Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;8(1):175–193. doi: 10.1111/j.1750-3639.1998.tb00144.x

Cellular Pathology of Lysosomal Storage Disorders

Steven U Walkley 1,
PMCID: PMC8098147  PMID: 9458175

Abstract

Lysosomal storage disorders are rare, inborn errors of metabolism characterized by intralysosomal accumulation of unmetabolized compounds. The brain is commonly a central focus of the disease process and children and animals affected by these disorders often exhibit progressively severe neurological abnormalities. Although most storage diseases result from loss of activity of a single enzyme responsible for a single catabolic step in a single organelle, the lysosome, the overall features of the resulting disease belies this simple beginning. These are enormously complex disorders with metabolic and functional consequences that go far beyond the lysosome and impact both soma‐dendritic and axonal domains of neurons in highly neuron type‐specific ways. Cellular pathological changes include growth of ectopic dendrites and new synaptic connections and formation of enlargements in axons far distant from the lysosomal defect. Other storage diseases exhibit neuron death, also occurring in a cell‐selective manner. The functional links between known molecular genetic and enzyme defects and changes in neuronal integrity remain largely unknown. Future studies on the biology of lysosomal storage diseases affecting the brain can be anticipated to provide insights not only into these pathogenic mechanisms, but also into the role of lysosomes and related organelles in normal neuron function.

Full Text

The Full Text of this article is available as a PDF (439.2 KB).

References

  • 1. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson J (1994) The Molecular Biology of the Cell. 3rd Edition. Garland: New York . [Google Scholar]
  • 2. Beal MF (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative disease Ann Neurol 31: 119–130. [DOI] [PubMed] [Google Scholar]
  • 3. Bevan AP, Drake PG, Bergeron JJM, Posner BI (1996) Intracellular signal transduction: The role of endosomes. TEM 7: 13–21. [DOI] [PubMed] [Google Scholar]
  • 4. Bielschowsky M (1932) Histopathology of nerve cells. In: Cytology and Cellular Pathology of the Nervous System, Penfield W (ed.), Paul B. Hoeber: New York . [Google Scholar]
  • 5. Bremer E (1994) Glycosphingolipids as effectors of growth and differentiation. Curr Top Membranes: Cell Lipids 40: 387–411. [Google Scholar]
  • 6. Broadwell RD, Oliver C, Brightman MW (1980) Neuronal transport of acid hydrolases and peroxidase within the lysosomal system of organelles: Involvement of agranular reticulum‐like cisterns. J Comp Neurol 190: 519–532. [DOI] [PubMed] [Google Scholar]
  • 7. Brown D, Thrall MA, Walkley SU, Wurzelmann S, Wenger DA, Allison RW, Just CA (1996) Metabolic abnormalities in feline Niemann‐Pick disease type C heterozygotes. J Inher Metab Dis 19: 319–330. [DOI] [PubMed] [Google Scholar]
  • 8. Chakraborty M, Anderson GM, Chakraborty A, Chatterjee D (1993) Accumulation of high level of pp60 c‐srcN is an early event during GM3 ‐antibody mediated differentiation of neuro‐2a neuroblastoma cells. Brain Res 625: 197–202. [DOI] [PubMed] [Google Scholar]
  • 9. Conzelmann E, Sandhoff K (198384) Partial enzyme deficiencies: residual activities and development of neurological disorders. Dev Neurosci 6: 58–71. [DOI] [PubMed] [Google Scholar]
  • 10. De Duve C (1964) From cytases to lysosomes. Fed Proc 23: 1045–1049. [PubMed] [Google Scholar]
  • 11. Ezaki J, Wolfe LS, Ishido K, Kominami E (1995) Abnormal degradative pathway of mitochondrial ATP synthase subunit c in late infantile neuronal ceroid lipofuscinosis (Batten disease). Am J Med Genet 57: 254–259. [DOI] [PubMed] [Google Scholar]
  • 12. Ezaki JR, Wolfe LS, Kominami E (1996) Specific delay in the degradation of mitochondrial ATP synthase subunit c in late infantile neuronal ceroid‐lipofuscinosis is derived from cellular proteolytic dysfunction rather than structural alteration of subunit c. J Neurochem 67: 1677–1687. [DOI] [PubMed] [Google Scholar]
  • 13. Ferrari G, Anderson BL, Stephens RM, Kaplan DR, Greene LA (1995) Prevention of apoptotic neuronal death by GM1 ganglioside. J Biol Chem 270: 3074–3080. [DOI] [PubMed] [Google Scholar]
  • 14. Garrod A (1928) The lessons of rare maladies. Lancet 1: 1055–1059. [Google Scholar]
  • 15. Garrod AE (1909) Inborn Errors of Metabolism. Oxford University Press: Oxford . [Google Scholar]
  • 16. Gatzinsky KP, Berthold C‐H (1990) Lysosomal activity at nodes of Ranvier during retrograde axonal transport of horseradish peroxidase in alpha‐motor neurons of the cat. J Neurocytol 20: 989–1002. [DOI] [PubMed] [Google Scholar]
  • 17. Gatzinsky KP, Berthold C‐H, Corneliuson O (1988) Acid phosphatase activity at nodes of Ranvier in alpha‐motor and dorsal root ganglion neurons of the cat. J Neurocytol 17: 531–544. [DOI] [PubMed] [Google Scholar]
  • 18. Goodman LA, Livingston PO, Walkley SU (1991) Ectopic dendrites occur only on cortical pyramidal cells containing elevated GM2 ganglioside in α‐mannosidosis. Proc Natl Acad Sci USA 88: 11330–11334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Goodman LA, Walkley SU (1996) GM2 ganglioside is associated with cortical neurons undergoing active dendritogenesis during normal brain development. Dev Brain Res 93: 162–171. [DOI] [PubMed] [Google Scholar]
  • 20. Gravel RA, Clarke JTR, Kaback MM, Mahuran D, Sandhoff K and Suzuki K (1995) The GM2 gangliosides. In: The Metabolic and Molecular Bases of Inherited Disease, Scriver CR, Beaudet AL, Sly WS, Valle D (eds.), Chapter 92, pp. 2839–2879, McGraw‐Hill: New York . [Google Scholar]
  • 21. Griffiths G, Gruenberg J (1991) The arguments for preexisting early and late endosomes. Trends Cell Biol 1: 5–9. [DOI] [PubMed] [Google Scholar]
  • 22. Hakomori S (1995) Role of gangliosides in transmembrane signaling and cell recognition. In: Biology of the Sialic Acids, Rosenberg A (ed.), pp. 243–259, Plenum Press Publishers: New York . [Google Scholar]
  • 23. Hers HG (1965) Progress in gastroenterology: Inborn lysosomal diseases. Gastroenterology 48: 625–633. [PubMed] [Google Scholar]
  • 24. Hers HG and Van Hoof F (1973) Lysosomes and Storage Diseases. Academic Press: New York . [Google Scholar]
  • 25. Hirschberg, K Zisling R, Van Echten‐Deckert, G , Futerman AH (1996) Ganglioside synthesis during the development of neuronal polarity. J Biol Chem 271: 14876–14882. [DOI] [PubMed] [Google Scholar]
  • 26. Hoekstra D, Kok JW (1992) Trafficking of glycosphingolipids in eukaryotic cells; sorting and recycling of lipids. Biochim Biophys Acta 1113:277–294. [DOI] [PubMed] [Google Scholar]
  • 27. Hofmann SL, Lee LA, Lu J‐Y, Verkruyse LA (1997) Palmitoyl‐protein thioesterase and the molecular pathogenesis of infantile neuronal ceroid lipofuscinosis. Neuropediatrics 28: 27–30. [DOI] [PubMed] [Google Scholar]
  • 28. Hollenbeck PJ (1993) Products of endocytosis and autophagy are retrieved from axons by regulated retrograde organelle transport. J Cell Biol 121: 305–315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Holtzman E. (1989) Lysosomes. Plenum Press: New York . [Google Scholar]
  • 30. Holtzman E, Novikoff AB (1965) Lysosomes in the rat sciatic nerve following crush. J Cell Biol 27: 651–668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Horowski R, Wachtel H, Turski L, Löschmann P‐A (1994) Glutamate excitotoxicity as a possible pathogenetic mechanism in chronic neurodegeneration. In: Neurodegenerative Diseases, Calne DB (ed.), Chapter 11, pp. 163–175, WB Saunders: Philadelphia . [Google Scholar]
  • 32. Houser CR, Vaughn JE, Hendry SHC, Jones EG, Peters A (1984) GABA neurons in the cerebral cortex. In: Cerebral Cortex: Functional Properties of Cortical Cells, Jones EG, Peter A (eds), Volume 2, pp. 63–89, Plenum Press: New York . [Google Scholar]
  • 33. Karabelas AB, Walkley SU (1985) Altered patterns of evoked synaptic activity in cortical pyramidal neurons in feline ganglioside storage disease. Brain Res 339: 329–336. [DOI] [PubMed] [Google Scholar]
  • 34. Kornfeld S, Mellman I (1989) The biogenesis of lysosomes. Annu Rev Cell Biol 5: 483–526. [DOI] [PubMed] [Google Scholar]
  • 35. Lake B (1997) Lysosomal and peroxisomal disorders. Greenfield's Neuropathology, Graham DI, Lantos PL (eds.) Volume 1, Chapter 11, pp. 657–753, Arnold: London . [Google Scholar]
  • 36. Ledeen RW (1985) Biology of gangliosides: Neuritogenic and neuronotrophic properties. In: Neurobiology of Gangliosides, Gorio A, Haber B (eds.), pp. 147–159, Alan R. Liss, Inc. Publisher: New York . [DOI] [PubMed] [Google Scholar]
  • 37. Lin SXH, Collins CA (1992) Immunolocalization of cytoplasmic dynein to lysosomes in cultured cells. J Cell Sci 101: 125–137. [DOI] [PubMed] [Google Scholar]
  • 38. March PA, Thrall MA, Wurzelmann S, Brown D, Walkley SU (1997) Dendritic and axonal abnormalities in feline Niemann‐Pick disease type C. Acta Neuropathol (Berl) 94: 164–172. [DOI] [PubMed] [Google Scholar]
  • 39. March PA, Walkley SU, Wurzelmann S (1995) Morphological alterations in neocortical and cerebellar GABAergic neurons in canine Batten's disease. Am J Med Genet 57: 204–212. [DOI] [PubMed] [Google Scholar]
  • 40. Murphy RF (1991) Maturation models for endosome and lysosome biogenesis. Trends Cell Biol 1: 77–82. [DOI] [PubMed] [Google Scholar]
  • 41. Mutoh T, Tokuda A, Miyadai T, Hamaguchi M, Fujiki N (1995) Ganglioside GM1 binds to the TRK protein and regulates receptor function. Proc Natl Acad Sci USA 92: 5087–5091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Neufeld E (1991) Lysosomal storage diseases. Annu Rev Biochem 60: 257–280. [DOI] [PubMed] [Google Scholar]
  • 43. Nixon RA, Cataldo AM (1995) The endosomal‐lysosomal system of neurons: new roles. Trends Neurosci 18: 489–496. [DOI] [PubMed] [Google Scholar]
  • 44. Noda Y, Nakata T, Hirokawa N (1993) Localization of dynamin: Widespread distribution in mature neurons and association with membranous organelles. Neuroscience 55: 113–127. [DOI] [PubMed] [Google Scholar]
  • 45. Novelli A, Reilly JA, Lysko PG, Henneberry, RC (1988) Glutamate becomes neurotoxic via the N‐methyl‐D‐aspartate receptor when intracellular energy levels are reduced. Brain Res 451: 205–212. [DOI] [PubMed] [Google Scholar]
  • 46. Novikoff AB (1973) Lysosomes: A personal account. In: Lysosomes and Storage Diseases, Hers HG, Van Hoof F (eds.), Chapter 1, pp. 2–41, Academic Press: New York . [Google Scholar]
  • 47. Overly CC, Lee K, Berthiaume E, Hollenbeck PJ (1995) Quantitative measurement of intraorganelle pH in the endosomal‐lysosomal pathway in neurons by using ratiometric imaging with pyranine. Proc Natl Acad Sci USA 92: 3156–3160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Palmer DN, Fearnley IM, Walker JE, Hall NA, Lake BD, Wolfe LS, Haltia M, Martinus RD, Jolly RD (1992) Mitochondrial ATP synthase subunit c storage in the ceroid lipofuscinoses (Batten disease). Am J Med Genet 42: 561–567. [DOI] [PubMed] [Google Scholar]
  • 49. Parton RG, Dotti CG (1993) Cell biology of neuronal endocytosis. J Neurosci Res 36: 1–9. [DOI] [PubMed] [Google Scholar]
  • 50. Parton RG, Simons K, Dotti CG (1992) Axonal and dendritic endocytic pathways in cultured neurons. J Cell Biol 119: 123–137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Pentchev PG, Comly ME, Kruth HS, Vanier MT, Wenger DA, Patel S, Brady RO (1985) A defect in cholesterol esterification in Niemann‐Pick disease (type C) patients. Proc Natl Acad Sci USA 82: 8247–8251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Purpura DP, Suzuki K (1976) Distortion of neuronal geometry and formation of aberrant synapses in neuronal storage disease. Brain Res 116: 1–21. [DOI] [PubMed] [Google Scholar]
  • 53. Rabin SJ, Mocchetti I (1995) GM1 ganglioside activates the high‐affinity nerve growth factor receptor TRKA. J Neurochem 65: 347–354. [DOI] [PubMed] [Google Scholar]
  • 54. Rider JA, Dawson G, Siakotos AN (1992) Perspective of biochemical research in the neuronal ceroid‐lipofuscinosis. Am J Med Genet 42: 519–524. [DOI] [PubMed] [Google Scholar]
  • 55. Sachs B (1887) On arrested cerebral development, with special reference to its cortical pathology. J Nervous Ment Dis 14: 541–553. [Google Scholar]
  • 56. Sachs B (1903) On amaurotic family idiocy. A disease chiefly of the gray matter of the central nervous system. J Nervous Ment Dis 30: 1–13. [Google Scholar]
  • 57. Sachs B, Strauss I (1910) The cell changes in amaurotic family idiocy. J Exp Med 12: 685–695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Sandhoff K, Van Echten G (1994) Ganglioside metabolism: Enzymology, topology, and regulation. Prog Brain Res 101: 17–30. [DOI] [PubMed] [Google Scholar]
  • 59. Sandhoff K, Klein A (1994) Intracellular trafficking of glycosphingolipids: Role of sphingolipid activator proteins in the topology of endocytosis and lysosomal digestion. FEBS Lett 346: 103–107. [DOI] [PubMed] [Google Scholar]
  • 60. Sandhoff K, Kolter T (1996) Topology of glycosphingolipid degradation. Trends Cell Biol 6: 98–103. [DOI] [PubMed] [Google Scholar]
  • 61. Sandhoff K, Schwarzmann G (1989) Dynamics of gangliosides in neuronal membranes. In: Progress in Zoology, Voume 37: Fundamentals of Memory Formation; Neuronal Plasticity and Brain Function., Rahmann H (ed.), pp. 229–239, VCH Publishers: New York . [Google Scholar]
  • 62. Schwarzmann G, Sandhoff K (1990) Metabolism and intracellular transport of glycosphingolipids. Biochemistry 29: 10865–10870. [DOI] [PubMed] [Google Scholar]
  • 63. Scriver CR, Beaudet AL, Sly WS and Valle D (eds.) (1995) Lysosomal enzymes. The Metabolic and Molecular Bases of Inherited Disease, Chapters 76–92, pp. 2427–2879, McGraw‐Hill: New York . [Google Scholar]
  • 64. Siegel DA, Walkley SU (1994) Growth of ectopic dendrites on cortical pyramidal neurons in neuronal storage diseases correlates with abnormal accumulation of GM2 ganglioside. J Neurochem 62: 1852–1862. [DOI] [PubMed] [Google Scholar]
  • 65. Sleat DE, Donnelly, RJ , Lackland H, Liu C, Sohar I, Pullarkat RK, Lobel P (1997) Association of mutations in a lysosomal protein with classical late‐infantile neuronal ceroid ‐lipofuscinosis. Science 277: 1802–1805. [DOI] [PubMed] [Google Scholar]
  • 66. Smith RS (1980) The short term accumulation of axonally transported organelles in the region of localized lesions of single myelinated axons. J Neurocytol 9: 39–65. [DOI] [PubMed] [Google Scholar]
  • 67. Suzuki K (1976) Neuronal storage diseases: A review. In: Progress in Neuropathology, Zimmerman HM (ed.), Volume 3, pp. 173–202, Grune & Straton: New York . [Google Scholar]
  • 68. Suzuki K (1994) Molecular genetics of Tay‐Sachs and related disorders: a personal account. J Neuropathol Exp Neurol 53: 344–350. [DOI] [PubMed] [Google Scholar]
  • 69. Swanson JA, Watts C (1995) Macropinocytosis. Trends Cell Biol 5: 424–428. [DOI] [PubMed] [Google Scholar]
  • 70. Terry R, Weiss M (1963) Studies in Tay‐Sachs disease II. Ultrastructure of the cerebrum. J Neuropathol Exp Neurol 22: 18–55. [DOI] [PubMed] [Google Scholar]
  • 71. Tsukita S, Ishikawa H (1980) The movement of membranous organelles in axons: electron microscopic identification of anterogradely and retrogradely transported organelles. J Cell Biol 84: 513–530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Van Echten G, Sandhoff K (1993) Ganglioside metabolism ‐ enzymology, topology and regulation. J Biol Chem 268: 5341–5344. [PubMed] [Google Scholar]
  • 73. Van Meer G, Burger KNJ (1992) Sphingolipid trafficking ‐sorted out Trends Cell Biol 2: 332–337. [PubMed] [Google Scholar]
  • 74. Wada I, Lai WH, Posner BI, Bergeron JJM (1992) Association of the tyrosine phosphorylated epidermal growth factor receptor with a 55‐kD tyrosine phosphorylated protein at the cell surface and in endosomes. J Cell Biol 16: 321–330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Walkley SU (1987) Further studies on ectopic dendrite growth and other geometrical distortions of neurons in feline GM1 gangliosidosis. Neuroscience 21: 313–331. [DOI] [PubMed] [Google Scholar]
  • 76. Walkley SU (1988) Pathobiology of neuronal storage disease. Int Rev Neurobiol 29: 191–244. [DOI] [PubMed] [Google Scholar]
  • 77. Walkley SU (1995) Pyramidal neurons with ectopic dendrites in storage diseases contain elevated levels of GM2 ganglioside. Neuroscience 68: 1027–1035. [DOI] [PubMed] [Google Scholar]
  • 78. Walkley SU, Wurzelmann, S (1995) Alterations in synaptic connectivity in cerebral cortex in neuronal storage diseases. Ment Retard Dev Disabilities Rev 1: 183–192. [Google Scholar]
  • 79. Walkley SU, Baker HJ (1984) Sphingomyelin lipidosis in a cat. II. Golgi studies. Acta Neuropathol (Berl) 65: 138–144. [DOI] [PubMed] [Google Scholar]
  • 80. Walkley SU, Baker HJ, Rattazzi MC (1990) Initiation and growth of ectopic neurites and meganeurites during postnatal brain development in ganglioside storage disease. Dev Brain Res 51: 167–178. [DOI] [PubMed] [Google Scholar]
  • 81. Walkley SU, Baker HJ, Rattazzi MC, Haskins ME, Wu J‐Y (1991) Neuroaxonal dystrophy in neuronal storage disorders: Evidence for major GABAergic neuron involvement. J Neurol Sci 104: 1–8. [DOI] [PubMed] [Google Scholar]
  • 82. Walkley SU, Blakemore WF, Purpura DP (1982) Alterations in neuron morphology in feline mannosidosis: A Golgi study. Acta Neuropathol (Berl) 53: 75–79. [DOI] [PubMed] [Google Scholar]
  • 83. Walkley SU, Haskins ME, Shull RM (1988) Alterations in neuron morphology in mucopolysaccharide storage disorders. Acta Neuropathol (Berl) 75: 611–620. [DOI] [PubMed] [Google Scholar]
  • 84. Walkley SU, March PA, Schroeder CE, Wurzelmann S, Jolly RD (1995) Pathogenesis of brain dysfunction in Batten's disease. Am J Med Genet 57: 196–203. [DOI] [PubMed] [Google Scholar]
  • 85. Walkley SU, Pierok AL (1986) Ferric ion‐ferrocyanide staining in ganglioside storage disease establishes that meganeurites are of axon hillock origin and distinct from axonal spheroids. Brain Res 382: 379–386. [DOI] [PubMed] [Google Scholar]
  • 86. Walkley SU, Siegel DA (1989) Comparative studies of the CNS in swainsonine‐induced and inherited feline α‐mannosidosis. In: Swainsonine and Related Glycosidase Inhibitors, James LF, Elbein AD, Molyneux RJ, Warren CD (eds.), pp. 57–75, Iowa State University Press: Ames . [Google Scholar]
  • 87. Walkley SU, Siegel DA, Dobrenis, K (1995) GM2 ganglioside and pyramidal neuron dendritogenesis. Neurochem Res 20: 1287–1299. [DOI] [PubMed] [Google Scholar]
  • 88. Walkley SU, Siegel DA, Wurzelmann S (1988) Ectopic dendritogenesis and associated synapse formation in swainsonine‐induced neuronal storage disease. J Neurosci 8: 445–457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89. Walkley SU, Thrall MA, Dobrenis K, Huang M, March P, Siegel D, Wurzelmann S (1994) Bone marrow transplantation corrects the enzyme defect of the central nervous system in a lysosomal storage disease. Proc Natl Acad Sci USA 91: 2970–2974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90. Walkley SU, Wurzelmann S, Purpura DP (1981) Ultrastructure of neurites and meganeurites of cortical pyramidal neurons in feline gangliosidosis as revealed by the combined Golgi‐EM technique. Brain Res 211: 393–398. [DOI] [PubMed] [Google Scholar]
  • 91. Walkley SU, Wurzelmann S, Rattazzi MC, Baker, HJ (1990) Distribution of ectopic neurite growth and other geometrical distortions of neurons in feline GM2 gangliosidosis. Brain Res 510: 63–73. [DOI] [PubMed] [Google Scholar]
  • 92. Walkley SU, Wurzelmann S, Siegel DA (1987) Ectopic axon hillock‐associated neurite growth is maintained in metabolically reversed swainsonine‐induced neuronal storage disease. Brain Res 410: 89–96. [DOI] [PubMed] [Google Scholar]
  • 93. Williams RS, Lott, IT , Ferrante RJ, Caviness VS (1977) The cellular pathology of neuronal ceroid‐lipofuscinosis. Arch Neurol 34: 298–305. [DOI] [PubMed] [Google Scholar]
  • 94. Wong‐Riley MTT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12: 94–101. [DOI] [PubMed] [Google Scholar]
  • 95. Yates AJ (1986) Gangliosides in the nervous system during development and regeneration. Neurochem Pathol 5: 309–329. [DOI] [PubMed] [Google Scholar]
  • 96. Yu RK (1994) Developmental regulation of ganglioside metabolism. Prog Brain Res 101: 31–44. [DOI] [PubMed] [Google Scholar]
  • 97. Zeller CB, Marchase RB (1992) Gangliosides as modulators of cell function. Am J Physiol C1341–C1355. [DOI] [PubMed]
  • 98. Zeman W, Donahue S (1963) Fine structure of the lipid bodies in juvenile amaurotic idiocy. Acta Neuropath (Berl) 3: 144–149. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES