Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;15(3):250–260. doi: 10.1111/j.1750-3639.2005.tb00528.x

Perinatal Subplate Neuron Injury: Implications for Cortical Development and Plasticity

P S McQuillen 1,, D M Ferriero 2
PMCID: PMC8096042  PMID: 16196392

Abstract

Perinatal brain injury may result in widespread deficits in visual, motor and cognitive systems suggesting disrupted brain development. Neurosensory and cognitive impairment are observed at increasing frequency with decreasing gestational ages, suggesting a unique vulnerability of the developing brain. The peak of human subplate neuron development coincides with the gestational ages of highest vulnerability to perinatal brain injury in the premature infant. At the same time, human thalamocortical connections are forming and being refined by activity‐dependent mechanisms during critical periods. Subplate neurons are the first cortical neurons to mature and are selectively vulnerable to early hypoxic‐ischemic brain injury in animal models. Timing of subplate neuron death determines the resulting defect in thalamocortical development: very early excitotoxic subplate neuron death results in failure of thalamocortical innervation, while later subplate neuron death interferes with the refinement of thalamocortical connections into mature circuits. We suggest that subplate neuron injury may be a central component of perinatal brain injury resulting in specific neurodevelopmental consequences.

Full Text

The Full Text of this article is available as a PDF (396.9 KB).

References

  • 1. Abu‐Khalil A, Fu L, Grove EA, Zecevic N, Geschwind DH (2004) Wnt genes define distinct boundaries in the developing human brain: implications for human forebrain patterning. J Comp Neurol 474:276–288. [DOI] [PubMed] [Google Scholar]
  • 2. Al‐Ghoul WM, Miller MW (1989) Transient expression of Alz‐50 immunoreactivity in developing rat neocortex: a marker for naturally occurring neuronal death Brain Res 481:361–367. [DOI] [PubMed] [Google Scholar]
  • 3. Allendoerfer KL, Shatz CJ (1994) The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu Rev Neurosci 17:185–218. [DOI] [PubMed] [Google Scholar]
  • 4. Allendoerfer KL, Shelton DL, Shooter EM, Shatz CJ (1990) Nerve growth factor receptor immunoreactivity is transiently associated with the subplate neurons of the mammalian cerebral cortex. Proc Natl Acad Sci U S A 87:187–190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Anderson SA, Marin O, Horn C, Jennings K, Rubenstein JL (2001) Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128:353–363. [DOI] [PubMed] [Google Scholar]
  • 6. Antonini A, Shatz CJ (1990) Relation between putative transmitter phenotypes and connectivity of subplate neurons during cerebral cortical development. Eur J Neurosci 2:744–761. [DOI] [PubMed] [Google Scholar]
  • 7. Arias MS, Baratta J, Yu J, Robertson RT (2002) Absence of selectivity in the loss of neurons from the developing cortical subplate of the rat. Dev Brain Res 139:331–335. [DOI] [PubMed] [Google Scholar]
  • 8. Arimatsu Y, Ishida M, Kaneko T, Ichinose S, Omori A (2003) Organization and development of corticocortical associative neurons expressing the orphan nuclear receptor Nurr1. J Comp Neurol 466:180–196. [DOI] [PubMed] [Google Scholar]
  • 9. Back SA, Han BH, Luo NL, Chricton CA, Xanthoudakis S, Tam J, Arvin KL, Holtzman DM (2002) Selective vulnerability of late oligodendrocyte progenitors to hypoxia‐ ischemia. J Neurosci 22:455–463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Banker BQ, Larroche JC (1962) Periventricular leukomalacia of infancy. A form of neonatal anoxic encephalopathy. Arch Neurol 7:386–410. [DOI] [PubMed] [Google Scholar]
  • 11. Bayer SA, Altman J (1990) Development of layer I and the subplate in the rat neocortex. Exp Neurol 107:48–62. [DOI] [PubMed] [Google Scholar]
  • 12. Bayer SA, Altman J, Russo RJ, Zhang X (1993) Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology 14:83–144. [PubMed] [Google Scholar]
  • 13. Bicknese AR, Sheppard AM, O'Leary DD, Pearlman AL (1994) Thalamocortical axons extend along a chondroitin sulfate proteoglycan‐enriched pathway coincident with the neocortical subplate and distinct from the efferent path. J Neurosci 14:3500–3510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Cabelli RJ, Hohn A, Shatz CJ (1995) Inhibition of ocular dominance column formation by infusion of NT‐4/5 or BDNF. Science 267:1662–1666. [DOI] [PubMed] [Google Scholar]
  • 15. Cabelli RJ, Shelton DL, Segal RA, Shatz CJ (1997) Blockade of endogenous ligands of trkB inhibits formation of ocular dominance columns. Neuron 19:63–76. [DOI] [PubMed] [Google Scholar]
  • 16. Catalano SM, Chang CK, Shatz CJ (1997) Activity‐dependent regulation of NMDAR1 immunoreactivity in the developing visual cortex. J Neurosci 17:8376–8390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Catalano SM, Robertson RT, Killackey HP (1991) Early ingrowth of thalamocortical afferents to the neocortex of the prenatal rat. Proc Natl Acad Sci U S A 88:2999–3003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Catalano SM, Robertson RT, Killackey HP (1996) Individual axon morphology and thalamocortical topography in developing rat somatosensory cortex. J Comp Neurol 367:36–53. [DOI] [PubMed] [Google Scholar]
  • 19. Chun JJ, Nakamura MJ, Shatz CJ (1987) Transient cells of the developing mammalian telencephalon are peptide‐immunoreactive neurons. Nature 325:617–620. [DOI] [PubMed] [Google Scholar]
  • 20. Chun JJ, Shatz CJ (1988) A fibronectin‐like molecule is present in the developing cat cerebral cortex and is correlated with subplate neurons. J Cell Biol 106:857–872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Chun JJ, Shatz CJ (1989) The earliest‐generated neurons of the cat cerebral cortex: characterization by MAP2 and neurotransmitter immunohistochemistry during fetal life. J Neurosci 9:1648–1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Chun JJ, Shatz CJ (1989) Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population. J Comp Neurol 282:555–569. [DOI] [PubMed] [Google Scholar]
  • 23. Cioni G, Fazzi B, Coluccini M, Bartalena L, Boldrini A, van Hof‐van Duin J (1997) Cerebral visual impairment in preterm infants with periventricular leukomalacia. Pediatr Neurol 17:331–338. [DOI] [PubMed] [Google Scholar]
  • 24. Clancy B, Silva‐Filho M, Friedlander MJ (2001) Structure and projections of white matter neurons in the postnatal rat visual cortex. J Comp Neurol 434:233–252. [DOI] [PubMed] [Google Scholar]
  • 25. Compagnone NA, Bulfone A, Rubenstein JL, Mellon SH (1995) Steroidogenic enzyme P450c17 is expressed in the embryonic central nervous system. Endocrinology 136:5212–5223. [DOI] [PubMed] [Google Scholar]
  • 26. Counsell SJ, Allsop JM, Harrison MC, Larkman DJ, Kennea NL, Kapellou O, Cowan FM, Hajnal JV, Edwards AD, Rutherford MA (2003) Diffusion‐weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 112:1–7. [DOI] [PubMed] [Google Scholar]
  • 27. Crandall JE, Jacobson M, Kosik KS (1986) Ontogenesis of microtubule‐associated protein 2 (MAP2) in embryonic mouse cortex. Brain Res 393:127–133. [DOI] [PubMed] [Google Scholar]
  • 28. Daw N (1995) Visual development. Plenum Press: New York . [Google Scholar]
  • 29. de Carlos JA, O'Leary DD (1992) Growth and targeting of subplate axons and establishment of major cortical pathways. J Neurosci 12:1194–1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. DeFreitas MF, McQuillen PS, Shatz CJ (2001) A novel p75NTR signaling pathway promotes survival, not death, of immunopurified neocortical subplate neurons. J Neurosci 21:5121–5129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Deguchi K, Oguchi K, Takashima S (1997) Characteristic neuropathology of leukomalacia in extremely low birth weight infants. Pediatr Neurol 16:296–300. [DOI] [PubMed] [Google Scholar]
  • 32. Del Rio JA, Martinez A, Auladell C, Soriano E (2000) Developmental history of the subplate and developing white matter in the murine neocortex. Neuronal organization and relationship with the main afferent systems at embryonic and perinatal stages. Cereb Cortex 10:784–801. [DOI] [PubMed] [Google Scholar]
  • 33. Del Rio JA, Soriano E, Ferrer I (1991) A transitory population of substance P‐like immunoreactive neurones in the developing cerebral cortex of the mouse. Dev Brain Res 64:205–211. [DOI] [PubMed] [Google Scholar]
  • 34. Delalle I, Evers P, Kostovic I, Uylings HB (1997) Laminar distribution of neuropeptide Y‐immunoreactive neurons in human prefrontal cortex during development. J Comp Neurol 379:515–522. [DOI] [PubMed] [Google Scholar]
  • 35. Deng J, Elberger AJ (2003) Corticothalamic and thalamocortical pathfinding in the mouse: dependence on intermediate targets and guidance axis. Anat Embryol (Berl) 207:177–192. [DOI] [PubMed] [Google Scholar]
  • 36. Derer P, Derer M (1993) Ontogenesis of NADPH‐diaphorase neurons in the mouse forebrain. Neurosci Lett 152:21–24. [DOI] [PubMed] [Google Scholar]
  • 37. Dunn JA, Kirsch JD, Naegele JR (1995) Transient immunoglobulin‐like molecules are present in the subplate zone and cerebral cortex during postnatal development. Cereb Cortex 5:494–505. [DOI] [PubMed] [Google Scholar]
  • 38. Dziegielewska KM, Daikuhara Y, Ohnishi T, Waite MP, Ek J, Habgood MD, Lane MA, Potter A, Saunders NR (2000) Fetuin in the developing neocortex of the rat: distribution and origin. J Comp Neurol 423:373–388. [DOI] [PubMed] [Google Scholar]
  • 39. Dziegielewska KM, Moller JE, Potter AM, Ek J, Lane MA, Saunders NR (2000) Acute‐phase cytokines IL‐1beta and TNF‐alpha in brain development. Cell Tissue Res 299:335–345. [DOI] [PubMed] [Google Scholar]
  • 40. Erzurumlu RS, Jhaveri S (1992) Emergence of connectivity in the embryonic rat parietal cortex. Cereb Cortex 2:336–352. [DOI] [PubMed] [Google Scholar]
  • 41. Evans M, Ferriero DM, McQuillen PS. 2004. Impaired Cortical Plasticity Following Neonatal Hypoxia Ischemia . Presented at Soc for Neuroscience, San Diego.
  • 42. Fagiolini M, Pizzorusso T, Berardi N, Domenici L, Maffei L (1994) Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res 34:709–720. [DOI] [PubMed] [Google Scholar]
  • 43. Fairen A, Smith‐Fernandez A, Marti E, DeDiego I, de la Rosa EJ (1992) A transient immunoglobulin‐like reactivity in the developing cerebral cortex of rodents. Neuroreport 3:881–884. [DOI] [PubMed] [Google Scholar]
  • 44. Feldman SC, Harris MR, Laemle LK (1990) The maturation of the somatostatin systems in the rat visual cortex. Peptides 11:1055–1064. [DOI] [PubMed] [Google Scholar]
  • 45. Ferrer I, Bernet E, Soriano E, del Rio T, Fonseca M (1990) Naturally occurring cell death in the cerebral cortex of the rat and removal of dead cells by transitory phagocytes. Neuroscience 39:451–458. [DOI] [PubMed] [Google Scholar]
  • 46. Ferriero DM (2004) Neonatal brain injury. N Engl J Med 351:1985–1995. [DOI] [PubMed] [Google Scholar]
  • 47. Finney EM, Stone JR, Shatz CJ (1998) Major glutamatergic projection from subplate into visual cortex during development. J Comp Neurol 398:105–118. [PubMed] [Google Scholar]
  • 48. Firth SI, Wang CT, Feller MB (2005) Retinal waves: mechanisms and function in visual system development. Cell Calcium 37:425–432. [DOI] [PubMed] [Google Scholar]
  • 49. Friauf E, McConnell SK, Shatz CJ (1990) Functional synaptic circuits in the subplate during fetal and early postnatal development of cat visual cortex. J Neurosci 10:2601–2613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Friauf E, Shatz CJ (1991) Changing patterns of synaptic input to subplate and cortical plate during development of visual cortex. J Neurophysiol 66:2059–2071. [DOI] [PubMed] [Google Scholar]
  • 51. Furuta A, Martin LJ (1999) Laminar segregation of the cortical plate during corticogenesis is accompanied by changes in glutamate receptor expression. J Neurobiol 39:67–80. [PubMed] [Google Scholar]
  • 52. Garel S, Rubenstein JL (2004) Intermediate targets in formation of topographic projections: inputs from the thalamocortical system. Trends Neurosci 27:533–539. [DOI] [PubMed] [Google Scholar]
  • 53. Ghosh A, Antonini A, McConnell SK, Shatz CJ (1990) Requirement for subplate neurons in the formation of thalamocortical connections. Nature 347:179–181. [DOI] [PubMed] [Google Scholar]
  • 54. Ghosh A, Shatz CJ (1992) Involvement of subplate neurons in the formation of ocular dominance columns. Science 255:1441–1443. [DOI] [PubMed] [Google Scholar]
  • 55. Ghosh A, Shatz CJ (1992) Pathfinding and target selection by developing geniculocortical axons. J Neurosci 12:39–55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Ghosh A, Shatz CJ (1993) A role for subplate neurons in the patterning of connections from thalamus to neocortex. Development 117:1031–1047. [DOI] [PubMed] [Google Scholar]
  • 57. Ghosh A, Shatz CJ (1994) Segregation of geniculocortical afferents during the critical period: a role for subplate neurons. J Neurosci 14:3862–3880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Goodyear BG, Nicolle DA, Menon RS (2002) High resolution fMRI of ocular dominance columns within the visual cortex of human amblyopes. Strabismus 10:129–136. [DOI] [PubMed] [Google Scholar]
  • 59. Gordon JA, Stryker MP (1996) Experience‐dependent plasticity of binocular responses in the primary visual cortex of the mouse. J Neurosci 16:3274–3286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Grubb MS, Thompson ID (2004) The influence of early experience on the development of sensory systems. Curr Opin Neurobiol 14:503–512. [DOI] [PubMed] [Google Scholar]
  • 61. Guyer B, Hoyert DL, Martin JA, Ventura SJ, MacDorman MF, Strobino DM (1999) Annual summary of vital statistics‐1998. Pediatrics 104:1229–1246. [DOI] [PubMed] [Google Scholar]
  • 62. Hack M, Fanaroff AA (1999) Outcomes of children of extremely low birthweight and gestational age in the 1990's. Early Hum Dev 53:193–218. [DOI] [PubMed] [Google Scholar]
  • 63. Hamre KM, Hyman BT, Goodlett CR, West JR, van Hoesen GW (1989) Alz‐50 immunoreactivity in the neonatal rat: changes in development and co‐distribution with MAP‐2 immunoreactivity. Neurosci Lett 98:264–271. [DOI] [PubMed] [Google Scholar]
  • 64. Hamrick SE, Miller SP, Leonard C, Glidden DV, Goldstein R, Ramaswamy V, Piecuch R, Ferriero DM (2004) Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: the role of cystic periventricular leukomalacia. J Pediatr 145:593–599. [DOI] [PubMed] [Google Scholar]
  • 65. Hanganu IL, Kilb W, Luhmann HJ (2002) Functional synaptic projections onto subplate neurons in neonatal rat somatosensory cortex. J Neurosci 22:7165–7176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66. Hata Y, Tsumoto T, Stryker MP (1999) Selective pruning of more active afferents when cat visual cortex is pharmacologically inhibited. Neuron 22:375–381. [DOI] [PubMed] [Google Scholar]
  • 67. Hensch TK, Fagiolini M (2005) Excitatory‐inhibitory balance and critical period plasticity in developing visual cortex. Prog Brain Res 147:115–124. [DOI] [PubMed] [Google Scholar]
  • 68. Henschel R, Wahle P (1994) The SP1 antigen in subplate neurons of the developing cat cortex is an immunoglobulin‐like molecule. Eur J Neurosci 6:1239–1246. [DOI] [PubMed] [Google Scholar]
  • 69. Herrmann K (1996) Differential distribution of AMPA receptors and glutamate during pre‐ and postnatal development in the visual cortex of ferrets. J Comp Neurol 375:1–17. [DOI] [PubMed] [Google Scholar]
  • 70. Heuer H, Christ S, Friedrichsen S, Brauer D, Winckler M, Bauer K, Raivich G (2003) Connective tissue growth factor: a novel marker of layer VII neurons in the rat cerebral cortex. Neuroscience 119:43–52. [DOI] [PubMed] [Google Scholar]
  • 71. Hevner RF (2000) Development of connections in the human visual system during fetal mid‐gestation: a Dil‐tracing study. J Neuropathol Exp Neurol 59:385–392. [DOI] [PubMed] [Google Scholar]
  • 72. Hevner RF, Neogi T, Englund C, Daza RA, Fink A (2003) Cajal‐Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggesta pallial origin. Dev Brain Res 141:39–53. [DOI] [PubMed] [Google Scholar]
  • 73. Hevner RF, Shi L, Justice N, Hsueh Y, Sheng M, Smiga S, Bulfone A, Goffinet AM, Campagnoni AT, Rubenstein JL (2001) Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29:353–366. [DOI] [PubMed] [Google Scholar]
  • 74. Hitchcock PF, Hickey TL (1980) Ocular dominance columns: evidence for their presence in humans. Brain Res 182:176–179. [DOI] [PubMed] [Google Scholar]
  • 75. Hitchcock PF, Hickey TL (1980) Prenatal development of the human lateral geniculate nucleus. J Comp Neurol 194:395–411. [DOI] [PubMed] [Google Scholar]
  • 76. Honig LS, Herrmann K, Shatz CJ (1996) Developmental changes revealed by immunohistochemical markers in human cerebral cortex. Cereb Cortex 6:794–806. [DOI] [PubMed] [Google Scholar]
  • 77. Horton JC, Dagi LR, McCrane EP, de Monasterio FM (1990) Arrangement of ocular dominance columns in human. Arch Ophthalmol 108:1025–1031. [DOI] [PubMed] [Google Scholar]
  • 78. Horton JC, Hocking DR (1996) An adult‐like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience. J Neurosci 16:1791–1807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79. Horton JC, Hocking DR (1997) Timing of the critical period for plasticity of ocular dominance columns in macaque striate cortex. J Neurosci 17:3684–3709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Horton JC, Stryker MP (1993) Amblyopia induced by anisometropia without shrinkage columns in human striate cortex. Proc Natl Acad Sci U S A 90:5494–5498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81. Hubel DH, Wiesel TN (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol 206:419–436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. Hunter DD, Llinas R, Ard M, Merlie JP, Sanes JR (1992) Expression of s‐laminin and laminin in the developing rat central nervous system. J Comp Neurol 323:238–251. [DOI] [PubMed] [Google Scholar]
  • 83. Huntley GW, Hendry SH, Killackey HP, Chalupa LM, Jones EG (1988) Temporal sequence of neurotransmitter expression by developing neurons of fetal monkey visual cortex. Brain Res 471:69–96. [DOI] [PubMed] [Google Scholar]
  • 84. Inder TE, Huppi PS, Warfield S, Kikinis R, Zientara GP, Barnes PD, Jolesz F, Volpe JJ (1999) Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Ann Neurol 46:755–760. [DOI] [PubMed] [Google Scholar]
  • 85. Judas M, Sestan N, Kostovic I (1999) Nitrinergic neurons in the developing and adult human telencephalon: transient and permanent patterns of expression in comparison to other mammals. Microsc Res Tech 45:401–419. [DOI] [PubMed] [Google Scholar]
  • 86. Kanold PO (2004) Transient microcircuits formed by subplate neurons and their role in functional development of thalamocortical connections. Neuroreport 15:2149–2153. [DOI] [PubMed] [Google Scholar]
  • 87. Kanold PO, Kara P, Reid RC, Shatz CJ (2003) Role of subplate neurons in functional maturation of visual cortical columns. Science 301:521–525. [DOI] [PubMed] [Google Scholar]
  • 88. Kanold PO, Shatz CJ. 2005. Subplate neurons regulate the sign of ocular dominance column plasticity. Presented at Annual Meeting, Soc for Neurosci, San Diego.
  • 89. Khan AA, Wadhwa S, Bijlani V (1994) Development of human lateral geniculate nucleus: an electron microscopic study. Int J Dev Neurosci 12:661–672. [DOI] [PubMed] [Google Scholar]
  • 90. Koh S, Higgins GA (1991) Differential regulation of the low‐affinity nerve growth factor receptor during postnatal development of the rat brain. J Comp Neurol 313:494–508. [DOI] [PubMed] [Google Scholar]
  • 91. Kordower JH, Mufson EJ (1992) Nerve growth factor receptor‐immunoreactive neurons within the developing human cortex. J Comp Neurol 323:25–41. [DOI] [PubMed] [Google Scholar]
  • 92. Kostovic I, Judas M (2002) Correlation between the sequential ingrowth of afferents and transient patterns of cortical lamination in preterm infants. Anat Rec 267:1–6. [DOI] [PubMed] [Google Scholar]
  • 93. Kostovic I, Judas M, Rados M, Hrabac P (2002) Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb Cortex 12:536–544. [DOI] [PubMed] [Google Scholar]
  • 94. Kostovic I, Rakic P (1980) Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol 9:219–242. [DOI] [PubMed] [Google Scholar]
  • 95. Kostovic I, Rakic P (1984) Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesterase staining. J Neurosci 4:25–42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96. Kostovic I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297:441–470. [DOI] [PubMed] [Google Scholar]
  • 97. Kostovic I, Stefulj‐Fucic A, Mrzljak L, Jukic S, Delalle I (1991) Prenatal and perinatal development of the somatostatin‐immunoreactive neurons in the human prefrontal cortex. Neurosci Lett 124:153–156. [DOI] [PubMed] [Google Scholar]
  • 98. Landry CF, Pribyl TM, Ellison JA, Givogri MI, Kampf K, Campagnoni CW, Campagnoni AT (1998) Embryonic expression of the myelin basic protein gene: identification of a promoter region that targets transgene expression to pioneer neurons. J Neurosci 18:7315–7327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99. Lanzi G, Fazzi E, Uggetti C, Cavallini A, Danova S, Egitto MG, Ginevra OF, Salati R, Bianchi PE (1998) Cerebral visual impairment in periventricular leukomalacia. Neuropediatrics 29:145–150. [DOI] [PubMed] [Google Scholar]
  • 100. Lauder JM, Han VK, Henderson P, Verdoorn T, Towle AC (1986) Prenatal ontogeny of the GA‐BAergic system in the rat brain: an immunocytochemical study. Neuroscience 19:465–493. [DOI] [PubMed] [Google Scholar]
  • 101. Lein ES, Finney EM, McQuillen PS, Shatz CJ (1999) Subplate neuron ablation alters neurotrophin expression and ocular dominance column formation. Proc Natl Acad Sci U S A 96:13491–13495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102. LeVay S, Hubel DH, Wiesel TN (1975) The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain. J Comp Neurol 159:559–576. [DOI] [PubMed] [Google Scholar]
  • 103. LeVay S, Stryker MP, Shatz CJ (1978) Ocular dominance columns and their development in layer IV of the cat's visual cortex: a quantitative study. J Comp Neurol 179:223–244. [DOI] [PubMed] [Google Scholar]
  • 104. LeVay S, Wiesel TN, Hubel DH (1980) The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol 191:1–51. [DOI] [PubMed] [Google Scholar]
  • 105. Liu FC, Graybiel AM (1992) Transient calbindin‐D28k‐positive systems in the telencephalon: ganglionic eminence, developing striatum and cerebral cortex. J Neurosci 12:674–690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106. Lund RD, Mustari MJ (1977) Development of the geniculocortical pathway in rats. J Comp Neurol 173:289–306. [DOI] [PubMed] [Google Scholar]
  • 107. Luskin MB, Shatz CJ (1985) Studies of the earliest generated cells of the cat's visual cortex: cogeneration of subplate and marginal zones. J Neurosci 5:1062–1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108. Maalouf EF, Duggan PJ, Counsell SJ, Rutherford MA, Cowan F, Azzopardi D, Edwards AD (2001) Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics 107:719–727. [DOI] [PubMed] [Google Scholar]
  • 109. Maas LC, Mukherjee P, Carballido‐Gamio J, Veeraraghavan S, Miller SP, Partridge SC, Henry RG, Barkovich AJ, Vigneron DB (2004) Early laminar organization of the human cerebrum demonstrated with diffusion tensor imaging in extremely premature infants. Neuroimage 22:1134–1140. [DOI] [PubMed] [Google Scholar]
  • 110. Mackarehtschian K, Lau CK, Caras I, McConnell SK (1999) Regional differences in the developing cerebral cortex revealed by ephrin‐A5 expression. Cereb Cortex 9:601–610. [DOI] [PubMed] [Google Scholar]
  • 111. Marin O, Rubenstein JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483. [DOI] [PubMed] [Google Scholar]
  • 112. Marin‐Padilla M (1971) Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization. Z Anat Entwicklungsgesch 134:117–145. [DOI] [PubMed] [Google Scholar]
  • 113. Marty S, Berzaghi Mda P, Berninger B (1997) Neurotrophins and activity‐dependent plasticity of cortical interneurons. Trends Neurosci 20:198–202. [DOI] [PubMed] [Google Scholar]
  • 114. McConnell SK, Ghosh A, Shatz CJ (1989) Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science 245:978–982. [DOI] [PubMed] [Google Scholar]
  • 115. McConnell SK, Ghosh A, Shatz CJ (1994) Subplate pioneers and the formation of descending connections from cerebral cortex. J Neurosci 14:1892–1907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116. McQuillen PS, DeFreitas MF, Zada G, Shatz CJ (2002) A novel role for p75NTR in subplate growth cone complexity and visual thalamocortical innervation. J Neurosci 22:3580–3593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117. McQuillen PS, Ferriero DM (2004) Selective vulnerability in the developing central nervous system. Pediatr Neurol 30:227–235. [DOI] [PubMed] [Google Scholar]
  • 118. McQuillen PS, Sheldon RA, Shatz CJ, Ferriero DM (2003) Selective vulnerability of subplate neurons after early neonatal hypoxia‐ischemia. J Neurosci 23:3308–3315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119. Mehra RD, Hendrickson AE (1993) A comparison of the development of neuropeptide and MAP2 immunocytochemical labeling in the macaque visual cortex during pre‐ and postnatal development. J Neurobiol 24:101–124. [DOI] [PubMed] [Google Scholar]
  • 120. Meinecke DL, Rakic P (1993) Low‐affinity p75 nerve growth factor receptor expression in the embryonic monkey telencephalon: timing and localization in diverse cellular elements. Neuroscience 54:105–116. [DOI] [PubMed] [Google Scholar]
  • 121. Menon RS, Ogawa S, Strupp JP, Ugurbil K (1997) Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. J Neurophysiol 77:2780–2787. [DOI] [PubMed] [Google Scholar]
  • 122. Meyer G, Schaaps JP, Moreau L, Goffinet AM (2000) Embryonic and early fetal development of the human neocortex. J Neurosci 20:1858–1868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123. Miller B, Chou L, Finlay BL (1993) The early development of thalamocortical and corticothalamic projections. J Comp Neurol 335:16–41. [DOI] [PubMed] [Google Scholar]
  • 124. Miller SP, Ramaswamy V, Michelson D, Barkovich AJ, Holshouser B, Wycliffe N, Glidden DV, Deming D, Partridge JC, Wu YW, et al (2005) Patterns of brain injury in term neonatal encephalopathy. J Pediatr 146:453–460. [DOI] [PubMed] [Google Scholar]
  • 125. Miller SP, Vigneron DB, Henry RG, Bohland MA, Ceppi‐Cozzio C, Hoffman C, Newton N, Partridge JC, Ferriero DM, Barkovich AJ (2002) Serial quantitative diffusion tensor MRI of the premature brain: development in newborns with and without injury. J Magn Reson Imaging 16:621–632. [DOI] [PubMed] [Google Scholar]
  • 126. Miranda RC, Toran‐Allerand CD (1992) Developmental expression of estrogen receptor mRNA in the rat cerebral cortex: a nonisotopic in situ hybridization histochemistry study. Cereb Cortex 2:1–15. [DOI] [PubMed] [Google Scholar]
  • 127. Mollgard K, Jacobsen M (1984) Immunohistochemical identification of some plasma proteins in human embryonic and fetal forebrain with particular reference to the development of the neocortex. Brain Res 315:49–63. [DOI] [PubMed] [Google Scholar]
  • 128. Molnar Z, Kurotani T, Higashi S, Yamamoto N, Toyama K (2003) Development of functional thalamocortical synapses studied with current source‐density analysis in whole forebrain slices in the rat. Brain Res Bull 60:355–371. [DOI] [PubMed] [Google Scholar]
  • 129. Morishita H, Murata Y, Esumi S, Hamada S, Yagi T (2004) CNR/Pcdhalpha family in subplate neurons, and developing cortical connectivity. Neuroreport 15:2595–2599. [DOI] [PubMed] [Google Scholar]
  • 130. Naegele JR, Barnstable CJ, Wahle PR (1991) Expression of a unique 56‐kDa polypeptide by neurons in the subplate zone of the developing cerebral cortex. Proc Natl Acad Sci U S A 88:330–334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131. Neil JJ, Inder TE (2004) Imaging perinatal brain injury in premature infants. Semin Perinatol 28:433–443. [DOI] [PubMed] [Google Scholar]
  • 132. Ohyama K, Ikeda E, Kawamura K, Maeda N, Noda M (2004) Receptor‐like protein tyrosine phosphatase zeta/RPTP beta is expressed on tangentially aligned neurons in early mouse neocortex. Dev Brain Res 148:121–127. [DOI] [PubMed] [Google Scholar]
  • 133. Okoshi Y, Itoh M, Takashima S (2001) Characteristic neuropathology and plasticity in periventricular leukomalacia. Pediatr Neurol 25:221–226. [DOI] [PubMed] [Google Scholar]
  • 134. Oohira A, Matsui F, Watanabe E, Kushima Y, Maeda N (1994) Developmentally regulated expression of a brain specific species of chondroitin sulfate proteoglycan, neurocan, identified with a monoclonal antibody IG2 in the rat cerebrum. Neuroscience 60:145–157. [DOI] [PubMed] [Google Scholar]
  • 135. Piecuch RE, Leonard CH, Cooper BA, Kilpatrick SJ, Schlueter MA, Sola A (1997) Outcome of infants born at 24–26 weeks' gestation: II. Neurodevelopmental outcome. Obstet Gynecol 90:809–814. [DOI] [PubMed] [Google Scholar]
  • 136. Pinkstaff JK, Detterich J, Lynch G, Gall C (1999) Integrin subunit gene expression is regionally differentiated in adult brain. J Neurosci 19:1541–1556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137. Popp S, Andersen JS, Maurel P, Margolis RU (2003) Localization of aggrecan and versican in the developing rat central nervous system. Dev Dyn 227:143–149. [DOI] [PubMed] [Google Scholar]
  • 138. Price DJ, Aslam S, Tasker L, Gillies K (1997) Fates of the earliest generated cells in the developing murine neocortex. J Comp Neurol 377:414–422. [PubMed] [Google Scholar]
  • 139. Rakic P (1976) Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261:467–471. [DOI] [PubMed] [Google Scholar]
  • 140. Rice JEd, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic‐ischemic brain damage in the rat. Ann Neurol 9:131–141. [DOI] [PubMed] [Google Scholar]
  • 141. Robertson RT, Annis CM, Baratta J, Haraldson S, Ingeman J, Kageyama GH, Kimm E, Yu J (2000) Do subplate neurons comprise a transient population of cells in developing neocortex of rats J Comp Neurol 426:632–650. [DOI] [PubMed] [Google Scholar]
  • 142. Samuelsen GB, Larsen KB, Bogdanovic N, Laursen H, Graem N, Larsen JF, Pakkenberg B (2003) The changing number of cells in the human fetal forebrain and its subdivisions: a stereological analysis. Cereb Cortex 13:115–122. [DOI] [PubMed] [Google Scholar]
  • 143. Sandell JH (1986) NADPH diaphorase histochemistry in the macaque striate cortex. J Comp Neurol 251:388–397. [DOI] [PubMed] [Google Scholar]
  • 144. Shatz CJ (1996) Emergence of order in visual system development. Proc Natl Acad Sci U S A 93:602–608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145. Shatz CJ, Luskin MB (1986) The relationship between the geniculocortical afferents and their cortical target cells during development of the cat's primary visual cortex. J Neurosci 6:3655–3668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146. Shatz CJ, Stryker MP (1978) Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. J Physiol 281:267–283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147. Sheldon RA, Chuai J, Ferriero DM (1996) A rat model for hypoxic‐ischemic brain damage in very premature infants. Biol Neonate 69:327–341. [DOI] [PubMed] [Google Scholar]
  • 148. Sizonenko SV, Kiss JZ, Inder T, Gluckman P, Williams CE (2005) Distinctive neuropathologic alterations in the deep layers of the parietal cortex after moderate ischemic‐hypoxic injury in the P3 immature rat brain. Pediatr Res 57:865–872. [DOI] [PubMed] [Google Scholar]
  • 149. Sizonenko SV, Sirimanne E, Mayall Y, Gluckman PD, Inder T, Williams C (2003) Selective cortical alteration after hypoxic‐ischemic injury in the very immature rat brain. Pediatr Res 54:263–269. [DOI] [PubMed] [Google Scholar]
  • 150. Smith AL, Thompson ID (1999) Spatiotemporal patterning of glutamate receptors in developing ferret striate cortex. Eur J Neurosci 11:923–934. [DOI] [PubMed] [Google Scholar]
  • 151. Soriano E, Del Rio JA (2005) The cells of cajalretzius: still a mystery one century after. Neuron 46:389–394. [DOI] [PubMed] [Google Scholar]
  • 152. Stewart GR, Pearlman AL (1987) Fibronectinlike immunoreactivity in the developing cerebral cortex. J Neurosci 7:3325–3333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153. Stryker MP, Harris WA (1986) Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex . J Neuro-sci 6:2117–2133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154. Taha SA, Stryker MP (2005) Molecular substrates of plasticity in the developing visual cortex. Prog Brain Res 147:103–114. [DOI] [PubMed] [Google Scholar]
  • 155. Thewke DP, Seeds NW (1999) The expression of mRNAs for hepatocyte growth factor/scatter factor, its receptor c‐met, and one of its activators tissue‐type plasminogen activator show a systematic relationship in the developing and adult cerebral cortex and hippocampus. Brain Res 821:356–367. [DOI] [PubMed] [Google Scholar]
  • 156. Tissir F, Wang CE, Goffinet AM (2004) Expression of the chemokine receptor Cxcr4 mRNA during mouse brain development. Dev Brain Res 149:63–71. [DOI] [PubMed] [Google Scholar]
  • 157. Towfighi J, Mauger D, Vannucci RC, Vannucci SJ (1997) Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia‐ischemia: a light microscopic study. Dev Brain Res 100:149–160. [DOI] [PubMed] [Google Scholar]
  • 158. Uggetti C, Egitto MG, Fazzi E, Bianchi PE, Bergamaschi R, Zappoli F, Sibilla L, Martelli A, Lanzi G (1996) Cerebral visual impairment in periventricular leukomalacia: MR correlation. Am J Neuroradiol 17:979–985. [PMC free article] [PubMed] [Google Scholar]
  • 159. Ulfig N (2002) Calcium‐binding proteins in the human developing brain. Adv Anat Embryol Cell Biol 165:III–IX, 1–92. [PubMed] [Google Scholar]
  • 160. Ulfig N, Neudorfer F, Bohl J (2000) Transient structures of the human fetal brain: subplate, thalamic reticular complex, ganglionic eminence. Histol Histopathol 15:771–790. [DOI] [PubMed] [Google Scholar]
  • 161. Valverde F, Lopez‐Mascaraque L, de Carlos JA (1990) Distribution and morphology of Alz‐50‐immunoreactive cells in the developing visual cortex of kittens. J Neurocytol 19:662–671. [DOI] [PubMed] [Google Scholar]
  • 162. Vohr BR, Wright LL, Dusick AM, Mele L, Verter J, Steichen JJ, Simon NP, Wilson DC, Broyles S, Bauer CR, et al (2000) Neurodevelopmental and functional outcomes of extremely low birth weight infants in the National Institute of Child Health and Human Development Neonatal Research Network, 1993–1994. Pediatrics 105:1216–1226. [DOI] [PubMed] [Google Scholar]
  • 163. Volpe JJ (2001) Neurology of the newborn. W.B. Saunders: Philadelphia . [Google Scholar]
  • 164. Wahle P, Lubke J, Naegele JR (1994) Inverted pyramidal neurons and interneurons in cat cortical subplate zone are labelled by monoclonal antibody SP1 . Eur J Neurosci 6:1167–1178. [DOI] [PubMed] [Google Scholar]
  • 165. Weiner JA, Chun J (1997) Maternally derived immunoglobulin light chain is present in the fetal mammalian CNS . J Neurosci 17:3148–3156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166. Wolozin B, Scicutella A, Davies P (1988) Reexpression of a developmentally regulated antigen in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A 85:6202–6206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167. Woo TU, Beale JM, Finlay BL (1991) Dual fate of subplate neurons in a rodent. Cereb Cortex 1:433–443. [DOI] [PubMed] [Google Scholar]
  • 168. Wood JG, Martin S, Price DJ (1992) Evidence that the earliest generated cells of the murine cerebral cortex form a transient population in the subplate and marginal zone. Dev Brain Res 66:137–140. [DOI] [PubMed] [Google Scholar]
  • 169. Yan Q, Johnson EM, Jr. (1988) An immunohistochemical study of the nerve growth factor receptor in developing rats. J Neurosci 8:3481–3498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170. Zecevic N, Milosevic A (1997) Initial development of gamma‐aminobutyric acid immunoreactivity in the human cerebral cortex. J Comp Neurol 380:495–506. [DOI] [PubMed] [Google Scholar]
  • 171. Zecevic N, Milosevic A, Rakic S, Marin‐Padilla M (1999) Early development and composition of the human primordial plexiform layer: An immunohistochemical study. J Comp Neurol 412:241–254. [PubMed] [Google Scholar]
  • 172. Zhou C, Qiu Y, Pereira FA, Crair MC, Tsai SY, Tsai MJ (1999) The nuclear orphan receptor COUP‐TFI is required for differentiation of subplate neurons and guidance of thalamocortical axons. Neuron 24:847–859. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES