Abstract
CD95 (Fas/APO‐1) and its ligand (CD95L) belong to a growing cytokine and cytokine receptor family that includes nerve growth factor (NGF) and tumor necrosis factor (TNF) and their corresponding receptors. CD95 expression increases during malignant progression from low‐grade to anaplastic astrocytoma and is most prominent in perinecrotic areas of glioblastoma. There is, however, no evidence that CD95 expression in malignant gliomas is triggered by hypoxia or ischemia. Agonistic antibodies to CD95, or the natural ligand, CD95L, induce apoptosis in human malignant glioma cells in vitro. Glioma cell sensitivity to CD95‐mediated apoptosis is regulated by CD95 expression at the cell surface and by the levels of intracellular apoptosis‐regulatory proteins, including bcl‐2 family members. Several cytotoxic drugs synergize with CD95L to kill glioma cells. For as yet unknown reasons, glioma cells may co‐express CD95 and CD95L in vitro without undergoing suicide or fratricide. Yet, they kill T cells via CD95/CD95L interactions and are sensitive to exogenously added CD95L. Since CD95L is expressed in gliomas in vivo, too, forced induction of CD95 expression might promote therapeutic apoptosis in these tumors. That glioma cells differ from non‐transformed T cells in their sensitivity to CD95 antibodies or recombinant ligand, may allow the development of selective CD95 agonists with high antitumor activity that spare normal brain tissue. A family of death ligand/receptor pairs related to CD95L/CD95, including APO2L (TRAIL) and its multiple receptors is beginning to emerge. Although several issues regarding glioma cell sensitivity to CD95L/CD95‐mediated apoptosis await elucidation, CD95 is a promising target for the treatment of malignant glioma.
Full Text
The Full Text of this article is available as a PDF (129.4 KB).
References
- 1. Alderson LM, Castleberg RL, Harsh GR, Louis DN, Henson JW (1995) Human gliomas with wild‐type p53 express bcl‐2. Cancer Res 55: 999–1001. [PubMed] [Google Scholar]
- 2. Cheng J, Zhou T, Liu C, Shapiro JP, Brauer MJ, Kiefer MC, Barr PI, Mountz JD (1994) Protection from Fas‐mediated apoptosis by a soluble form of the Fas molecule. Science 263: 1759–1762. [DOI] [PubMed] [Google Scholar]
- 3. Cheng AHY, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K, Hardwick JM (1997) Conversion of Bcl‐2 to a Bax‐like death effector by caspases. Science 278: 1966–1968. [DOI] [PubMed] [Google Scholar]
- 4. Ellison DW, Steart PV, Gatter KC, Weller RO (1995) Apoptosis in cerebral astrocytic tumours and its relationship to expression of the bcl‐2 and p53 proteins. Neuropathol Appl Neurobiol 21: 352–361. [DOI] [PubMed] [Google Scholar]
- 5. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase‐activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391: 43–50. [DOI] [PubMed] [Google Scholar]
- 6. Färkkila M, Jääskeläinen J, Kallio M, Blomstedt G, Raininko R, Virkkunen P, Paetau A, Sarelin H, Mäntyla M (1994) Randomised, controlled trial of intratumoral recombinant γ‐interferon treatment in newly diagnosed glioblastoma. Br J Cancer 70: 138–141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Friesen C, Herr I, Krammer PH, Debatin KM (1996) Involvement of the CD95 (APO‐1/Fas) receptor/ligand system in drug‐induced apoptosis in leukemia cells. Nature Med 2: 574–577. [DOI] [PubMed] [Google Scholar]
- 8. Fujisawa K, Asahara H, Okamoto K, Aono H, Hasunuma T, Kobata T, Iwakura Y, Yonehara S, Sumida T, Nishioka T (1996) Therapeutic effect of the anti‐fas antibody on arthritis in HTLV‐I tax transgenic mice. J Clin Invest 98: 271–278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Gratas C, Tohma Y, van Meir EG, Klein M, Tenan M, Ishii N, Tachibana O, Kleihues P, Ohgaki H (1997) Fas ligand expression in glioblastoma cell lines and primary astrocytic brain tumors. Brain Pathol 7: 863–869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Hahne M, Rimoldi D, Schroter M, Romero P, Schreier M, French LE, Schneider P, Bornand T, Fontana A, Lienard D, Cerottini JC, Tschopp J (1996) Melanoma cell expression of Fas (Apo‐1/CD95) ligand: implications for tumor immune escape. Science 274: 1363–1366. [DOI] [PubMed] [Google Scholar]
- 11. Krajewski S, Krajewska M, Ehrmann J, Sikorska M, Lach B, Chatten J, Reed JC (1997) Immunohistochemical analysis of Bcl‐2, Bcl‐X, Mcl‐1, and Bax in tumors of central and peripheral nervous system origin. Am J Pathol 150: 805–814. [PMC free article] [PubMed] [Google Scholar]
- 12. Krishna M, Smith TW, Recht LD (1995) Expression of bcl‐2 in reactive and neoplastic astrocytes: lack of correlation with presence or degree of malignancy. J Neurosurg 83: 1017–1022. [DOI] [PubMed] [Google Scholar]
- 13. Medema JP, Scaffidi C, Kischkel FC, Shevchenko A, Mann M, Krammer PH, Peter M (1997) FLICE is activated by association with the CD95 death‐inducing signalling complex. EMBO J 16: 2794–2804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. Midis GP, Shen Y, Owen‐Schaub L (1996) Elevated soluble Fas (sFas) levels in nonhematopoietic human malignancy. Cancer Res 56: 3870–3874. [PubMed] [Google Scholar]
- 15. Mizuno M, Yoshida J (1996) Tumor necrosis factor‐α gene transfer augments anti‐Fas antibody‐mediated apoptosis in human glioma cells. Jpn J Cancer Res 87: 543–547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Müller M, Strand S, Hug H, Heinemann EM, Walczak H, Hofmann WJ, Stremmel W, Krammer PH, Galle PR (1997) Drug‐induced apoptosis in hepatoma cells is mediated by the CD95 (APO‐1/Fas) receptor/ligand system and involves activation of wild‐type p53. J Clin Invest 99: 403–413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Nagata S, Golstein P (1995) The Fas death factor. Science 267: 1449–1456. [DOI] [PubMed] [Google Scholar]
- 18. Nakasu S, Nakasu Y, Nioka H, Nakajima M, Handa J (1994) Bcl‐2 protein expression in tumors of the central nervous system. Acta Neuropathol 88: 520–526. [DOI] [PubMed] [Google Scholar]
- 19. Newcomb EW, Bhalla SK, Parrish CL, Hayes RL, Cohen H, Miller DC (1997) Bcl‐2 protein expression in astrocytomas in relation to patient survival and p53 gene status. Acta Neuropathol 94: 369–375. [DOI] [PubMed] [Google Scholar]
- 20. Niehans GA, Brunner T, Frizelle SP, Liston JC, Salerno CT, Knapp DJ, Green DR, Kratzke RA (1997) Human lung carcinomas express Fas ligand. Cancer Res 57: 1007–1012. [PubMed] [Google Scholar]
- 21. O'Connell J, O'Sullivan GC, Collins JK, Shanahan F (1996) The Fas counterattack: Fas‐mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med 184: 1075–1082. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Ogasawara J, Watanabe‐Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S (1993) Lethal effect of the anti‐Fas antibody in mice. Nature 364: 806–809. [DOI] [PubMed] [Google Scholar]
- 23. Ohta S, Mizuno M, Takaoka T, Yoshida J (1997) Augmentation of anti‐Fas antibody‐mediated apoptosis on human glioma cells by liposomes associated with the antibody. J Neuro-Oncol 35: 7–11. [DOI] [PubMed] [Google Scholar]
- 24. Owen‐Schaub LB, Zhang W, Cusack JC, Angelo LS, Santee SM, Fujiwara T, Roth JA, Deisseroth AB, Zhang WW, Kruzel E, Radinsky R (1995) Wild‐type human p53 and a temperature‐sensitive mutant induce Fas/APO‐1 expression. Mol Cell Biol 15: 3032–40. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Pan G, Ni J, Wei YF, Yu GL, Gentz R, Dixit VM (1997) An antagonist decoy receptor and a death domain‐containing receptor for TRAIL. Science 277: 815–818. [DOI] [PubMed] [Google Scholar]
- 26. Peter ME, Chinnayan A, Hellbardt S, Kischkel F, Krammer PH, Dixit VM (1996) The CD95 (APO‐1/Fas) associating signalling molecules. Cell Death Differ 2: 161–170. [PubMed] [Google Scholar]
- 27. Rensing‐Ehl A, Frei K, Flury R, Matiba B, Mariani SM, Weller M, Aebischer P, Krammer PH, Fontana A (1995) Loco‐regional Fas/APO‐1 (CD95) ligand‐mediated tumor cell killing in vivo . Eur J Immunol 25: 2253–2258. [DOI] [PubMed] [Google Scholar]
- 28. Richardson BC, Lalwani ND, Johnson KJ, Marks RM (1994) Fas ligation triggers apoptosis in macrophages but not endothelial cells. Eur J Immunol 24: 2640–2645. [DOI] [PubMed] [Google Scholar]
- 29. Rieger L, Weller M, Bornemann A, Schabet M, Dichgans J, Meyermann R (1998) BCL‐2 family protein expression in human malignant glioma: a clinical‐pathological correlative study. J Neurol Sci in press. [DOI] [PubMed] [Google Scholar]
- 30. Roth W, Fontana A, Trepel M, Dichgans J, Reed JC, Weller M (1997) Immunochemotherapy of malignant glioma: synergistic activity of CD95 ligand and chemotherapeutics. Cancer Immunol Immunother 44: 55–63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Roth W, Wagenknecht B, Grimmel C, Dichgans J, Weller M (1998) Taxol‐mediated augmentation of CD95 ligand‐induced apoptosis of human malignant glioma cells is independent of p53 induction and G2/M cell cycle arrest. Br J Cancer 77:404–411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. Saas P, Walker PR, Hahne M, Quiquerez AL, Schnuriger V, Perrin G (1997) Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain J Clin Invest 99: 1173–1178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. Safayhi H, Mack T, Sabieraj J, Ammon HPT (1992) Boswellic acids: Novel, specific nonredox inhibitors of 5‐lipoxygenase. J Pharmacol Exp Ther 261:1143–1146. [PubMed] [Google Scholar]
- 34. Sakahira H, Enari M, Nagata S (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391: 96–99. [DOI] [PubMed] [Google Scholar]
- 35. Schulz JB, Weller M, Klockgether T (1996) A sequential requirement for new mRNA and protein synthesis, ICE‐like protease activity, and free radicals in potassium deprivation‐induced apoptosis of cerebellar granule cells. J Neurosci 16: 4696–4706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36. Schulz JB, Bremen D, Reed JC, Lommatzsch J, Takayama S, Wüllner U, Löschmann PA, Klockgether T, Weller M (1997) Cooperative interception of neuronal apoptosis by BCL‐2 and BAG‐1 expression: prevention of caspase activation and reduced production of reactive oxygen species. J Neurochem 69: 2075–2086. [DOI] [PubMed] [Google Scholar]
- 37. Seino KI, Kayagaki N, Okumura K, Yagita H (1997) Anti‐tumor effect of locally produced CD95 ligand. Nature Med 2: 165–170. [DOI] [PubMed] [Google Scholar]
- 38. Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, Ramakrishnan L, Gray CL, Baker K, Wood WI, Goddard AD, Godowski P, Ashkenazi A (1997) Control of TRAIL‐induced apoptosis by a family of signaling and decoy receptors. Science 277: 818–821. [DOI] [PubMed] [Google Scholar]
- 39. Strand S, Hofmann WJ, Hug H, Müller M, Otto G, Strand D, Mariani SM, Stremmel W, Krammer PH, Galle PR (1996) Lymphocyte apoptosis induced by CD95 (Apo‐1/Fas) ligand‐expressing tumor cells‐a mechanism of immune evasion Nature Med 2: 1361–1366. [DOI] [PubMed] [Google Scholar]
- 40. Tachibana O, Nakazawa H, Lampe J, Watanabe K, Kleihues P, Ohgaki H (1995) Expression of Fas/APO‐1 during the progression of astrocytomas. Cancer Res 55: 5528–5530. [PubMed] [Google Scholar]
- 41. Tachibana O, Lampe J, Kleihues P, Ohgaki H (1996) Preferential expression of Fas/APO1 (CD95) and apoptotic cell death in perinecrotic cells of glioblastoma multiforme. Acta Neuropathol 92: 431–434. [DOI] [PubMed] [Google Scholar]
- 42. Tamura T, Aoyama N, Saya H, Haga H, Futami S, Miyamoto M, Koh T, Ariyasu T, Tachi M, Kasuga M, Takahashi R (1995) Induction of Fas‐mediated apoptosis in p53‐transfected human colon carcinoma cells. Oncogene 11: 1939–1946. [PubMed] [Google Scholar]
- 43. Tanaka M, Itai T, Adachi M, Nagata S (1998) Downregulation of Fas ligand by shedding. Nature Med 4: 31–36. [DOI] [PubMed] [Google Scholar]
- 44. Thoma Y, Gratas C, van Meir EG, Desbaillets I, Tenan M, Tachibana O, Kleihues P, Ohgaki H (1998) Necrogenesis and Fas/APO‐1 (CD95) expression in primary (de novo) and secondary glioblastomas. J Neuropathol Exp Neurol 57: 239–245. [DOI] [PubMed] [Google Scholar]
- 45. Villunger A, Egle A, Kos M, Hartmann BL, Geley S, Kofler R, Greil R (1997) Drug‐induced apoptosis is associated with enhanced Fas (Apo‐1/CD95) ligand expression but occurs independently of Fas (Apo‐1/CD95) signaling in human T‐acute lymphatic leukemia cells. Cancer Res 57: 3331–3334. [PubMed] [Google Scholar]
- 46. Villunger A, Egle A, Marschitz I, Kos M, Böck G, Ludwig H, Geley S, Kofler R, Greil R (1997) Constitutive expression of Fas (Apo‐1/CD95) ligand on multiple myeloma cells: a potential mechanism of tumor‐induced suppression of immune surveillance. Blood 90: 12–20. [PubMed] [Google Scholar]
- 47. Wagenknecht B, Gulbins E, Lang F, Dichgans J, Weller M (1997) Lipoxygenase inhibitors block CD95 ligand‐mediated apoptosis of human malignant glioma cells. FEBS Lett 409: 17–23. [DOI] [PubMed] [Google Scholar]
- 48. Walker PR, Saas P, Dietrich PY (1997) Role of Fas ligand (CD95L) in immune escape. The tumor cell strikes back. J Immunol 158: 4521–4524. [PubMed] [Google Scholar]
- 49. Weller M (1998) Predicting response to cancer chemotherapy: the role of p53. Cell Tissue Res in press. [DOI] [PubMed] [Google Scholar]
- 50. Weller M, Fontana A (1995) The failure of current immunotherapy for malignant glioma. Tumor‐derived TGF‐β, T cell apoptosis, and the immune privilege of the brain. Brain Res Rev 21: 128–151. [DOI] [PubMed] [Google Scholar]
- 51. Weller M, Constam D, Malipiero U, Fontana A (1994) Transforming growth factor‐ß2 induces apoptosis of murine T cell clones without down‐regulating bcl‐2 mRNA expression. Eur J Immunol 24: 1293–1300. [DOI] [PubMed] [Google Scholar]
- 52. Weller M, Frei K, Groscurth P, Krammer PH, Yonekawa Y, Fontana A (1994) Anti‐Fas/APO‐1 antibody‐mediated apoptosis of cultured human malignant glioma cells. Induction and modulation of sensitivity by cytokines. J Clin Invest 94: 954–964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53. Weller M, Frei K, Malipiero U, Groscurth P, Yonekawa Y, Krammer P, Fontana A (1995) Fas/APO‐1‐mediated apoptosis of human malignant glioma. Neurology 45(Suppl. 4):859S. [Google Scholar]
- 54. Weller M, Malipiero UV, Aguzzi A, Reed JC, Fontana A (1995) Protooncogene bcl‐2 gene transfer abrogates Fas/APO‐1 antibody‐mediated apoptosis of human malignant glioma cells and confers resistance to chemotherapeutic drugs and therapeutic irradiation. J Clin Invest 95: 2633–2643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55. Weller M, Malipiero U, Rensing‐Ehl A, Barr P, Fontana A (1995) Fas/APO‐1 gene transfer for human malignant glioma. Cancer Res 55: 2936–2944. [PubMed] [Google Scholar]
- 56. Weller M, Schmidt C, Roth W, Dichgans J (1997) Chemotherapy of human malignant glioma: prevention of efficacy by dexamethasone Neurology 48: 1704–1709. [DOI] [PubMed] [Google Scholar]
- 57. Weller M, Weinstock C, Will C, Wagenknecht B, Dichgans J, Lang F, Gulbins E (1997) CD95‐dependent T cell killing by glioma cells expressing CD95 ligand: more on tumor immune escape, the CD95 counterattack, and the immune privilege of the brain. Cell Physiol Biochem 7: 282–288. [Google Scholar]
- 58. Weller M, Winter S, Schmidt C, Esser P, Fontana A, Dichgans J, Groscurth P (1997) Topoisomerase I inhibitors for human malignant glioma. Differential modulation of p53, p21, bax and bcl‐2 expression and of CD95‐mediated apoptosis by camptothecin and β‐lapachone. Int J Cancer 73: 707–714. [DOI] [PubMed] [Google Scholar]
- 59. Wen PY, Lampson MA, Lampson LA (1992) Effects of g‐interferon on major histocompatibility complex antigen expression and lymphocytic infiltration in the 9L gliosarcoma brain tumor model: implications for strategies of immunotherapy. J Neuroimmunol 36: 57–68. [DOI] [PubMed] [Google Scholar]
- 60. Winter S, Roth W, Dichgans J, Weller M (1998) Synergistic activity of CD95 ligand and teniposide (VM26) does not involve enhanced formation of cleavable DNA complexes or changes in CD95/CD95 ligand expression. Eur J Pharmacol in press. [DOI] [PubMed] [Google Scholar]
- 61. Wong GHW, Bartlett PF, Clark‐Lewis I, Battye F, Schrader JW (1984) Inducible expression of H‐2 and la antigens on brain cells. Nature 310: 688–691. [DOI] [PubMed] [Google Scholar]
- 62. Yoshida J, Wakabayashi T, Mizuno M, Sugita K, Yoshida T, Hori S, Mori T, Sato T, Karashima A, Kurisu K, Kiya K, Uozumi T (1992) Clinical effect of intra‐arterial tumor necrosis factor‐a for malignant glioma. J Neurosurg 77: 78–83. [DOI] [PubMed] [Google Scholar]
- 63. Yu JS, Sena‐Esteves M, Paulus W, Breakefield XO, Reeves SA (1996) Retroviral delivery and tetracycline‐dependent expression of IL‐1β‐converting enzyme (ICE) in a rat glioma model provides controlled induction of apoptotic death in tumor cells. Cancer Res 56: 5423–5427. [PubMed] [Google Scholar]
- 64. Zhang H, Yang Y, Horton JL, Samoilova EB, Judge TA, Turka LA, Wilson JM, Chen Y (1997) Amelioration of collagen‐induced arthritis by CD95 (Apo‐1/Fas)‐ligand gene transfer. J Clin Invest 100: 1951–1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65. Zipp F, Martin R, Lichtenfels R, Roth W, Dichgans J, Krammer PH, Weller M (1997) Human autoreactive and foreign antigen‐specific T cells resist apoptosis induced by soluble recombinant CD95 ligand. J Immunol 159: 2108–2115. [PubMed] [Google Scholar]
- 66. Zipp F, Weller M, Calabresi PA, Frank JA, Bash CN, Dichgans J, McFarland HF, Martin R (1998) Increased serum levels of soluble CD95 (APO‐1/Fas) in relapsing remitting multiple sclerosis. Ann Neurol in press. [DOI] [PubMed] [Google Scholar]
- 67. Zipp F, Otzelberger K, Dichgans J, Martin R, Weller M (1998) Serum CD95 of multiple sclerosis patients protects from CD95‐mediated apoptosis. J Neuroimmunol in press. [DOI] [PubMed] [Google Scholar]