Abstract
Trinucleotide repeat expansions are an important cause of inherited neurodegenerative disease. The expanded repeats are unstable, changing in size when transmitted from parents to offspring (inter‐generational instability, “meiotic instability”) and often showing size variation within the tissues of an affected individual (somatic mosaicism, “mitotic instability”). Repeat instability is a clinically important phenomenon, as increasing repeat lengths correlate with an earlier age of onset and a more severe disease phenotype. The tendency of expanded trinucleotide repeats to increase in length during their transmission from parent to offspring in these diseases provides a molecular explanation for anticipation (increasing disease severity in successive affected generations). In this review, I explore the genetic and molecular basis of trinucleotide repeat instability. Studies of patients and families with trinucleotide repeat disorders have revealed a number of factors that determine the rate and magnitude of trinucleotide repeat change. Analysis of trinucleotide repeat instability in bacteria, yeast, and mice has yielded additional insights. Despite these advances, the pathways and mechanisms underlying trinucleotide repeat instability in humans remain largely unknown. There are many reasons to suspect that this uniquely human phenomenon will significantly impact upon our understanding of development, differentiation and neurobiology.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
References
- 1. Alford RL, Ashizawa T, Jankovic J, Caskey CT, Richards CS (1996) Molecular detection of new mutations, resolution of ambiguous results and complex genetic counseling issues in Huntington disease. Am J Med Genet 66:281–6. [DOI] [PubMed] [Google Scholar]
- 2. Almqvist E, Spence N, Nichol K, Andrew SE, Vesa J, Peltonen L, Anvret M, Goto J, Kanazawa I, Goldberg YP, Hayden MR (1995) Ancestral differences in the distribution of the delta 2642 glutamic acid polymorphism is associated with varying CAG repeat lengths on normal chromosomes: insights into the genetic evolution of Huntington disease. Hum Mol Genet 4:207–14. [DOI] [PubMed] [Google Scholar]
- 3. Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA, Graham RK, Hayden MR (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nat Genet 4:398–403. [DOI] [PubMed] [Google Scholar]
- 4. Andrew SE, Hayden MR (1995) Origins and evolution of Huntington disease chromosomes. Neurodegeneration 4:239–44. [DOI] [PubMed] [Google Scholar]
- 5. Aoki M, Abe K, Tobita M, Kameya T, Watanabe M, Itoyama Y (1996) Reduction of CAG expansions in cerebellar cortex and spinal cord of DRPLA. Clin Genet 50:199–201. [DOI] [PubMed] [Google Scholar]
- 6. Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, Yao X, Christie DM, Monell C, Arnheim N, Bradley A, Ashley T, Liskay RM (1996) Involvement of mouse MIh1 in DNA mismatch repair and meiotic crossing over. Nat Genet 13:336–42. [DOI] [PubMed] [Google Scholar]
- 7. Biancalana V, Serville F, Pommier J, Julien J, Hanauer A, Mandel JL (1992) Moderate instability of the trinucleotide repeat in spino bulbar muscular atrophy. Hum Mol Genet 1:255–8. [DOI] [PubMed] [Google Scholar]
- 8. Bingham PM, Scott MO, Wang S, McPhaul MJ, Wilson EM, Garberr JY, Merry DE, Fischbeck KH (1995) Stability of an expanded trinucleotide repeat in the androgen receptor gene in transgenic mice. Nat Genet 9:191–6. [DOI] [PubMed] [Google Scholar]
- 9. Bowater RP, Rosche WA, Jaworski A, Sinden RR, Wells RD (1996) Relationship between Escherichia coli growth and deletions of CTG. CAG triplet repeats in plasmids. J Mol Biol 264:82–96. [DOI] [PubMed] [Google Scholar]
- 10. Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Hunter K, Stanton VP, Thirion JP, Hudson T, et al. (1992) Molecular basis of myotonic dystrophy: expansion ol a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68:799–808. [DOI] [PubMed] [Google Scholar]
- 11. Brown WT, Houck GE, Jr. , Ding X, Zhong N, Nolin S, Glicksman A, Dobkin C, Jenkins EC (1996) Reverse mutations in the fragile X syndrome. Am J Med Genet 64:287–92. [DOI] [PubMed] [Google Scholar]
- 12. Burright EN, Clark HB, Servadio A, Matilla T, Feddersen RM, Yunis WS, Duvick LA, Zoghbi HY, Orr HT (1995) SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 82:937–48. [DOI] [PubMed] [Google Scholar]
- 13. Campuzano V, Montermini L, Molto MD, Pianese L, Coss'ee M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Canizares J, Koutnikova H, Bidichandani SI, Gellera C, Filla A, De Frutos R, Palau F, Patel PI, Di Donato S, Mandel J‐L, Cocozza S, Koenig M, Pandolfo M (1996) Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–7. [DOI] [PubMed] [Google Scholar]
- 14. Cancel G, Aobas N, Stevanin G, Durr A, Chneiweiss H, N'Eri C, Duyckaerts C, Penet C, Cann HM, Agid Y, et al. (1995) Marked phenotypic heterogeneity associated with expansion or a CAG repeat sequence at the spinocerebellar ataxia 3/Machado‐Joseph disease locus. Am J Hum Genet 57:809–16. [PMC free article] [PubMed] [Google Scholar]
- 15. Carter C (1932) Contribution of gene mutations to genetic disease in humans. Progress in Mutation Research 3:1–8. [Google Scholar]
- 16. Chambers DM, Abbott CM (1996) Isolation and mapping of novel mouse brain cDNA clones containing trinucleotide repeats, and demonstration of novel alleles in recombinant inbred strains. Genome Res 6:715–23. [DOI] [PubMed] [Google Scholar]
- 17. Chastain PD, Eichler EE, Kang S, Nelson DL, Levene SD, Sinden RR (1995) Anomalous rapid electrophoretic mobility of DNA containing triplet repeats associated with human disease genes. Biochemistry 34:16125–31. [DOI] [PubMed] [Google Scholar]
- 18. Chong S, Almqvist E, Telenius H, LaTray L, Nichol K, Bourdelat‐Parks B, Goldberg Y, Haddad B, Richards F, Sillence D, Greenberg C, Ives E, van den Engh G, Hughes M, Hayden M (1997) Contribution of DNA sequence and CAG size to mutation frequencies of intermediate alleles for Huntington disease: evidence from single sperm analyses. Hum Molec Genet 6:301–309. [DOI] [PubMed] [Google Scholar]
- 19. Chong SS, McCall AE, Cota J, Subramony SH, Orr HT, Hughes MR, Zoghbi HY (1995) Gametic and somatic tissue‐specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1. Nat Genet 10:344–50. [DOI] [PubMed] [Google Scholar]
- 20. Chung MY, Ranum LP, Duvick LA, Servadio A, Zoghbi HY, Orr HT (1993) Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nat Genet 5:254–8. [DOI] [PubMed] [Google Scholar]
- 21. Cooper DL, Lahue RS, Modrich P (1993) Methyl‐directed mismatch repair is bidirectional. J Biol Chem 268: 11823–9. [PubMed] [Google Scholar]
- 22. Darlow JM, Leach DR (1995) The effects of trinucleotide repeats found in human inherited disorders on palindrome inviability in Escherichia coli suggest hairpin folding preferences in vivo. Genetics 141:825–32. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. DeStefano AL, Cupples LA, Maciel P, Gaspar C, Radvany J, Dawson DM, Sudarsky L, Corwin L, Coutinho P, MacLeod P, Sequeiros J, Roulaeu GA, Farrer LA (1996) A familial factor independent of CAG repeat length influences age at onset of Machado‐Joseph disease. Am J Hum Genet 59:119–27. [PMC free article] [PubMed] [Google Scholar]
- 24. Durr A, Stevanin G, Cancel G, Duyckaerts C, Abbas N, Didierjean O, Chneiweiss H, Benomar A, Lyon Caen O, Julien J, Serdaru M, Penet C, Agid Y, Brice A (1996) Spinocerebellar ataxia 3 and Machado‐Joseph disease: clinical, molecular, and neuropathological features. Ann Neurol 39:490–9. [DOI] [PubMed] [Google Scholar]
- 25. Duyao M, Ambrose C, Myers R, Novelletto A, Persichetti F, Frontali M, Folstein S, Ross C, Franz M, Abbott M, Gray J, Conneally P, Young A, Penney J, Hollingsworth Z, Shoulson I, Lazzarini A, Falek A, Koroshetz W, Sax D, Bird E, Vonsattel J, Bonilla E, Alvir J, Bickham Conde J, Cha J‐H, Dure L, Gomez F, Ramos M, Sanchez‐Ramos J, Snodgrass S, de Young M, Wexler N, Moscowitz C, Penchaszadeh G, MacFarlane H, Anderson M, Jenkins B, Srinidhi J, Barnes G, Gusella J, MacDonald M (1993) Trinucleotide repeat length instability and age of onset in Huntington's disease. Nat Genet 4:387–92. [DOI] [PubMed] [Google Scholar]
- 26. Edelmann W, Cohen PE, Kane M, Lau K, Morrow B, Bennett S, Umar A, Kunkel T, Cattoretti G, Chaganti R, Pdlard JW, Kolodner RD, Kucherlapati R (1996) Meiotic pachytene arrest in MLH1‐deficient mice. Cell 85:1125–34. [DOI] [PubMed] [Google Scholar]
- 27. Eichler EE, Hammond HA, Macpherson JN, Ward PA, Nelson DL (1995) Population survey of the human FMR1 CGG repeat substructure suggests biased polarity for the loss of AGG interruptions. Hum Mol Genet 4:2199–208. [DOI] [PubMed] [Google Scholar]
- 28. Eichler EE, Holden JJ, Popovich BW, Reiss AL, Snow K, Thibodeau SN, Richards CS, Ward PA, Nelson DL (1994) Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nat Genet 8:88–94. [DOI] [PubMed] [Google Scholar]
- 29. Eichler EE, Macpherson JN, Murray A, Jacobs PA, Chakravarti A, Nelson DL (1996) Haplotype and inter‐spersion analysis of the FMR1 CGG repeat identifies two different mutational pathways for the origin of the fragile X syndrome. Hum Mol Genet 5:319–30. [DOI] [PubMed] [Google Scholar]
- 30. Farber RA, Petes TD, Dominska M, Hudgens SS, Liskay RM (1994) Instability of simple sequence repeats in a mammalian cell line. Hum Mol Genet 3:253–6. [DOI] [PubMed] [Google Scholar]
- 31. Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, Garber J, Kane M, Kolodner R (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75:1027–38. [DOI] [PubMed] [Google Scholar]
- 32. Fleischer B (1918) Uber myotonische Dystrophie mit Katarakt. Albrecht von Graefes Arch Klin Exp Opthalmol 96:91–133. [Google Scholar]
- 33. Freudenreich CH, Stavenhagen JB, Zakian VA (1997) Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome. Mol Cell Biol 17:2090–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34. Friedberg EC (1991) Eukaryotic DNA repair: glimpses through the yeast Saccharomyces cerevisiae. Bioessays 13:295–302. [DOI] [PubMed] [Google Scholar]
- 35. Fu YH, Kuhl DP, Pizzuti A, Pieretti M, Sutcliffe JS, Richards S, Verkerk AJ, Holden JJ, Fenwick RG, Jr. , Warren ST, Oostra BA, Nelson DL, Caskey CT (1991) Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67:1047–58. [DOI] [PubMed] [Google Scholar]
- 36. Fu YH, Pizzuti A, Fenwick RG, Jr. , King J, Rajnarayan S, Dunne PW, Dubel J, Nasser GA, Ashizawa T, de Jong P, Wieringa B, Komeluk R, Perryman MB, Epstein HF, Caskey CT (1992) An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255:1256–8. [DOI] [PubMed] [Google Scholar]
- 37. Gacy AM, Goellner G, Jurani'c N, Macura S, McMurray CT (1995) Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81:533–40. [DOI] [PubMed] [Google Scholar]
- 38. Goellner GM TD, Thibodeau S, Almqvist E, Goldberg YP, Hayden MR, McMurray CT (1997) Different mechanisms underlie DNA instability in Huntington disease and colorectal cancer. Am J Hum Gene 60:879–890. [PMC free article] [PubMed] [Google Scholar]
- 39. Goldberg YP, Kalchman MA, Metzler M, Nasir J, Zeisler J, Graham R, Koide HB, O'Kusky J, Sharp AH, Ross CA, Jirik F, Hayden MR (1996) Absence of disease phenotype and intergenerational stability of the CAG repeat in transgenic mice expressing the human Huntington disease transcript. Hum Mol Genet 5:177–85. [DOI] [PubMed] [Google Scholar]
- 40. Goldberg YP, McMurray CT, Zeisler J, Almqvist E, Sillence D, Richards F, Gacy AM, Buchanan J, Telenius H, Hayden MR (1995) Increased instability of intermediate alleles in families with sporadic Huntington disease compared to similar sized intermediate alleles in the general population. Hum Mol Genet 4:1911–8. [DOI] [PubMed] [Google Scholar]
- 41. Goldfarb LG, Vasconcelos O, Platonov FA, Lunkes A, Kipnis V, Kononova S, Chabrashvili T, Vladimirtsev VA, Alexeev VP, Gajdusek DC (1996) Unstable triplet repeat and phenotypic variability of spinocerebellar ataxia type 1. Ann Neurol 39:500–6. [DOI] [PubMed] [Google Scholar]
- 42. Goossens M, Dozy AM, Embury SH, Zachariades Z, Hadjiminas MG, Stamatoyannopoulos G, Kan YW (1980) Triplicated alpha‐globin loci in humans. Proc Natl Acad Sci USA 77:518–21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43. Gourdon G, Radvanyi F, Lia AS, Duros C, Blanche M, Abitbol M, Junien C, Hofmann Radvanyi H (1997) Moderate intergenerational and somatic instability of a 55‐CTG repeat in transgenic mice. Nat Genet 15:190–2. [DOI] [PubMed] [Google Scholar]
- 44. Haber JE (1992) Mating‐type gene switching in Saccharomyces cerevisiae. Trends Genet 8:446–52. [DOI] [PubMed] [Google Scholar]
- 45. Han HJ, Yanagisawa A, Kato Y, Park JG, Nakamura Y (1993) Genetic instability in pancreatic cancer and poorly differentiated type of gastric cancer. Cancer Res 53:5087–9. [PubMed] [Google Scholar]
- 46. Harley HG, Brook JD, Rundle SA, Crow S, Reardon W, Buckler AJ, Harper PS, Housman DE, Shaw DJ (1992) Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature 355:545–6. [DOI] [PubMed] [Google Scholar]
- 47. Harper PS, Harley HG, Reardon W, Shaw DJ (1992) Anticipation in myotonic dystrophy: new light on an old problem. Am J Hum Genet 51:10–6. [PMC free article] [PubMed] [Google Scholar]
- 48. Harvey SC (1997) Slipped structures in DNA triplet repeat sequences: entropic contributions to genetic instabilities. Biochemistry 36:3047–9. [DOI] [PubMed] [Google Scholar]
- 49. Hashida H, Goto J, Kurisaki H, Mizusawa H, Kanazawa I (1997) Brain regional differences in the expansion of a CAG repeat in the spinocerebellar ataxias: dentatorubral‐pallidoluysian atrophy, Machado‐Joseph disease, and spinocerebellar ataxia type 1. Ann Neurol 41:505–11. [DOI] [PubMed] [Google Scholar]
- 50. Heale SM, Petes TD (1995) The stabilization of repetitive tracts of DNA by variant repeats requires a functional DNA mismatch repair system. Cell 83:539–45. [DOI] [PubMed] [Google Scholar]
- 51. Henderson ST, Petes TD (1992) Instability of simple sequence DNA in Saccharomyces cerevisiae. Mol Cell Biol 12:2749–57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52. Higgs DR, Old JM, Pressley L, Clegg JB, Weatherall DJ (1980) A novel alpha‐globin gene arrangement in man. Nature 284:632–5. [DOI] [PubMed] [Google Scholar]
- 53. Horwitz M, Goode EL, Jarvik GP (1996) Anticipation in familial leukemia. Am J Hum Genet 59:990–8. [PMC free article] [PubMed] [Google Scholar]
- 54. Housman D (1995) Gain of glutamines, gain of function Nat Genet 10:3–4. [DOI] [PubMed] [Google Scholar]
- 55. Huntington's, Disease, Collaborative, Research, Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72:971–983. [DOI] [PubMed] [Google Scholar]
- 56. Igarashi S, Takiyama Y, Cancel G, Rogaeva EA, Sasaki H, Wakisaka A, Zhou YX, Takano H, Endo K, Sanpei K, Oyake M, Tanaka H, Stevanin G, Abbas N, Durr A, Rogaev EI, Sherrington R, Tsuda T, Ikeda M, Cassa E, Nishizawa M, Benomar A, Julien J, Weissenbach J, Wang G‐X, Agid Y, St. George Hyslop PH , Brice A, Tsuji S (1996) Intergenerational instability of the CAG repeat of the gene for Machado‐Joseph disease (MJD1) is affected by the genotype of the normal chromosome: implications for the molecular mechanisms of the instability of the CAG repeat. Hum Mol Genet 5:923–32. [DOI] [PubMed] [Google Scholar]
- 57. Ikeda H, Yamaguchi M, Sugai S, Aze Y, Narumiya S, Kakizuka A (1996) Expanded poiyglutamine in the Machado‐Joseph disease protein induces cell death in vitro and in vivo. Nat Genet 13:196–202. [DOI] [PubMed] [Google Scholar]
- 58. Ikeuchi T, Igarashi S, Takiyama Y, Onodera O, Oyake M, Takano H, Koide R, Tanaka H, Tsuji S (1996) Non‐Mendelian transmission in dentatorubral‐pallidoluysian atrophy and Machado‐Joseph disease: the mutant allele is preferentially transmitted in male meiosis. Am J Hum Genet 58:730–3. [PMC free article] [PubMed] [Google Scholar]
- 59. Imbert G, Kretz C, Johnson K, Mandel JL (1993) Origin of the expansion mutation in myotonic dystrophy. Nat Genet 4:72–6. [DOI] [PubMed] [Google Scholar]
- 60. Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Gamier JM, Weber C, Mandel JL, Cancel G, Abbas N, Durr A, Didierjean O, Stevanin G, Agid Y, Brice A (1996) Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 14:285–91. [DOI] [PubMed] [Google Scholar]
- 61. Jaworski A, Rosche WA, Gellibolian R, Kang S, Shimizu M, Bowater RP, Sinden RR, Wells RD (1995) Mismatch repair in Escherichia coli enhances instability of (CTG)n triplet repeats from human hereditary diseases. Proc Natl Acad Sci USA 92:11019–23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62. Jeffreys AJ, Tamaki K, MacLeod A, Monckton DG, Neil DL, Armour JA (1994) Complex gene conversion events in germline nutation at human minisatellites. Nat Genet 6:136–45. [DOI] [PubMed] [Google Scholar]
- 63. Kang S, Jaworski A, Ohshima K, Wells RD (1995) Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nat Genet 10:213–8. [DOI] [PubMed] [Google Scholar]
- 64. Kang S, Ohshima K, Jaworski A, Wells RD (1996) CTG triplet repeats from the myotonic dystrophy gene are expanded in Escherichia coli distal to the replication origin as a single large event. J Mol Biol 258:543–7. [DOI] [PubMed] [Google Scholar]
- 65. Kang S, Ohshima K, Shimizu M, Amirhaeri S, Wells RD (1995) Pausing of DNA synthesis in vitro at specific loci in CTG and CGG triplet repeats from human hereditary disease genes. J Biol Chem 270:27014–21. [DOI] [PubMed] [Google Scholar]
- 66. Karlin S, Burge C (1996) Trinucleotide repeats and long homopeptides in genes and proteins associated wfth nervous system disease and development. Proc Natl Acad Sci USA 93:1560–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67. Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, Kimura J, Narumiya S, Kakizuka A (1994) CAG expansions n a novel gene for Machado‐Joseph disease atchromoscme 14q32.1. Nat Genet 8:221–8. [DOI] [PubMed] [Google Scholar]
- 68. Knight SJ, Flannery AV, Hirst MC, Campbell L, Christodoulou Z, Phelps SR, Pointon J, Middleton Price HR, Bamicoat A, Pembrey ME, Holland J, Oostra BA, Bobrow M, Davies KE (1993) Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental retardation. Cell 74:127–34. [DOI] [PubMed] [Google Scholar]
- 69. Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, Takahashi H, Kondo R, Ishikawa A, Hayashi T, Saito M, Tomoda A, Miike T, Naito H, Ikuta F, Tsuji S (1994) Unstable expansion of CAG repeat in hereditary dentatorubral‐pallidoluysian atrophy (DRPLA). Nat Gene 6:9–13. [DOI] [PubMed] [Google Scholar]
- 70. Komure O, Sano A, Nishino N, Yamauchi N, Ueno S, Kondoh K, Sano N, Takahashi M, Murayama N, Kondo I, et al. (1995) DNA analysis in hereditary dentatorubral‐pallidoluysian atrophy: correlation between CAG repeat length and phenotypic variation and the molecular basis of anticipation. Neurology 45:143–9. [DOI] [PubMed] [Google Scholar]
- 71. Komeluk RG, Narang MA (1997) Anticipating anticipation. Nat Genet 15:119–20. [DOI] [PubMed] [Google Scholar]
- 72. Kramer PR, Pearson CE, Sinden RR (1996) Stability of triplet repeats of myotonic dystrophy and fragile X loci in human mutator mismatch repair cell lines. Hum Genet 98:151–7. [DOI] [PubMed] [Google Scholar]
- 73. Kremer EJ, Pritchard M, Lynch M, Yu S, Holman K, Baker E, Warren ST, Schlessinger D, Sutherland GR, Richards RI (1991) Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 252:1711–4. [DOI] [PubMed] [Google Scholar]
- 74. Kunkel TA (1993) Nucleotide repeats. Slippery DNA and diseases. Nature 365:207–8. [DOI] [PubMed] [Google Scholar]
- 75. Kuryavyi W, Jovin TM (1995) Triad‐DNA: a model for trinucleotide repeats. Nat Genet 9:339–41. [DOI] [PubMed] [Google Scholar]
- 76. La Spada AR, et al. (1997) {manuscript in preparation.
- 77. La Spada AR, Paulson HL, Fischbeck KH (1994) Trinucleotide repeat expansion in neurological disease. Ann Neurol 36:814–22. [DOI] [PubMed] [Google Scholar]
- 78. La Spada AR, Peterson K, Jeng G, Chen K, Fischbeck KH, McKnight GS (1996) Instability of CAG repeat expansions introduced into yeast artificial chromosomes. Am J Hum Genet 59:A53 {abstract. [Google Scholar]
- 79. La Spada AR, Roiing DB, Harding AE, Warner CL, Spiegel R, Hausmanowa Petrusewicz I, Yee WC, Fischbeck KH (1992) Meiotic stability and genotype‐phenotype correlation of the trinucleotide repeat in X‐linked spinal and bulbar muscular atrophy. Nat Genet 2:301–4. [DOI] [PubMed] [Google Scholar]
- 80. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X‐linked spinal and bulbar muscular atrophy. Nature 352:77–9. [DOI] [PubMed] [Google Scholar]
- 81. Lavedan C, Hofmann Radvanyi H, Shelbourne P, Rabes JP, Duros C, Savoy D, Dehaupas I, Luce S, Johnson K, Junien C (1993) Myotonic dystrophy: size‐ and sex‐dependent dynamics of CTG meiotic instability, and somatic mosaicism. Am J Hum Genet 52:875–83. [PMC free article] [PubMed] [Google Scholar]
- 82. Leeflang EP, Zhang L, Tavar'e S, Hubert R, Srinidhi J, MacDonald ME, Myers RH, de Young M, Wexler NS, Gusella JF, Arnheim N (1995) Single sperm analysis of the trinucleotide repeats in the Huntington's disease gene: quantification of the mutation frequency spectrum. Hum Mol Genet 4:1519–26. [DOI] [PubMed] [Google Scholar]
- 83. Limprasert P, Nouri N, Heyman RA, Nopparatana C, Kamonsilp M, Deininger PL, Keats BJ (1996) Analysis of CAG repeat of the Machado‐Joseph gene in huiran, chimpanzee and monkey populations: a variant nucleotide is associated with the number of CAG repeats. Hum Mol Genet 5:207–13. [DOI] [PubMed] [Google Scholar]
- 84. Lopes Cendes I, Maciel P, Kish S, Gaspar C, Robitaille Y, Clark HB, Koeppen AH, Nance M, Schut L, Silveira I, Coutinho P, Sequeiros J, Rouleau GA (1996) Somatic mosaicism in the central nervous system in spinocerebellar ataxia type 1 and Machado‐Joseph disease. Ann Neurol 40:199–206. [DOI] [PubMed] [Google Scholar]
- 85. Maciel P, Gaspar C, DeStefano AL, Silveira I, Coutinho P, Radvany J, Dawson DM, Sudarsky L, Guimaraes J, Loureiro JE, Nezarati MM, Corwin LL, Lopes‐Cendes I, Rooke K, Rosenberg R, MacLeod P, Farrer LA, Sequiros J, Rouleau G (1995) Correlation between CAG repeat length and clinical features in Machado‐Joseph disease. Am J Hum Genet 57:54–61. [PMC free article] [PubMed] [Google Scholar]
- 86. Mahadevan M, Tsilfidis C, Sabourin L, Shutler G, Amemiya C, Jansen G, Neville C, Narang M, Barcel'o J, O'Hoy K, Leblond S, Earle‐Macdonald J, De Jong PJ, Wieringa B, Komeluk RG (1992) Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255:1253–5. [DOI] [PubMed] [Google Scholar]
- 87. Mangiarini L, Sathasivam K, Mahal A, Mott R, Seller M, Bates GP (1997) Instability of highly expanded CAG repeats in mice transgenic for the Huntington's disease mutation. Nat Genet 15:197–200. [DOI] [PubMed] [Google Scholar]
- 88. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506. [DOI] [PubMed] [Google Scholar]
- 89. Maruyama H, Nakamura S, Matsuyama Z, Sakai T, Doyu M, Sobue G, Seto M, Tsujihata M, Oh I T, Nishio T, Sunohara N, Takahashi R, Hayashi M, Nishino I, Ohtake T, Oda T, Nishimura M, Saida T, Matsumoto H, Baba M, Kawaguchi Y, Kakizuka A, Kawakami H (1995) Molecular features of the CAG repeats and clinical manifestation of Machado‐Joseph disease. Hum Mol Genet 4:807–12. [DOI] [PubMed] [Google Scholar]
- 90. Matsumura R, Takayanagi T, Fujimoto Y, Murata K, Mano Y, Horikawa H, Chuma T (1996) The relationship between trinucleotide repeat length and phenotypic variation in Machado‐Joseph disease. J Neurol Sci 139:52–7. [PubMed] [Google Scholar]
- 91. Maurer DJ, O'Callaghan BL, Livingston DM (1996) Orientation dependence of trinucleotide CAG repeat instability in Saccharomyces cerevisiae. Mol Cell Biol 16:6617–22. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92. McMurray CT (1995) Mechanisms of DNA expansion. Chromosoma 104:2–13. [DOI] [PubMed] [Google Scholar]
- 93. Modrich P (1991) Mechanisms and biological effects of mismatch repair. Annu Rev Genet 25:229–53. [DOI] [PubMed] [Google Scholar]
- 94. Monckton DG, Coolbaugh MI, Ashizawa KT, Siciliano MJ, Caskey CT (1997) Hypermutable myotonic dystrophy CTG repeats in transgenic mice. Nat Genet 15:193–6. [DOI] [PubMed] [Google Scholar]
- 95. Monckton DG, Neumann R, Guram T, Fretwell N, Tamaki K, MacLeod A, Jeffreys AJ (1994) Minisatellite mutation rate variation associated with a flanking DNA sequence polymorphism. Nat Genet 8:162–70. [DOI] [PubMed] [Google Scholar]
- 96. Myers RH, MacDonald ME, Koroshetz WJ, Duyao MP, Ambrose CM, Taylor SA, Barnes G, Srinidhi J, Lin CS, Whaley WL, Lazzarini AM, Schwarz M, Wolff G, Bird ED, Vonsattel J, Gusella JF (1993) De novo expansion of a (CAG)n repeat in sporadic Huntington's disease. War Genet 5:168–73. [DOI] [PubMed] [Google Scholar]
- 97. Nagafuchi S, Yanagisawa H, Sato K, Shirayama T, Ohsaki E, Bundo M, Takeda T, Tadokoro K, Kondo I, Murayama N, et al. (1994) Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet 6:14–8. [DOI] [PubMed] [Google Scholar]
- 98. Nance MA (1996) Huntington disease‐another chapter rewritten. Am J Hum Genet 59:1–6. [PMC free article] [PubMed] [Google Scholar]
- 99. Nelson DL, Warren ST (1993) Trinucleotide repeat instability: when and where? [news] [published erratum appears in Nat Genet 1993 Jul;4(3):217] [comment]. Nat Genet 4:107–8. [DOI] [PubMed] [Google Scholar]
- 100. Nolin SL, Lewis FAr, Ye LL, Houck GE, Jr. , Glicksman AE, Limprasert P, Li SY, Zhong N, Ashley AE, Feingold E, Sherman SL, Brown WT (1996) Familial transmission of the FMR1 CGG repeat. Am J Hum Genet 59:1252–61. [PMC free article] [PubMed] [Google Scholar]
- 101. O'Hoy KL, Tsilfidis C, Mahadevan MS, Neville CE, Barcel'o J, Hunter AG, Komeluk RG (1993) Reduction in size of the myotonic dystrophy trinucleotide repeat mutation during transmission. Science 259:809–12. [DOI] [PubMed] [Google Scholar]
- 102. Oberl'e I, Rousseau F, Heitz D, Kretz C, Devys D, Hanauer A, Bou'e J, Bertheas MF, Mandel JL (1991) Instability of a 550‐base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252:1097–102. [DOI] [PubMed] [Google Scholar]
- 103. Orr HT, Chung MY, Banfi S, Kwiatkowski TJ, Jr. , Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, Zoghbi HY (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Cell 72:971–83. [DOI] [PubMed] [Google Scholar]
- 104. Oruc L, Lindblad K, Verheyen GR, Ahlberg S, Jakovljevi'c M, Ivezi'c S, Raeymaekers P, Van Broeckhoven C, Schalling M (1997) CAG repeat expansions in bipolar and unipolar disorders. Am J Hum Genet 60:730–2. [PMC free article] [PubMed] [Google Scholar]
- 105. Otten AD, Tapscott SJ (1995) Triplet repeat expansion in myotonic dystrophy alters the adjacent chromatin structure. Proc Natl Acad Sci USA 92:5465–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106. Oudet C, Mornet E, Serre JL, Thomas F, Lentes Zengeriing S, Kretz C, Deluchat C, Tejada I, Bou'e J, Bou'e A, Mandel J‐L (1993) Linkage disequilibrium between the fragile X mutation and two closely linked CA repeats suggests that fragile X chromosomes are derived from a small number of founder chromosomes. Am J Hum Genet 52:297–304. [PMC free article] [PubMed] [Google Scholar]
- 107. Pearson CE, Ewel A, Acharya S, Fishel RA, Sinden RR (1997) Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases. Hum Mol Genet: (in press). [DOI] [PubMed] [Google Scholar]
- 108. Pearson CE, Sinden RR (1996) Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci. Biochemistry 35:5041–53. [DOI] [PubMed] [Google Scholar]
- 109. Petruska J, Arnheim N, Goodman MF (1996) Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases. Nucleic Acids Res 24:1992–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110. Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes Cendes I, Pearlman S, Starkman S, Orozco Diaz G, Lunkes A, DeJong P, Rouleau GA, Auburger G, Korenberg JH, Figueroa C, Sahba S (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 14:269–76. [DOI] [PubMed] [Google Scholar]
- 111. Ranen NG, Stine OC, Abbott MH, Sherr M, Codori AM, Franz ML, Chao NI, Chung AS, Pleasant N, Callahan C, et al. (1995) Anticipation and instability of IT‐15 (CAG)n repeats in parent‐offspring pairs with Huntington disease. Am J Hum Genet 57:593–602. [PMC free article] [PubMed] [Google Scholar]
- 112. Reitmair AH, Schmits R, Ewel A, Bapat B, Redston M, Mitri A, Waterhouse P, Mittrucker HW, Wakeham A, Liu B, et al. (1995) MSH2 deficient mice are viable and susceptible to lymphoid tumours. Nat Genet 11:64–70. [DOI] [PubMed] [Google Scholar]
- 113. Richards RI, Sutherland GR (1992) Heritable unstable DNA sequences. Nat Genet 1:7–9. [DOI] [PubMed] [Google Scholar]
- 114. Richards RI, Sutherland GR (1994) Simple repeat DNA is not replicated simply. Nat Genet 6:114–6. [DOI] [PubMed] [Google Scholar]
- 115. Rubinsztein DC, Amos W, Leggo J, Goodburn S, Jain S, Li SH, Margolis RL, Ross CA, Ferguson Smith MA (1995) Microsatellite evolution‐evidence for directionality and variation in rate between species. Nat Genet 10:337–43. [DOI] [PubMed] [Google Scholar]
- 116. Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, Wakisaka A, Tashiro K, Ishida Y, Ikeuchi T, Koide R, Saito M, Sato A, Tanaka T, Hanyu S, Takiyama Y, Nishizawa M, Shimizu N, Nomura Y, Segawa M, Iwabuchi K, Eguchi I, Tanaka H, Takahashi H, Tsuji S (1996) Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 14:277–84. [DOI] [PubMed] [Google Scholar]
- 117. Sasaki H, Wakisaka A, Fukazawa T, Iwabuchi K, Hamada T, Takada A, Mukai E, Matsuura T, Yoshiki T, Tashiro K (1995) CAG repeat expansion of Machado‐Joseph disease in the Japanese: analysis of the repeat instability for parental transmission, and correlation with disease phenotype. J Neurol Sci 133:128–33. [DOI] [PubMed] [Google Scholar]
- 118. Schweitzer JK, Livingston DM (1997) Destabilization of CAG trinucleotide repeat tracts by mismatch repair mutations in yeast. Hum Mol Genet 6:349–355. [DOI] [PubMed] [Google Scholar]
- 119. Smith GK, Jie J, Fox GE, Gao X (1995) DNA CTG triplet repeats involved in dynamic mutations of neurologically related gene sequences form stable duplexes. Nucleic Acids Res 23:4303–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 120. Snell RG, MacMillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies F; MacDonald ME, Gusella JF, Harper PS, Shaw DJ (1993) Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nat Genet 4:393–7. [DOI] [PubMed] [Google Scholar]
- 121. Spiegel R, La Spada AR, Kress W, Fischbeck KH, Schmid W (1996) Somatic stability of the expanded CAG trinucleotide repeat in X‐linked spinal and bulbar muscular atrophy. Hum Mutat 8:32–7. [DOI] [PubMed] [Google Scholar]
- 122. Stine OC, Pleasant N, Franz ML, Abbott MH, Folstein SE, Ross CA (1993) Correlation between the onset age of Huntington's disease and length of the trinucleotide repeat in IT‐15. Hum Mol Genet 2:1547–9. [DOI] [PubMed] [Google Scholar]
- 123. Strand M, Profla TA, Liskay RM, Petes TD (1993) Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365:274–6. [DOI] [PubMed] [Google Scholar]
- 124. Takano H, Onodera O, Takahashi H, Igarashi S, Yamada M, Oyake M, Ikeuchi T, Koide R, Tanaka H, Iwabuchi K, Tsuji S (1996) Somatic mosaicism of expanded CAG repeats in brains of patients with dentatorubral‐pallidoluysian atrophy: cellular population‐dependent dynamics of mitotic instability. Am J Hum Genet 58:1212–22. [PMC free article] [PubMed] [Google Scholar]
- 125. Takiyama Y, Igarashi S, Rogaeva EA, Endo K, Rogaev EI, Tanaka H, Sherrington R, Sanpei K, Liang Y, Saito M, Tsuda T, Takano H, Ikeda M, Lin C, Chi H, Kennedy JL, Lang AE, Wherrett JR, Segawa M, Nomura Y, Yuasa T, Weissenbach J, Yoshida M, Nishizawa M, Kidd KK, Tsuji S, St. George‐Hyslop PH (1995) Evidence for inter‐generational instability in the CAG repeat in the MJD1 gene and for conserved haplotypes at flanking markers amongst Japanese and Caucasian subjects with Machado‐Joseph disease. Hum Mol Genet 4:1137–46. [DOI] [PubMed] [Google Scholar]
- 126. Tanaka F, Sobue G, Doyu M, Ito Y, Yamamoto M, Shimada N, Yamamoto K, Riku S, Hshizume Y, Mitsuma T (1996) Differential pattern in tissue‐specific somatic mosaicism of expanded CAG trinucleotide repeat in dentatorubral‐pailidoluysian atrophy, Machado‐Joseph disease, and X‐linked recessive spinal and bulbar muscular atrophy. J Neurol Sci 135:43–50. [DOI] [PubMed] [Google Scholar]
- 127. Telenius H, Kremer B, Goldberg YP, Theilmann J, Andrew SE, Zeisler J, Adam S, Greenberg C, Ives EJ, Clarke LA, Hayden MR (1994) Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm. Nat Genet 6:409–14. [DOI] [PubMed] [Google Scholar]
- 128. Thibodeau SN, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science 260:816–9. [DOI] [PubMed] [Google Scholar]
- 129. Thommes P, Hubscher U (1990) Eukaryotic DNA replication. Enzymes and proteins acting at the fork. Eur J Biochem 194:699–712. [DOI] [PubMed] [Google Scholar]
- 130. Tzagournissakis M, Fesdjian CO, Shashidharan O, Plaitakis A (1995) Stability of the Huntington disease (CAG)n repeat in a late onset form occuring on the Island of Crete. Hum Mol Genet 4:2239–43. [DOI] [PubMed] [Google Scholar]
- 131. Ueno S, Kondoh K, Kotani Y, Komure O, Kuno S, Kawai J, Hazama F, Sano A (1995) Somatic mosaicism of CAG repeat in dentatorubral‐pallidoluysian atrophy (DRPLA). Hum Mol Genet 4:663–6. [DOI] [PubMed] [Google Scholar]
- 132. van den Ouweland AM, Deelen WH, Kunst CB, Uzielli ML, Nelson DL, Warren ST, Oostra BA, Halley DJ (1994) Loss of mutation at the FMR1 locus through multiple exchanges between maternal X chromosomes. Hum Mol Genet 3:1823–7. [DOI] [PubMed] [Google Scholar]
- 133. Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP, Eussen BE, van Ommen GJB, Blonden LA, Riggins GJ, Chastain JL, Kunst CB, Galjaard H, Caskey CT, Nelson DL, Oostra BA, Warren ST (1991) Identification of a gene (FMR‐1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65:905–14. [DOI] [PubMed] [Google Scholar]
- 134. Wang YH, Gellibolian R, Shimizu M, Wells RD, Griffith J (1996) Long CCG triplet repeat blocks exclude nucleosomes: a possible mechanism for the nature of fragile sites in chromosomes. J Mol Biol 263:511–6. [DOI] [PubMed] [Google Scholar]
- 135. Warren ST (1996) The expanding world of trinucleotide repeats. Science 271:1374–5. [DOI] [PubMed] [Google Scholar]
- 136. Wells RD (1996) Molecular basis of genetic instability of triplet repeats. J Biol Chem 271:2875–8. [DOI] [PubMed] [Google Scholar]
- 137. Wieringa B (1994) Myotonic dystrophy reviewed: back to the future Hum Mol Genet 3:1–7. [DOI] [PubMed] [Google Scholar]
- 138. Willems PJ (1994) Dynamic mutations hit double figures. Nat Genet 8:213–5. [DOI] [PubMed] [Google Scholar]
- 139. Wohrle D, Kennerknecht I, Wolf M, Enders H, Schwemmle S, Steinbach P (1995) Heterogeneity of DM kinase repeat expansion in different fetal tissues and further expansion during cell proliferation in vitro: evidence for a casual involvement of methyl‐directed DNA mismatch repair in triplet repeat stability. Hum Mol Genet 4:1147–53. [DOI] [PubMed] [Google Scholar]
- 140. Yanagisawa H, Fujii K, Nagafuchi S, Nakahori Y, Nakagome Y, Akane A, Nakamura M, Sano A, Komure O, Kondo I, Jin DK, Sorensen SA, Potter NT, Young SR, Nakamura K, Nukina N, Nagao Y, Tadokoro K, Okuyama T, Miyashita T, Inoue T, Kanazawa I, Yamada M (1996) A unique origin and multistep process for the generation of expanded DRPLA triplet repeats. Hum Mol Genet 5:373–9. [DOI] [PubMed] [Google Scholar]
- 141. Yu S, Mulley J, Loesch D, Turner G, Donnelly A, Gedeon A, Hillen D, Kremer E, Lynch M, Pritchard M, Sutherland GR, Richards RI (1992) Fragile‐X syndrome: unique genetics of the heritable unstable element. Am J Hum Genet 50:968–80. [PMC free article] [PubMed] [Google Scholar]
- 142. Zhang L, Fischbeck KH, Arnheim N (1995) CAG repeat length variation in sperm from a patient with Kennedy's disease. Hum Mol Genet 4:303–5. [DOI] [PubMed] [Google Scholar]
- 143. Zhang L, Leeflang EP, Yu J, Arnheim N (1994) Studying human mutations by sperm typing: instability of CAG trinucleotide repeats in the human androgen receptor gene. Nat Genet 7:531–5. [DOI] [PubMed] [Google Scholar]
- 144. Zhong N, Ju W, Pietrofesa J, Wang D, Dobkin C, Brown WT (1996) Fragile X “gray zone” alleles: AGG patterns, expansion risks, and associated haplotypes. Am J Med Genet 64:261–5. [DOI] [PubMed] [Google Scholar]
- 145. Zhou YX, Takiyama Y, Igarashi S, Li YF, Zhou BY, Gui DC, Endo K, Tanaka H, Chen ZH. Zhou LS, Fan MZ, Yang BX, Weissenbach J, Wang GX, Tsuji S (1997) Machado‐Joseph disease in four Chinese pedigrees: molecular analysis of 15 patients including two juvenile cases and clinical correlations. Neurology 48:482–5. [DOI] [PubMed] [Google Scholar]
- 146. Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1 A‐voltage‐dependent calcium channel. War Genet 15:62–9. [DOI] [PubMed] [Google Scholar]