adenosine A2A receptors, located mainly in striatal neurons in controls, appeared in glial cells in the hippocampus and cerebral cortex of patients. On comparing similar samples from controls and patients, no significant change was evident for metabotropic glutamate receptors. In the human neuroblastoma SH‐SY5Y cell line, agonists for A1R led to a dose‐dependent increase in the production of soluble forms of amyloid precursor protein in a process mediated by PKC. A1R agonist induced p21 Ras activation and ERK1/2 phosphorylation. Furthermore, activation of A1R led to and ERK‐dependent increase of tau phosphorylation and translocation towards the cytoskeleton. These results indicate that adenosine receptors are potential targets for AD.

Full Text

The Full Text of this article is available as a PDF (485.2 KB).

References

  • 1. Braak H, Braak E (1999) Temporal sequence of Alzheimer's disease‐related pathology. In Cerebral cortex vol. 14; Neurodegenerative and age‐related changes in structure and function of cerebral cortex. Peters A and Morrison JH (eds.), Kluwer Academic/Plenum Publishers, New York , Boston , Dordrecht , London , Moscow . pp. 475–512. [Google Scholar]
  • 2. Buée L, Bussiere T, Buee‐Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33:95–130. [DOI] [PubMed] [Google Scholar]
  • 3. Buxbaum JD, Oishi M, Chen HI, Pinkas‐Kramarski R, Jaffe EA, Gandy SE, Greengard P (1992) Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer beta/A4 amyloid protein precursor. Proc Natl Acad Sci U S A 89:10075–10078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Chin JY, Knowles RB, Schneider A, Drewes G, Mandelkow EM, Hyman BT. (2000) Microtubule‐affinity regulating kinase (MARK) is tightly associated with neurofibrillary tangles in Alzheimer brain: a fluorescence resonance energy transfer study. J Neuropathol Exp Neurol 59:966–971. [DOI] [PubMed] [Google Scholar]
  • 5. Ciruela F, Casado V, Mallol J, Canela EI, Lluis C, Franco R. (1995) Immunological identification of A1 adenosine receptors in brain cortex. J Neurosci Res 42:818–828. [DOI] [PubMed] [Google Scholar]
  • 6. Deckert J, Abel F, Künig G, Hartman J, Senitz D, Maier H, Ransmayr G, Riederer P (1998). Loss of human hippocampal adenosine A1 receptors in dementia: evidence for lack of specificity. Neurosci Letters 244:1–4. [DOI] [PubMed] [Google Scholar]
  • 7. De Strooper B, Annaert W (2000) Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci 113:1857–1870. [DOI] [PubMed] [Google Scholar]
  • 8. De Rooij J, Bos JL (1997) Minimal Rasbinding domain of Raf1 can be used as an activation‐specific probe for Ras. Oncogene 14:623–625. [DOI] [PubMed] [Google Scholar]
  • 9. Drewer G, Lichtenberg‐Kraag B, Doering F, Mandelkow EM, Biernat J, Goris J, Doree M, Mandelkow E (1992) Mitogen‐activated protein (MAP) kinase transfoms tau protein into an Alzheimer‐like state. EMBO J 6:2131–2138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55. [DOI] [PubMed] [Google Scholar]
  • 11. Ferrer I, Blanco R, Carmona M, Puig B (2001a) Phosphorylated mitogen‐activated protein kinase (MAPK/ERK‐P), protein kinase of 38 kDa (p38‐P), stressactivated protein kinase (SAPK/JNK‐P), and calcium/calmodulin‐dependent kinase II (CaM kinase II) are differentially expressed in tau deposits in neurons and glial cells in tauopathies. J Neural Transm 108:1397–1415. [DOI] [PubMed] [Google Scholar]
  • 12. Ferrer I, Blanco R, Carmona M, Ribera R, Goutan E, Puig B, Rey MJ, Cardozo A, Viñals F, Ribalta T (2001b) Phosphorylated MAP kinase (ERK, ERK2) expression is associated with early tau deposition in neurones and glial cells, but not with increased nuclear DNA vulnerability and cell death, in Alzheimer's disease, Pick's disease, progressive supranuclear palsy and corticobasal degenerationn. Brain Pathol 11:144–158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Ferre S, Karcz‐Kubicha M, Hope BT, Popoli P, Burgueno J, Gutierrez MA, Casado V, Fuxe K, Goldberg SR, Lluis C, Franco R, Ciruela F (2002) Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: Implications for striatal neuronal function. Proc Natl Acad Sci U S A 99:11940–11945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. García‐Jiménez A, Cowburn RF, Ohm TG, Lasn H, Winblad B, Bogdanovic N, Fastbom J (2002) Loss of stimulatory effect of guanosine triphosphate on [35S]GTPgammaS binding correlates with Alzheimer disease neurofibrillary pathology intentorhinal cortex and CA1 hippocampal subfield. J Neurosci Res 67:388–398. [DOI] [PubMed] [Google Scholar]
  • 15. Gauthier S, Panisset M, Nalbantoglu J, Poirier J (1997) Alzheimer's disease: current knowledge, management and research. Can Med Association 157:1047–1052. [PMC free article] [PubMed] [Google Scholar]
  • 16. Ginés S, Hillion J, Torvinen M, Le Crom S, Casado V, Canela EI, Rondin S, Lew JY, Watson S, Zoli M, Agnati LF, Verniera P, Lluis C, Ferre S, Fuxe K, Franco R (2000) Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci U S A 97:8606–8611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Goedert M, Cohen ES, Jakes R, Cohen P (1992) p42 MAP kinase phosphorylation sites in microtubule‐associated protein tau are dephosphorylated by protein phosphatase 2A1. FEBS Lett 312:95–99. [DOI] [PubMed] [Google Scholar]
  • 18. Gomez‐Santos C, Ferrer I, Reiriz J, Vinals F, Barrachina M, Ambrosio S (2002) MPP+ increases alpha‐synuclein expression and ERK/MAP‐kinase phosphorylation in human neuroblastoma SH‐SY5Y cells. Brain Res 935:32–39. [DOI] [PubMed] [Google Scholar]
  • 19. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297:353–356. [DOI] [PubMed] [Google Scholar]
  • 20. Isacson O, Seo H, Lin L, Albeck D, Granholm AC (2002) Alzheimer's disease and Down's syndrome: roles of APP, trophic factors and ACh. Trends Neurosci 25:79–84. [DOI] [PubMed] [Google Scholar]
  • 21. Jacobsen JS, Spruyt MA, Brown AM, Sahasrabudhe SR, Blume AJ, Vitek MP, Muenkel HA, Sonnenberg‐Reines J (1994) The release of Alzheimer's disease beta amyloid peptide is reduced by phorbol treatment. J Biol Chem 269:8376–8382. [PubMed] [Google Scholar]
  • 22. Jenkins SM, Zinnerman M, Garner C, Johnson GVW (2000) Modulation of tau phosphorylation and intracellular localization by cellular stress. Biochem J 345:263–270. [PMC free article] [PubMed] [Google Scholar]
  • 23. Jolly‐Tornetta C, Wolf B (2000) Protein kinase C regulation of intracellular and cell surface amyloid precursor protein (APP) cleavage in CHO695 cells. Biochemistry 39:15282–15290. [DOI] [PubMed] [Google Scholar]
  • 24. Kihara T, Shimohama S, Sawada H, Honda K, Nakamizo T, Shibasaki H, Kume T, Akaike A (2001) alpha 7 nicotinic receptor transduces signals to phosphatidylinositol 3‐kinase to block A beta‐amyloid‐induced neurotoxicity. J Biol Chem 276:13541–13546. [DOI] [PubMed] [Google Scholar]
  • 25. Klinger M, Freissmuth M, Nanoff C (2002) Adenosine receptors: G protein‐mediated signalling and the role of accessory proteins. Cell Signalling 14:99–108. [DOI] [PubMed] [Google Scholar]
  • 26. Knowles RB, Chin J, Ruff CT, Hyman BT (1999) Demonstration by fluorescence resonance energy transfer of a close association between activated MAP kinase and neurofibrillary tangles: Implications for MAP kinase activation in Alzheimer disease. J Neuropathol Exp Neurol 58:1090–1098. [DOI] [PubMed] [Google Scholar]
  • 27. Laemmli, UK (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. [DOI] [PubMed] [Google Scholar]
  • 28. Ledesma MD, Correas I, Avila J, Diaz‐Nido J (1992) Implication of cdc2 and MAP2 kinases in the phosphorylation of tau proteins in Alzheimer's disease. FEBS Lett 308:218–224. [DOI] [PubMed] [Google Scholar]
  • 29. Lee RK, Wurtman RJ, Cox AJ, Nitsch RM (1995) Amyloid precursor protein processing is stimulated by metabotropic glutamate receptors. Proc Natl Acad Sci U S A 92:8083–8087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Lovestone S, Reynolds CH (1997) The phosphorylation of tau: a critical stage in neurodevelopment and neurodegenerative processes. Neuroscience 78:309–324. [DOI] [PubMed] [Google Scholar]
  • 31. Mandelkow EM, Schweers O, Drewes G, Biernat J, Gustke N, Trinczek B, Mandelkow E (1996) Structure, microtubule interactions, and phosphorylation of tau protein. Ann NY Acad Sci 777:96–106. [DOI] [PubMed] [Google Scholar]
  • 32. Mudher A, Lovestone S (2002) Alzheimer's disease‐do tauists and baptists finally shake hands Trends Neurosci 25:22–26. [DOI] [PubMed] [Google Scholar]
  • 33. Nitsch RM, Deng A, Wurtman RJ, Growdon JH (1997) Metabotropic glutamate receptor subtype mGluR1alpha stimulates the secretion of the amyloid beta‐protein precursor ectodomain. J Neurochem 69:704–712. [DOI] [PubMed] [Google Scholar]
  • 34. Perry G, Roder H, Nunomura A, Takeda A, Friedlich AL, Zhu X, Raina AL, Holbrook N, Siedlak SL, Harris PLR, Smith MA (1999) Activation of neuronal extracellular receptor kinase (ERK) in Alzheimer disease links oxidative stress to abnormal tau phosphorylation. NeuroReport 10:2411–2415. [DOI] [PubMed] [Google Scholar]
  • 35. Sarrio S, Casado V, Escriche M, Ciruela F, Mallol J, Canela EI, Lluis C, Franco R (2000) The heat shock cognate protein hsc73 assembles with A(1) adenosine receptors to form functional modules in the cell membrane. Mol Cell Biol 20:5164–5174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Schindler M, Harris CA, Hayes B, Papottu M, Humphrey PPA (2001) Immunohistochemical localization of adenosine A1 receptors in human brain regions. Neurosci Letters 297:211–215. [DOI] [PubMed] [Google Scholar]
  • 37. Schulte G, Fredholm BB (2000) Human adenosine A1, A2A, A2b and A3 receptors expressed in Chinese hamster ovary cells all mediate the phosphorylation of extracellular‐regulated kinase 1/2. Mol Pharmacol 58:477–482. [PubMed] [Google Scholar]
  • 38. Sinha S, Lieberburg I (1999) Cellular mechanisms of beta‐amyloid production and secretion. Proc Natl Acad Sci U S A 96:11049–11053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Stephenson DT, Clemens JA (1998) Metabotropic glutamate receptor activation in vivo induces intraneuronal amyloid immunoreactivity in guinea pig hippocampus. Neurochem Int 33:83–93. [DOI] [PubMed] [Google Scholar]
  • 40. Tanzi RE, Bertram L (2001) New frontiers in Alzheimer's disease genetics. Neuron 25:181–184. [DOI] [PubMed] [Google Scholar]
  • 41. Veeranna GJ, Amin ND, Ahn NG, Jaffe J, Winters CA, Grant P, Pant HC (1998) Mitogen‐activated protein kinases (Erk1, 2) phosphorylate Lys‐Ser‐Pro (KSP) repeats in neurofilament proteins NF‐H and NF‐M. J Neurosci 18:4008–4021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Walter J, Kaether C, Steiner H, Haass C (2001) The cell biology of Alzheimer's disease: uncovering the secrets of secretases. Curr Opin Neurobiol 11:585–590. [DOI] [PubMed] [Google Scholar]
  • 43. Zhu X, Rottkamp CA, Boux H, Takeda A, Perry G, Smith MA (2000) Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle‐related events in Alzheimer disease. J Neuropathol Exp Neurol 59:880–888. [DOI] [PubMed] [Google Scholar]
  • 44. Zhu X, Raina AK, Rottkamp CA, Aliev G, Perry G, Boux H, Smith MA (2001) Activation and re‐distribution of c‐Jun N‐terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer's disease. J Neurochem 76:435–441. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES