Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;13(3):340–351. doi: 10.1111/j.1750-3639.2003.tb00033.x

Pattern of Hypocretin (Orexin) Soma and Axon Loss, and Gliosis, in Human Narcolepsy

Thomas C Thannickal 1,*, Jerome M Siegel 1,*,, Robert Nienhuis 1, Robert Y Moore 2
PMCID: PMC8096007  PMID: 12946023

Abstract

Human narcolepsy is correlated with a greatly reduced number of hypocretin (orexin) containing neurons and axons, and an elevated level of hypothalamic gliosis. We now report that the percentage loss of Hcrt cells and percentage elevation of GFAP staining are variable across forebrain and brainstem nuclei, and are maximal in the posterior and tuberomammillary hypothalamic region. Regional gliosis and percent loss of hypocretin axons in narcoleptics are not correlated with regional hypocretin cell soma density in normals or with regional percent soma loss in narcoleptics. Rather they are independently and strongly correlated with the regional density of hypocretin axons and the message density for hypocretin receptor 2, as quantified in the rat. These results are consistent with the hypotheses that the loss of hypocretin function in narcolepsy results from a cytotoxic or immunologically mediated attack focused on hypocretin receptor 2 or an antigen anatomically linked to hypocretin receptor 2, and that this process is intensified in regions of high axonal density.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

References

  • 1. Airaksinen MS, Panula P (1988) The histaminergic system in the guinea pig central nervous system: an immunocytochemical mapping study using an antiserum against histamine. J Comp Neurol 273:163–186. [DOI] [PubMed] [Google Scholar]
  • 2. Aldrich MS (1998) Diagnostic aspects of narcolepsy. Neurology 50:S2–7. [DOI] [PubMed] [Google Scholar]
  • 3. Bayer L, Eggermann E, Serafin M, Saint‐Mleux B, Machard D, Jones B, Muhlethaler M (2001) Orexins (hypocretins) directly excite tuberomammillary neurons. Eur J Neurosci 14:1571–1575. [DOI] [PubMed] [Google Scholar]
  • 4. Burlet S, Tyler CJ, Leonard CS (2002) Direct and indirect excitation of laterodorsal tegmental neurons by Hypocretin/Orexin peptides: implications for wakefulness and narcolepsy. J Neurosci 22:2862–2872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M (1999) Narcolepsy in orexin knockout mice: Molecular genetics of sleep regulation. Cell 98:437–451. [DOI] [PubMed] [Google Scholar]
  • 6. Chemelli RM, Sinton CM, Yanagisawa M (2000) Polysomnographic characterization of orexin‐2 receptor knockout mice. Sleep 23:A296–A297. [Google Scholar]
  • 7. DeArmond SJ, Fusco MM, Dewey (1989) Structure of the human brain a photographic atlas, third edition, Oxford University Press. [Google Scholar]
  • 8. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG. (1998) The hypocretins: hypothalamus‐specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95:322–327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Eriksson KS, Sergeeva O, Brown RE (2001) Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci 21:9273–9279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Guilleminault C. Narcolepsy syndrome (1994) In: Principles and practice of sleep medicine, Kryger M.H., Roth T., and Dement W.C., eds. ( Philadelphia : W.B. Saunders Company; ). [Google Scholar]
  • 11. Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, Sugiyama F, Yagami K, Goto K, Yanagisawa M, Sakurai T (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30:345–354. [DOI] [PubMed] [Google Scholar]
  • 12. Harvald B (1989) Genetic epidemiology of Greenland. Clin Genet 36:364–367. [DOI] [PubMed] [Google Scholar]
  • 13. Hebebrand J, Friedl W (1987) Phylogenetic receptor research: implications in studying psychiatric and neurological disease. J Psychiatr Res 21:531–537. [DOI] [PubMed] [Google Scholar]
  • 14. Hebebrand J, Friedl W, Reichelt R, Schmitz E, Moller P, Propping P (1988) The shark GABA‐benzodiazepine receptor: further evidence for a not so late phylogenetic appearance of the benzodiazepine receptor. Brain Res 446:251–261. [DOI] [PubMed] [Google Scholar]
  • 15. Honda Y, Doi Y, Juji T, Satake M (1984) Narcolepsy and HLA: Positive DR2 as a prerequisite for the development of narcolepsy. Folia Psychiatr Neurol Jpn 38:360. [Google Scholar]
  • 16. Howard CV, Reed MG (1998) Unbiased stereology: three dimensional measurement in microscopy ( New York : Springer‐Verg; ). [Google Scholar]
  • 17. Hoyer D, Schoeffter P, Waeber C, Palacios JM (1990) Serotonin 5‐HT1D receptors. Ann NY Acad Sci 600:168–181. [DOI] [PubMed] [Google Scholar]
  • 18. Huang ZL, Qu WM, Li WD, Mochizuki T, Eguchi N, Watanabe T, Urade Y, Hayaishi O (2001) Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci USA 98:9965–9970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Jiao Y, Sun Z, Lee T, Fusco FR, Kimble TD, Meade CA, Cuthbertson S, Reiner A (1999) A simple and sensitive antigen retrieval method for free‐floating and slide‐mounted tissue sections. J Neurosci Methods 93:149–162. [DOI] [PubMed] [Google Scholar]
  • 20. Kapsimali M, Dumond H, Le Crom S, Coudouel S, Vincent JD, Vernier P (2000) Evolution and development of dopaminergic neurotransmitter systems in vertebrates. J Soc Biol 194:87–93. [PubMed] [Google Scholar]
  • 21. Kisanuki Y, Chemelli RM, Sinton CM, Williams SC, Richardson JA, Hammer RE, Yanagisawa M (2000) The role of orexin receptor type‐1 (OX1R) in the regulation of sleep. Sleep 23:A91. [Google Scholar]
  • 22. Kiyashchenko LI, Mileykovskiy BY, Lai, YY , Siegel JM (2001) Increased and decreased muscle tone with orexin (hypocretin) microinjections in the locus coeruleus and pontine inhibitory area. J Neurophysiol 85:2008–2016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Kiyashchenko LI, Mileykovskiy BY, Maidment N, Lam HA, Wu MF, John J, Peever J, Siegel JM (2002) Release of hypocretin (orexin) during waking and sleep states. J Neurosci 22:5282–5286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Lai YY, Kodama T, Siegel JM (2001) Changes in monoamine release in the ventral horn and hypoglossal nucleus linked to pontine inhibition of muscle tone: an in vivo microdialysis study. J Neurosci 21:7384–91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Larsen JO (1998) Stereology of nerve cross sections. J Neurosci Methods 85:107–18. [DOI] [PubMed] [Google Scholar]
  • 26. Leslie RD, Hawa M (1994) Twin studies in autoimmune disease. Acta Genet Med Gemellol (Roma) 43:71–81. [DOI] [PubMed] [Google Scholar]
  • 27. Lin JS, Luppi PH, Salvert D, Sakai K, Jouvet M (1986) Histamine‐immunoreactive neurons in the hypothalamus of cats. C R Acad Sc Paris 303:371–376. [PubMed] [Google Scholar]
  • 28. Lin JS, Sakai K, Vanni‐Mercier G, Jouvet M (1989) A critical role of the posterior hypothalamus in the mechanisms of wakefulness determined by microinjection of muscimol in freely moving cats. Brain Res 479:225–240. [DOI] [PubMed] [Google Scholar]
  • 29. Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S, Mignot E (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365–376. [DOI] [PubMed] [Google Scholar]
  • 30. Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, Elmquist JK (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435:6–25. [DOI] [PubMed] [Google Scholar]
  • 31. Mignot E, Lin L, Rogers W (2001) Complex HLA‐DR and ‐DQ interactions confer risk of narcolepsy‐cataplexy in three ethnic groups. Am J Hum Genet 68:686–699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Moore RY, Abrahamson EA, van den Pol A (2001). The hypocretin neuron system: an arousal system in the human brain. Arch Ital de Biol 139:195–206. [PubMed] [Google Scholar]
  • 33. Naito S (1986) The association of HLA with diseases in Japanese. Jinrui Idengaku Zasshi 31:323–329. [DOI] [PubMed] [Google Scholar]
  • 34. Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K (1999) Distribution of orexin neurons in the adult rat brain. Brain Res 827:243–60. [DOI] [PubMed] [Google Scholar]
  • 35. Nishino S, Fujiki N, Ripley B, Sakurai E, Kato M, Watanabe T, Mignot E, Yanai K (2001) Decreased brain histamine content in hypocretin/orexin receptor‐2 mutated narcoleptic dogs. Neurosci Lett 313:125–128. [DOI] [PubMed] [Google Scholar]
  • 36. Nishino S, Sakurai E, Nvsimalova S, Vankova J, Yoshida Y, Watanabe T, Yanai K, Mignot E (2002) CSF histamine content is decreased in hypocretin‐deficient human narcolepsy. Sleep 25:A476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Panula P, Yang HY, Costa E (1984) Histamine‐containing neurons in the rat hypothalamus. Proc Natl Acad Sci U S A 81:2572–2576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Peever JH, Lai YY, Siegel JM (2002) Excitatory effects of hypocretin in the trigeminal nucleus are reversed by NMDA antagonism. J Neurophysiol (in press). [DOI] [PubMed] [Google Scholar]
  • 39. Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, Nevsimalova S, Aldrich M, Reynolds D, Albin R, Li R, Hungs M, Pedrazzoli M, Padigaru M, Kucherlapati M, Fan J, Maki R, Lammers GJ, Bouras C, Kucherlapati R, Nishino S, Mignot E (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6:991–997. [DOI] [PubMed] [Google Scholar]
  • 40. Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR et al (1998) Orexin s and orexin receptors: a family of hypothalamic neuropeptides and G protein‐coupled receptors that regulate feeding behavior. Cell 92:573–85. [DOI] [PubMed] [Google Scholar]
  • 42. Schmitz E, Reichelt R, Walkowiak W, Richards JG, Hebebrand J (1988) A comparative phylogenetic study of the distribution of cerebellar ABAA/benzodiazepine receptors using radioligands and monoclonal antibodies. Brain Res 473:314–320. [DOI] [PubMed] [Google Scholar]
  • 43. Siegel JM (1999) Narcolepsy: A key role for hypocretins (orexins). Cell 98:409–412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Steininger TL, Alam MN, Gong H, Szymusiak R, McGinty D (1999) Sleep‐waking discharge of neurons in the posterior lateral hypothalamus of the albino rat. Brain Res 840:138–147. [DOI] [PubMed] [Google Scholar]
  • 45. Thannickal TC, Moore RY, Aldrich M, Albin R, Cornford M, Siegel JM (2000) Human narcolepsy is linked to reduced number, size and synaptic bouton density in hypocretin‐2 labeled neurons. Abstr Soc Neurosci 26:2061–2061. [Google Scholar]
  • 46. Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, Cornford M, Siegel JM (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27:469–474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Thannickal TC, Nienhuis R, Ramanathan L, Gulyani S, Turner K, Chestnut B, Siegel JM (2000) Preservation of hypocretin neurons in genetically narcoleptic dogs. Sleep 23 A296. [Google Scholar]
  • 48. Thannickal TC, Moore RY, Nienhuis R, Siegel JM (2002) Increased number of astrocytes and reduced density of hypocretin/orexin fibers in human narcolepsy. Sleep 25A:354–355. [Google Scholar]
  • 49. Trivedi P, Yu H, MacNeil DJ, van der Ploeg LH, Guan XM (1998) Distribution of orexin receptor mRNA in the rat brain. FEBS Lett 438:71–75. [DOI] [PubMed] [Google Scholar]
  • 50. van den Pol AN, Gao XB, Obrietan K, Kilduff TS, Belousov AB (1998) Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. J Neurosci 18:7962–7971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Verge D, Calas A (2000) Serotoninergic neurons and serotonin receptors: gains from cytochemical approaches. J Chem Neuroanat 18:41–56. [DOI] [PubMed] [Google Scholar]
  • 52. Wagner D, Salin‐Pascual R, Greco MA, Shiromani PJ (2000) Distribution of hypocretin‐containing neurons in the lateral hypothalamus and C‐fos‐immunoreactive neurons in the VLPO. Sleep Res Online 3:35–42. [PubMed] [Google Scholar]
  • 53. Wu MF, Gulyani SA, Yau E, Mignot E, Phan B, Siegel JM (1999) Locus coeruleus neurons: cessation of activity during cataplexy. Neuroscience 91:1389–1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Yamanaka A, Tsujino N, Funahashi H, Honda K, Guan JL, Wang QP, Tominaga M, Goto K, Shioda S, Sakurai T (2002) Orexins activate histaminergic neurons via the orexin 2 receptor. Biochem Biophys Res Commun 290:1237–1245. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES