Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;9(4):681–693. doi: 10.1111/j.1750-3639.1999.tb00550.x

Comparative Biochemistry of Tau in Progressive Supranuclear Palsy, Corticobasal Degeneration, FTDP‐17 and Pick's Disease

Luc Buée 1,, André Delacourte 1
PMCID: PMC8098140  PMID: 10517507

Abstract

Neurodegenerative disorders referred to as tauopathies have cellular hyperphosphorylated tau protein aggregates in the absence of amyloid deposits. Comparative biochemistry of tau aggregates shows that they differ in both phosphorylation and content of tau isoforms. The six tau isoforms found in human brain contain either three (3R) or four microtubule‐binding domains (4R). In Alzheimer's disease, all six tau isoforms are abnormally phosphorylated and aggregate into paired helical filaments. They are detected by immunoblotting as a major tau triplet (tau55, 64 and 69). In corticobasal degeneration and progressive supranuclear palsy, only 4R‐t.au isoforms aggregate into twisted and straight filaments respectively. They appear as a major tau doublet (tau64 and 69). Finally, in Pick's disease, only 3R‐tau isoforms aggregate into random coiled filaments. They are characterized by another major tau doublet (tau55 and 64). These differences in tau isoforms may be related to either the degeneration of particular cell populations in a given disorder or aberrant cell trafficking of particular tau isoforms. Finally, recent findings provide a direct link between a genetic defect in tau and its abnormal aggregation into filaments in fronto‐temporal dementia with Parkinsonism linked to chromosome 17, demonstrating that tau aggregation is sufficient for nerve cell degeneration. Thus, tau mutations and polymorphisms may also be instrumental in many neurodegenerative disorders.

Full Text

The Full Text of this article is available as a PDF (316.0 KB).

References

  • 1. Auer IA, Schmidt ML, Lee VM, Curry B, Suzuki K, Shin RW, Pentchev PG, Carstea ED, Trojanowski JQ (1995) Paired helical filament tau (PHFtau) in Niemann‐Pick type C disease is similar to PHFtau in Alzheimer's disease. Acta Neuropathol 90: 547–551. [DOI] [PubMed] [Google Scholar]
  • 2. Baker M, Litvan I, Houlden H, Adamson J, Dickson D, Perez‐Tur J, Hardy J, Lynch T, Bigio E, Hutton M (1999) Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet 8: 711–715. [DOI] [PubMed] [Google Scholar]
  • 3. Bennett P, Bonifati V, Bonuccelli U, Colosimo C, De Mari M, Fabbrini G, Marconi R, Meco G, Nicholl DJ, Stocchi F, Vanacore N, Vieregge P, Williams AC (1998) Direct genetic evidence for involvement of tau in progressive supranuclear palsy. European Study Group on Atypical Parkinsonism Consortium. Neurology 51: 982–985. [DOI] [PubMed] [Google Scholar]
  • 4. Bergeron C, Pollanen MS, Weyner L, Lang AE (1997) Cortical degeneration in progressive supranuclear palsy. A comparison with cortico‐basal ganglionic degeneration. J Neuropathol Exp Neurol 56: 726–734. [PubMed] [Google Scholar]
  • 5. Biernat J, Gustke N, Drewes G, Mandelkow EM, Mandelkow E (1993) Phosphorylation of Ser(262) strongly reduces binding of tau proteins to microtubules ‐ distinction between PHF‐like immunoreactivity and microtubule binding. Neuron 11: 153–163. [DOI] [PubMed] [Google Scholar]
  • 6. Bird TD, Nochlin D, Poorkaj P, Cherrier M, Kaye J, Payami, Peskind E, Lampe TH, Nemens E, Boyer PJ, Schellenberg GD (1999) A clinical pathological comparison of three families with frontotemporal dementia and identical mutations in the tau gene (P301L). Brain 122: 741–756. [DOI] [PubMed] [Google Scholar]
  • 7. Black MM, Slaughter T, Moshiach S, Obrocka M, Fischer I (1996) Tau is enriched on dynamic microtubules in the distal region of growing axons. J Neurosci 16: 3601–3619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Bramblett GT, Goedert M, Jakes R, Merrick SE, Trojanowski JQ, Lee VM (1993) Abnormal phosphorylation at Ser(396) in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. Neuron 10: 1089–1099. [DOI] [PubMed] [Google Scholar]
  • 9. Brion JP, Passareiro E, Nunez J, Flament‐Durand J (1985) Immunological detection of tau protein in neurofibrillary tangles of Alzheimer's disease. Arch Biol 95: 229–235. [Google Scholar]
  • 10. Brion JP, Octave JN, Couck AM (1994) Distribution of the phosphorylated microtubule‐associated protein tau in developing cortical neurons. Neuroscience 63: 895–909. [DOI] [PubMed] [Google Scholar]
  • 11. Brion S, Plas J, Jeanneau A (1991) Pick's disease‐a clinico‐pathological point of view. Rev Neurol 147: 693–704. [PubMed] [Google Scholar]
  • 12. Buée‐Scherrer V, Buée L, Hof PR, Leveugle B, Gilles C, Loerzel AJ, Perl DP, Delacourte A (1995) Neurofibrillary degeneration in amyotrophic lateral sclerosis/ parkinson‐ism‐dementia complex of Guam‐Immunochemical characterization of Tau proteins. Am J Pathol 146: 924–932. [PMC free article] [PubMed] [Google Scholar]
  • 13. Buée‐Scherrer V, Condamines O, Mourton‐Gilles C, Jakes R, Goedert M, Pau B, Delacourte A (1996) AD2, a phosphorylation‐dependent monoclonal antibody directed against Tau proteins found in Alzheimer's disease. Mol Brain Res 39: 79–88. [DOI] [PubMed] [Google Scholar]
  • 14. Buée‐Scherrer V, Hof PR, Buée L, Leveugle B, Vermersch P, Perl DP, Olanow CW, Delacourte A (1996) Hyperphosphorylated Tau proteins differentiate corticobasal degeneration and Pick's disease. Acta Neuropathol 91: 351–359. [DOI] [PubMed] [Google Scholar]
  • 15. Buée‐Scherrer V, Buée L, Leveugle B, Perl DP, Vermersch P, Hof PR, Delacourte A (1997) Pathological tau proteins in postencephalitic parkinsonism: comparison to Alzheimer's disease and other neurodegenerative disorders. Ann Neurol 42: 356–359. [DOI] [PubMed] [Google Scholar]
  • 16. Bugiani O, Murrell JR, Giaccone G, Hasegawa M, Ghigo G, Tabaton M, Morbin M, Primavera A, Carella F, Solaro C, Grisoli M, Savoiardo M, Spillantini MG, Tagliavini F, Goedert M, Ghetti B (1999) Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau. J Neuropathol Exp Neurol 58: 595–605. [DOI] [PubMed] [Google Scholar]
  • 17. Bussière T, Hof PR, Mailliot C, Brown C, Caillet‐Boudin ML, Perl DP, Buée L, Delacourte A (1999) Phosphorylated serine422 on tau proteins is a pathological epitope found in several diseases with neurofibrillary degeneration. Acta Neuropathol 97: 221–230. [DOI] [PubMed] [Google Scholar]
  • 18. Chin SSM, Goldman JE (1996) Glial inclusions in CNS degenerative diseases. J Neuropathol Exp Neurol 55: 499–508. [DOI] [PubMed] [Google Scholar]
  • 19. Clark LN, Poorkaj P, Wszolek Z, Geschwind DH, Nasreddine ZS, Miller B, Li D, Payami, Awert F, Markopoulou K, Andreadis A, D'Souza I, Lee VM, Reed L, Trojanowski JQ, Zhukareva V, Bird T, Schellenberg G, Wilhelmsen KC (1998) Pathogenic implications of mutations in the tau gene in pallido‐ponto‐nigral degeneration and related neurodegenerative disorders linked to chromosome 17. Proc Natl Acad Sci USA 95: 13103–13107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Cleveland DW, Hwo SY, Kirschner MW (1977) Purification of tau, a microtubule‐associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116:207–225. [DOI] [PubMed] [Google Scholar]
  • 21. Cleveland DW, Hwo SY, Kirschner MW (1977) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol 116: 227–247. [DOI] [PubMed] [Google Scholar]
  • 22. Conrad C, Andreadis A, Trojanowski JQ, Dickson DW, Kang D, Chen X, Wiederholt W, Hansen L, Masliah E, Thai LJ, Katzman R, Xia, Saitoh T (1997) Genetic evidence for the involvement of tau in progressive supranuclear palsy. Ann Neurol 41: 277–281. [DOI] [PubMed] [Google Scholar]
  • 23. Conrad C, Amano N, Andreadis A, Xia, Namekataf K, Oyama F, Ikeda K, Wakabayashi K, Takahashi, Thai LJ, Katzman R, Shackelford DA, Matsushita M, Masliah E, Sawa A (1998) Differences in a dinucleotide repeat polymorphism in the tau gene between Caucasian and Japanese populations: implication for progressive supranuclear palsy. Neurosci Lett 250: 135–137. [DOI] [PubMed] [Google Scholar]
  • 24. De Yebenes JG, Sarasa JL, Daniel SE, Lees AJ (1995) Familial progressive supranuclear palsy. Description of a pedigree and review of the litterature. Brain 118: 1095–1103. [DOI] [PubMed] [Google Scholar]
  • 25. Delacourte A, Flament S, Dibe EM, Hublau P, Sablonnière B, Hémon B, Scherrer V, Défossez A (1990) Pathological proteins tau 64 and 69 are specifically expressed in the somatodendritic domain of the degenerating cortical neurons during Alzheimer's disease, demonstration with a panel of antibodies against tau proteins. Acta Neuropathol 80:111–117. [DOI] [PubMed] [Google Scholar]
  • 26. Delacourte A, Robitaille Y, Sergeant N, Buée L, Hof PR, Wattez A, Laroche‐Cholette A, Mathieu J, Chagnon P, Gauvreau D (1996) Specific pathological Tau protein variants characterize Pick's disease. J Neuropathol ExpNeurol 55:159–168. [DOI] [PubMed] [Google Scholar]
  • 27. Delacourte A, Buée L (1997) Normal and pathological tau proteins as factors for microtubule assembly. Int Rev Cytol 171:167–224. [DOI] [PubMed] [Google Scholar]
  • 28. Delacourte A, Sergeant N, Wattez A, Gauvreau D, Robitaille Y (1998) Vulnerable neuronal subsets in Alzheimer's and Pick's disease are distinguished by their tau isoform distribution and phosphorylation. Ann Neurol 43: 193–204. [DOI] [PubMed] [Google Scholar]
  • 29. Delacourte A, David JP, Sergeant N, Buée L, Wattez A, Vermersch P, Ghozali F, Fallet‐Bianco C, Pasquier F, Lebert F, Petit H, DiMenza C (1999) The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer's disease. Neurology 52: 1158–1165. [DOI] [PubMed] [Google Scholar]
  • 30. Delisle MB, Murrell JR, Richardson R, Trofatter JA, Rascol O, Soulages X, Mohr M, Calvas P, Ghetti B (1999) A mutation at codon 279 (N279K) in exon 10 of the tau gene causes a tauopathy with dementia and supranuclear palsy. Acta Neuropathol 98: 62–77. [DOI] [PubMed] [Google Scholar]
  • 31. Dickson DW (1997) Neurodegenerative diseases with cytoskeletal pathology: a biochemical classification. Ann Neurol 42: 541–544. [DOI] [PubMed] [Google Scholar]
  • 32. Drubin DG, Kirschner MW (1986) Tau protein function in living cells. J Cell Biol 103: 2739–2746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. D'Souza I, Poorkaj P, Hong M, Nochlin D, Lee VMY, Bird TD, Schellenberg GD (1999) Missense and silent tau gene mutations cause frontotemporal dementia with parkinsonism‐chromosome 17 type, by affecting multiple alternative RNA splicing regulatory elements. Proc Natl Acad Sci USA 96: 5598–5603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Dumanchin C, Camuzat A, Campion D, Verpillat P, Hannequin D, Dubois B, Saugier‐Veber P, Martin C, Penet C, Charbonnier F, Agid Y, Frebourg T, Brice A (1998) Segregation of a missense mutation in the microtubule‐associated protein tau gene with familial frontotemporal dementia and parkinsonism. Hum Mol Genet 7: 1825–1829. [DOI] [PubMed] [Google Scholar]
  • 35. Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E (1998) Overexpression of tau protein inhibits kinesin‐dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease. J Cell Biol 143: 777–794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Feany MB, Ksiezak‐Reding, Liu WK, Vincent I, Yen SHC, Dickson DW (1995) Epitope expression and hyperphosphorylation of tau protein in corticobasal degeneration: differentiation from progressive supranuclear palsy. Acta Neuropathol 90: 37–43. [DOI] [PubMed] [Google Scholar]
  • 37. Feany MB, Mattiace LA, Dickson DW (1996) Neuropathologic overlap of progressive supranuclear palsy, Pick's disease and corticobasal degeneration. J Neuropathol Exp Neurol 55: 53–67. [DOI] [PubMed] [Google Scholar]
  • 38. Flament S, Delacourte A (1989) Abnormal tau species are produced during Alzheimer's disease neurodegenerating process. FEBS Lett 247: 213–216. [DOI] [PubMed] [Google Scholar]
  • 39. Flament S, Delacourte A, Mann DMA (1990) Phosphorylation of tau proteins: a major event during the process of neurofibrillary degeneration. Acomparative study between Alzheimer's disease and Down's syndrome. Brain Res 516: 15–19. [DOI] [PubMed] [Google Scholar]
  • 40. Flament S, Delacourte A, Verny M, Hauw JJ, Javoy‐Agid F (1991) Abnormal tau proteins in progressive supranuclear palsy. Similarities and differences with the neurofibrillary degeneration of the Alzheimer type. Acta Neuropathol 81: 591–596. [DOI] [PubMed] [Google Scholar]
  • 41. Ginsberg SD, Crino PB, Lee VM, Eberwine JH, Trojanowski JQ (1997) Sequestration of RNA in Alzheimer's disease neurofibrillary tangles and senile plaques. Ann Neurol 41: 200–209. [DOI] [PubMed] [Google Scholar]
  • 42. Goedert M, Spillantini MG, Jakes R, Rutherford, D , Crowther RA (1989) Multiple isoforms of human microtubule‐associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 3:519–526. [DOI] [PubMed] [Google Scholar]
  • 43. Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA (1989) Cloning and sequencing of the cDNA encoding an isoform of microtubule‐associated protein tau containing 4 tandem repeats‐differential expression of tau protein messenger RNAs in human brain. EMBO J 8: 393–399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8: 159–168. [DOI] [PubMed] [Google Scholar]
  • 45. Goedert M, Jakes R, Spillantini MG, Hasegawa M, Smith MJ, Crowther RA (1996) Assembly of microtubule‐associated protein tau into Alzheimer‐like filaments induced by sulfated glycosaminoglycans. Nature 383: 550–553. [DOI] [PubMed] [Google Scholar]
  • 46. Goedert M, Spillantini MG, Davies SW (1998) Filamentous nerve cell inclusions in neurodegenerative diseases. Curr Opin Neurobiol 8: 619–632. [DOI] [PubMed] [Google Scholar]
  • 47. Goedert M, Spillantini MG, Crowther RA, Chen SG, Parchi P, Tabaton M, Lanska DJ, Markesbery WR, Wilhelmsen KC, Dickson DW, Petersen RB, Gambetti P (1999) Tau gene mutation in familial progressive subcortical gliosis. Nat Med 5: 454–457. [DOI] [PubMed] [Google Scholar]
  • 48. Goode BL, Denis PE, Panda D, Radeke MJ, Miller HP, Wilson L, Feinstein SC (1997) Functional interactions between the proline‐rich and repeat regions of tau enhance microtubule binding and assembly. Mol Biol Cell 8: 353–365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Greenberg SG, Davies P, Schein JD, Binder LI (1992) Hydrofluoric acid‐treated tau‐PHF proteins display the same biochemical properties as normal tau. J Biol Chem 267: 564–569. [PubMed] [Google Scholar]
  • 50. Grover A, Houlden H, Baker M, Adamson J, Lewis J, Prihar G, Pickering‐Brown S, Duff K, Hutton M (1999) 5′splice site mutations in tau associated with the inherited dementia FTDP‐17 affect a stem loop structure that regulates alternative splicing of exon 10. J Biol Chem 274: 15134–15143. [DOI] [PubMed] [Google Scholar]
  • 51. Grundke‐Iqbal I, Iqbal K, Tung YC, Zaidi MS, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule‐associated protein tau in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83: 4913–4917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Gu Y, Oyama F, Ihara Y (1996) Tau is widely expressed in rat tissues. J Neurochem 67:1235–1244. [DOI] [PubMed] [Google Scholar]
  • 53. Hagestedt G, Lichtenberg B, Wille H, Mandelkow EM, Mandelkow M (1989) Tau protein becomes long and stiff upon phosphorylation: correlation between paracrystalline structure and degree of phosphorylation. J Cell Biol 109:1643–1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Hanger DP, Betts JC, Loviny TL, Blackstock WP, Anderton BH (1998) New phosphorylation sites identified in hyper‐phosphorylated tau (paired helical filament‐tau) from Alzheimer's disease brain using nanoelectrospray mass spectrometry. J Neurochem 71: 2465–2476. [DOI] [PubMed] [Google Scholar]
  • 55. Hasegawa M, Morishima‐Kawashima M, Takio K, Suzuki M, Titani K, Ihara Y (1992) Protein sequence and mass spectrometric analyses of tau in the Alzheimer's disease brain. J Biol Chem 267: 17047–17054. [PubMed] [Google Scholar]
  • 56. Hasegawa M, Jakes R, Crowther RA, Lee VMY, Ihara Y, Goedert M (1996) Characterization of mAb AP422, a novel phosphorylation‐dependent monoclonal antibody against Tau protein. FEBS Lett 384: 25–30. [DOI] [PubMed] [Google Scholar]
  • 57. Hasegawa M, Smith MJ, Goedert M (1998) Tau proteins with FTDP‐17 mutations have a reduced ability to promote microtubule assembly. FEBS Lett 437: 207–210. [DOI] [PubMed] [Google Scholar]
  • 58. Hasegawa M, Smith MJ, Iijima M, Tabira T, Goedert M (1999) FTDP‐17 mutations N279K and S305N in tau produce increased splicing of exon 10. FEBS Lett 443: 93–96. [DOI] [PubMed] [Google Scholar]
  • 59. Hauw JJ, Verny M, Delaere P, Cervera P, He, Duyckaerts C (1990) Constant neurofibrillary changes in the neocortex in progressive supranuclear palsy‐basic differences with Alzheimer's disease and aging. Neurosci Lett 119: 182–186. [DOI] [PubMed] [Google Scholar]
  • 60. Higgins JJ, Litvan I, Pho LT, Li W, Nee LE (1998) Progressive supranuclear gaze palsy is in linkage disequilibrium with the tau gene and not the alpha‐synuclein gene. Neurology 50: 270–273. [DOI] [PubMed] [Google Scholar]
  • 61. Hof PR, Delacourte A, Bouras C (1992) Distribution of cortical neurofibrillary tangles in progressive supranuclear palsy. A quantitative analysis of 6 cases. Acta Neuropathol 84: 45–51. [DOI] [PubMed] [Google Scholar]
  • 62. Hof PR, Bouras C, Perl DP, Morrison JH (1994) Quantitative neuropathologic analysis of Pick's disease cases‐cortical distribution of Pick bodies and coexistence with Alzheimer's disease. Acta Neuropathol 87: 115–124. [DOI] [PubMed] [Google Scholar]
  • 63. Hoffmann R, Lee VMY, Leight S, Varga I, Otvos L (1997) Unique Alzheimer's disease paired helical filaments specific epitopes involve double phosphorylation at specific sites. Biochemistry 36: 8114–8124. [DOI] [PubMed] [Google Scholar]
  • 64. Hong M, Zhukareva V, Vogelsberg‐Ragaglia V, Wszolek Z, Reed L, Miller BI, Geschwind DH, Bird TD, McKeel D, Goate A, Morris JC, Wilhelmsen KC, Schellenberg GD, Trojanowski JQ, Lee VM (1998) Mutation‐specific functional impairments in distinct tau isoforms of hereditary FTDP‐17. Science 282: 1914–1917. [DOI] [PubMed] [Google Scholar]
  • 65. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering‐Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, De Graaff E, Wauters E, Van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowolny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski JQ, Basun, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd P, Hayward N, Kwok JBJ, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, Van Swieten J, Mann DMA, Lynch T, Heutink P (1998) Coding and 5′ splice site mutations in TAU associated with inherited dementia (FTDP‐17). Nature 393: 702–705. [DOI] [PubMed] [Google Scholar]
  • 66. Ihara Y, Nukina N, Miura R, Ogawara M (1986) Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer's disease. J Biochem 99:1807–1810. [DOI] [PubMed] [Google Scholar]
  • 67. Iijima M, Tabira T, Poorkaj P, Schellenberg GD, Trojanowski JQ, Lee VMY, Schmidt ML, Takahashi K, Nakiba T, Matsumoto T, Yamashita, Yoshioka S, Ishini H (1999) A distinct familial presenile dementia with a novel missense mutation in the tau gene. NeuroReport 10: 497–501. [DOI] [PubMed] [Google Scholar]
  • 68. Johnson GVW, Hartigan JA (1998) Tau protein in normal and Alzheimer's disease brain: an update. Alz Dis Rev 3: 125–141. [DOI] [PubMed] [Google Scholar]
  • 69. Kampers T, Friedhoff P, Biernat J, Mandelkow EM, Mandelkow E (1996) RNA stimulates aggregation of microtubule‐associated protein tau into Alzheimer‐like paired helical filaments. FEBS Lett 399: 344–349. [DOI] [PubMed] [Google Scholar]
  • 70. Kempf M, Clement A, Faissner A, Lee G, Brandt R (1996) Tau binds to the distal axon early in development of polarity in a microtubule‐and microfilament‐dependent manner. J Neurosci 16: 5583–5592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Kidd M (1963) Paired helical filaments in electron microscopy of Alzheimer's disease. Nature 197: 192–193. [DOI] [PubMed] [Google Scholar]
  • 72. Komori T, Shibata N, Kobayashi M, Sasaki S, Iwata M (1998) Inducible nitric oxide synthase (iNOS)‐like immunoreactivity in argyrophilic, tau‐positive astrocytes in progressive supranuclear palsy. Acta Neuropathol 95: 338–344. [DOI] [PubMed] [Google Scholar]
  • 73. Komori T (1999) Tau‐positive glial inclusions in PSP, CBD and Pick's disease. Brain Pathol 9: this issue. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Kondratick CM, Vandre DD (1996) Alzheimer's disease neurofibrillary tangles contain mitosis‐specific phospho‐epitopes. J Neurochem 67: 2405–2416. [DOI] [PubMed] [Google Scholar]
  • 75. Kosik KS, Orecchio LD, Bakalis S, Neve RL (1989)Developmentally regulated expression of specific tau sequences. Neuron 2: 1389–1397. [DOI] [PubMed] [Google Scholar]
  • 76. Ksiezak‐Reding, Morgan K, Mattiace LA, Davies P, Liu WK, Yen SH, Weidenheim K, Dickson DW (1994) Ultrastructure and biochemical composition of paired helical filaments in corticobasal degeneration. Am J Pathol 145:1496–1508. [PMC free article] [PubMed] [Google Scholar]
  • 77. Lee G, Cowan N, Kirschner M (1988) The primary structure and heterogeneity of Tau protein from mouse brain. Science 239: 285–289. [DOI] [PubMed] [Google Scholar]
  • 78. Lee G, Neve RL, Kosik KS (1989) The microtubule binding domain of tau protein. Neuron 2: 1615–1624. [DOI] [PubMed] [Google Scholar]
  • 79. Lee VMY, Balin BJ, Otvos L, Trojanowski JQ (1991) A68: a major subunit of paired helical filaments and derivatized forms of normal tau. Science 251: 675–678. [DOI] [PubMed] [Google Scholar]
  • 80. Lindwall G, Cole RD (1984) Phosphorylation affects the ability of Tau protein to promote microtubule assembly. J Biol Chem 255: 5301–5305. [PubMed] [Google Scholar]
  • 81. Litvan I, Agid Y, Jankovic J, Goetz C, Brandel JP, Lai EC, Wenning G, Dolhaberriague L, Verny M, Chaudhuri RE, McKee A, Jellinger K, Bartko JJ, Mangone CA, Pearce RKB (1996) Accuracy of clinical criteria for the diagnosis of progressive supranuclear palsy (Steele‐Richardson‐Olszewski syndrome). Neurology 46: 922–930. [DOI] [PubMed] [Google Scholar]
  • 82. Litvan I, Hauw JJ, Bartko JJ, Lantos PL, Daniel SE, Horoupian DS, McKee A, Dickson D, Bancher C, Tabaton M, Jellinger K, Anderson DW (1996) Validity and reliability of the preliminary NINDS neuropathologic criteria for progressive supranuclear palsy and related disorders. J Neuropathol Exp Neurol 55: 97–105. [DOI] [PubMed] [Google Scholar]
  • 83. Lovestone S, Reynolds CH (1997) The phosphorylation of tau: a critical stage in neurodevelopment and neurodegenerative processes. Neuroscience 78: 309–324. [DOI] [PubMed] [Google Scholar]
  • 84. Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP (1999) The prolyl isomerase Pin 1 restores the function of Alzheimer‐associated phosphorylated tau protein. Nature 399: 784–788. [DOI] [PubMed] [Google Scholar]
  • 85. Mailliot C, Sergeant N, Bussière T, Caillet‐Boudin ML, Delacourte A, Buée L (1998) Phosphorylation of specific sets of tau isoforms explains different neurodegeneration processes. FEBS Lett 433: 201–204. [DOI] [PubMed] [Google Scholar]
  • 86. Mailliot C, Bussière T, Caillet‐Boudin ML, Delacourte A, Buée L (1998). Alzheimer‐specific epitope of AT 100 in transfected cell lines with tau: Toward an efficient cell model of tau abnormal phosphorylation. Neurosci Lett 255: 13–16. [DOI] [PubMed] [Google Scholar]
  • 87. Mandelkow EM, Mandelkow E (1998) Tau in Alzheimer's disease. Trends Cell Biol 8: 425–427. [DOI] [PubMed] [Google Scholar]
  • 88. Matsuo ES, Shin RW, Billingsley ML, Vandevoorde A, Oconnor M, Trojanowski JQ, Lee VMY (1994) Biopsy‐derived adult human brain Tau is phosphorylated at many of the same sites as Alzheimer's disease paired helical filament tau. Neuron 13: 989–1002. [DOI] [PubMed] [Google Scholar]
  • 89. Mawal‐Dewan M, Schmidt ML, Balin B, Perl DP, Lee VMY, Trojanowski JQ (1996) Identification of phosphorylation sites in PHF‐Tau from patients with Guam amyotrophic lateral sclerosis/parkinsonism‐dementia complex. J Neuropathol Exp Neurol 55: 1051–1059. [PubMed] [Google Scholar]
  • 90. Mirra SS, Murrell JR, Gearing M, Spillantini MG, Goedert M, Crowther RA, Levey AI, Jones R, Green J, Shoffner JM, Wainer BH, Schmidt ML, Trojanowski JQ, Ghetti B (1999) Tau pathology in a family with dementia and a P30 1L mutation in tau. J Neuropathol Exp Neurol 58: 335–345. [DOI] [PubMed] [Google Scholar]
  • 91. Morishima‐Kawashima M, Hasegawa M, Takio K, Suzuki M, Yoshida, Titani K, Ihara (1995) Proline‐directed and non‐proline‐directed phosphorylation of PHF‐tau. J Blol Chem 270: 823–829. [DOI] [PubMed] [Google Scholar]
  • 92. Morris HR, Janssen JC, Bandmann O, Daniel SE, Rossor MN, Lees AJ, Wood NW (1999) The tau gene A0 polymorphism in progressive supranuclear palsy and related neurodegenerative diseases. J Neurol Neurosurg Psychiatry 66: 665–667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93. Mulot SFC, Hughes K, Woodgett JR, Anderton BH, Hanger DP (1994) PHF‐Tau from Alzheimer's brain comprises four species on SDS‐PAGE which can be mimicked by an in vitro phosphorylation of human brain tau by glycogen synthase kinase‐3β. FEBS Lett 349: 359–364. [DOI] [PubMed] [Google Scholar]
  • 94. Murrell J, Zolo P, Spillantini MG, Crowther RA, Goedert M, Redi F, Pietrini P, Guazelli M, Ghetti B (1999) A mutation at codon 389 (G389R) in exon 13 of the tau gene causes frontotemporal dementia with numerous Pick Bodies. Clin Neuropathol 18: 145. [Google Scholar]
  • 95. Nasreddine ZS, Loginov M, Clark LN, Lamarche J, Miller BL, Lamontagne A, Zhukareva V, Lee VM, Wilhelmsen KC, Geschwind DH (1999) From genotype to phenotype: a clinical pathological, and biochemical investigation of frontotemporal dementia and parkinsonism (FTDP‐17) caused by the P301 L tau mutation. Ann Neurol 45: 704–715. [DOI] [PubMed] [Google Scholar]
  • 96. Oliva R, Tolosa E, Ezquerra M, Molinuevo JL, Valldeoriola F, Burguera J, Calopa M, Villa M, Ballesta F (1998) Significant changes in the tau A0 and A3 alleles in progressive supranuclear palsy and improved genotyping by silver detection. Arch Neurol 55: 1122–1124. [DOI] [PubMed] [Google Scholar]
  • 97. Paulus W, Selim M (1990) Corticonigral degeneration with neuronal achromasia and basal neurofibrillary tangles. Acta Neuropathol 81: 89–94. [DOI] [PubMed] [Google Scholar]
  • 98. Perez M, Valpuesta JM, Medina M, Montejo de Garcini E, Avila J (1996) Polymerization of tau into filaments in the presence of heparin: the minimal sequence required for tau‐tau interaction. J Neurochem 67: 1183–1190. [DOI] [PubMed] [Google Scholar]
  • 99. Pérez‐Tur J, Buée L, Morris, Waring S, Onstead L, Wavrant‐De Vrièze F, Crook R, Buée‐Scherrer V, Hof PR, Perl DP, Petersen R, McGeer P, Delacourte A, Hutton M, Siddique T, Ahlskog EJ, Hardy J, Steele J (1999) Absence of mutations in the TAU gene in Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex of Guam. Neurology 52, in press. [Google Scholar]
  • 100. Pick A (1906) Über einen weiteren Symptomen Komplex im Rahmen der Dementia senilis, bedingt durch umschriebene stärkere Hirnatrophie (gemischte Apraxie). Monatsschr Psychiatr Neurol 19: 97–108. [Google Scholar]
  • 101. Poorkaj P, Bird TD, Wijernan E, Nemens E, Garruto RM, Anderson L, Andreadis A, Winderholt WC, Raskind M, Schellenberg GD (1998) Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol 43: 815–825. [DOI] [PubMed] [Google Scholar]
  • 102. Probst A, Tolnay M, Langui D, Goedert M, Spillantini MG (1996) Pick's disease: hyperphosphorylated tau protein segregates to the somatoaxonal compartment. Acta Neuropathol 92: 588–596. [DOI] [PubMed] [Google Scholar]
  • 103. Rebeiz JJ, Kolodny EH, Richardson EP Jr (1967) Corticodentatonigral degeneration with neuronal achromasia: a progressive disorder of late adult life. Trans Am Neurol Assoc 92: 23–26. [PubMed] [Google Scholar]
  • 104. Rebeiz JJ, Kolodny EH, Richardson EP Jr (1968) Corticodentatonigral degeneration with neuronal achromasia. Arch Neurol 18: 20–33. [DOI] [PubMed] [Google Scholar]
  • 105. Rebhan M, Vacun G, Rosner (1995) Complementary distribution of Tau proteins in different phosphorylation states within growing axons. Neuroreport 6: 429–432. [DOI] [PubMed] [Google Scholar]
  • 106. Reed LA, Schmidt ML, Wszolek ZK, Balin BJ, Soontornniyomkij V, Lee VMY, Trojanowski JQ, Schelper RL (1998) The neuropathology of a chromosome 17‐linked autosomal dominant parkinsonism and dementia (“Pallido‐ponto‐nigral degeneration”). J Neuropathol Exp Neurol 57: 588–601. [DOI] [PubMed] [Google Scholar]
  • 107. Rinne JO, Lee MS, Thompson PD, Marsden CD (1994) Corticobasal degeneration. A clinical study of 36 cases. Brain 117: 1183–1196. [DOI] [PubMed] [Google Scholar]
  • 108. Rizzu P, Van Swieten JC, Joose M, Hasegawa M, Stevens M, Tibben A, Niermeijer MF, Hillebrandt M, Ravid R, Oostra BA, Goedert M, Van Duijn CM, Heutink P (1999) High prevalence of mutations in the microtubule‐associated protein tau in a population study of fronto‐temporal dementia in the Netherlands. Am J Hum Genet 64: 414–421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109. Roder HM, Fracasso RP, Hoffman FJ, Witowsky JA, Davis G, Pellegrino CB (1997). Phosphorylation‐dependent monoclonal Tau antibodies do not reliably report phosphorylation by extracellular signal‐regulated kinase 2 at specific sites. J Biol Chem 272: 4509–4515. [DOI] [PubMed] [Google Scholar]
  • 110. Rojo A, Pernaute RS, Fontan A, Ruiz PG, Honnorat J, Lynch T, Chin S, Gonzalo I, Rabano A, Martinez A, Daniel S, Pramsteller P, Morris H, Wood N, Lees A, Tabernero C, Nyggard T, Jackson AC, Hanson A, De Yebenes JG (1999) Clinical genetics of familial progressive supranuclear palsy. Brain 122: 1233–1245. [DOI] [PubMed] [Google Scholar]
  • 111. Schmidt ML, Huang R, Martin JA, Henley J, Mawal‐Dewan M, Hurtig HI, Lee VM, Trojanowski JQ (1996) Neurofibrillary tangles in progressive supranuclear palsy contain the same tau epitopes identified in Alzheimer's disease PHFtau. J Neuropathol Exp Neurol 155: 534–539. [DOI] [PubMed] [Google Scholar]
  • 112. Schneider JA, Watts RL, Gearing M, Brewer RP, Mirra SS (1997) Corticobasal degeneration: neuropathologic and clinical heterogeneity. Neurology 48: 959–969. [DOI] [PubMed] [Google Scholar]
  • 113. Sergeant N, Bussiere T, Vermersch P, Lejeune JP, Delacourte A (1995) Isoelectric point differentiates PHFtau from biopsy‐derived human brain Tau proteins. Neuroreport 6: 2217–2220. [DOI] [PubMed] [Google Scholar]
  • 114. Sergeant N, David JP, Goedert M, Jakes R, Vermersch P, Buée L, Lefranc D, Wattez A, Delacourte A (1997) Two dimensional characterization of PHF‐Tau from Alzheimer's disease: demonstration of an additional 74 kDa component and age‐related biochemical modifications. J Neurochem 69: 834–844. [DOI] [PubMed] [Google Scholar]
  • 115. Sergeant N, David JP, Lefranc D, Vermersch P, Wattez A, Delacourte A (1997) Different distribution of phosphorylated tau protein isoforms in Alzheimer's and Pick's diseases. FEBS Lett 412: 578–582. [DOI] [PubMed] [Google Scholar]
  • 116. Sergeant N, Wattez A, Delacourte A (1999) Neurofibrillary degeneration in progressive supranuclear palsy and corticobasal degeneration: tau pathologies with exclusively “exon 10” isoforms. J Neurochem 72: 1243–1249. [DOI] [PubMed] [Google Scholar]
  • 117. Seubert P, Mawal‐Dewan M, Barbour R, Jakes R, Goedert M, Johnson GVW, Litersky JM, Schenk D, Lieberburg I, Trojanowski JQ, Lee VMY (1995) Detection of phosphorylated Ser(262) in fetal tau, adult tau, and paired helical filament tau. J Biol Chem 270:18917–18922. [DOI] [PubMed] [Google Scholar]
  • 118. Spillantini MG, Bird TD, Ghetti B (1998) Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol 8: 387–402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119. Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci USA 95: 7737–7741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120. Spillantini MG, Tolnay M, Love S, Goedert M (1999) Microtubule‐associated protein tau, heparan sulphate and alpha‐synuclein in several neurodegenerative diseases with dementia. Acta Neuropathol 97: 585–594. [DOI] [PubMed] [Google Scholar]
  • 121. Steele JC, Richardson JC, Olzewski J (1964) Progressive supranuclear palsy. A heterogeneous degeneration involving brain stem, basal ganglia and cerebellum with vertical gaze ans pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol 10: 333–359. [DOI] [PubMed] [Google Scholar]
  • 122. Szendrei GI, Lee VMY, Otvos L (1993) Recognition of the minimal epitope of monoclonal antibody Tau‐1 depends upon the presence of a phosphate group but not its location. J Neurosci Res 34: 243–249. [DOI] [PubMed] [Google Scholar]
  • 123. Tellez‐Nagel I, Wisniewski HM (1973) Ultrastructure of neurofibrillary tangles in Steele‐Richardson‐Olszewski syndrome. Arch Neurol 29: 324–327. [DOI] [PubMed] [Google Scholar]
  • 124. Tomonaga M (1977) Ultrastructure of neurofibrillary tangles in progressive supranuclear palsy. Acta Neuropathol 37:177–181. [DOI] [PubMed] [Google Scholar]
  • 125. Trojanowski JQ, Lee VM (1995) Phosphorylation of paired helical filament tau in Alzheimer's disease neurofibrillary lesions: focusing on phosphatases. FASEB J 9: 1570–1576. [DOI] [PubMed] [Google Scholar]
  • 126. Varani L, Hasegawa M, Spillantini MG, Smith MJ, Murrell JR, Ghetti B, Klug A, Goedert M, Varani G (1999) Structure of tau exon 10 splicing regulatory element RNA and destabilization by mutations of frontotemporal dementia and parkinsonism linked to chromosome 17. Proc Natl Acad Sci USA 6: 8229–8234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127. Vermersch P, Robitaille Y, Bernier L, Wattez A, Gauvreau D, Delacourte A (1994) Biochemical mapping of neurofibrillary degeneration in a case of progressive supranuclear palsy: Evidence for general cortical involvement. Ada Neuropathol 87: 572–577. [DOI] [PubMed] [Google Scholar]
  • 128. Vermersch P, Sergeant N, Ruchoux MM, Hofmann‐Radvanyi H, Petit H, Dewailly P, Delacourte A (1996) Specific Tau variants in the brain from patients with myotonic dystrophy. Neurology 47: 711–717. [DOI] [PubMed] [Google Scholar]
  • 129. Vermersch P, Buée‐Scherrer V, Buée L, David JP, Wattez A, Sergeant N, Hof PR, Agid Y, Perl DP, Olanow CW, Robitaille Y, Gauveau D, Petit H, Delacourte A (1997) Cortical mapping of pathological tau proteins in several neurodegenerative disorders In: Hyman B, Duyckaerts C, Christen Y (eds) Connections, cognition and Alzheimer's disease, Springer‐Verlag, Berlin pp. 41–52. [Google Scholar]
  • 130. Vincent I, Rosado M, Davies P (1996) Mitotic mechanisms in Alzheimer's disease J Cell Biol 132: 413–425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72:1858–1862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132. Yen S (1999) Fibrillogenesis of tau: insights from tau mutations in FTDP‐17. Brain Pathol 9: this issue. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133. Zheng‐Fischhöfer Q, Biernat J, Mandelkow EM, Illenberger S, Godemann R, Mandelkow E (1998) Sequential phosphorylation of tau by glycogen synthase kinase‐3ß and protein kinase A at Thr212 and Ser214 generates the Alzheimer‐specific epitope of antibody AT100 and requires a paired‐helical‐filament‐like conformation. Eur J Biochem 252: 542–552. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES