Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;11(2):169–181. doi: 10.1111/j.1750-3639.2001.tb00389.x

Expression of Synaptopodin, an Actin‐associated Protein, in the Rat Hippocampus after Limbic Epilepsy

Stephanie U Roth 1,*,, Clemens Sommer 1,*, Peter Mundel 2, Marika Kiessling 1
PMCID: PMC8098178  PMID: 11303792

Abstract

Synaptopodin, a 100 kD protein, associated with the actin cytoskeleton of the postsynaptic density and dendritic spines, is thought to play a role in modulating actin‐based shape and motility of dendritic spines during formation or elimination of synaptic contacts. Temporal lobe epilepsy in humans and in rats shows neuronal damage, aberrant sprouting of hippocampal mossy fibers and subsequent synaptic remodeling processes. Using kainic acid (KA) induced epilepsy in rats, the postictal hippocampal expression of synaptopodin was analyzed by in situ hybridization (ISH) and immunohistochemistry. Sprouting of mossy fibers was visualized by a modified Timm's staining. ISH showed elevated levels of Synaptopodin mRNA in perikarya of CA3 principal neurons, dentate granule cells and in surviving hilar neurons these levels persisted up to 8 weeks after seizure induction. Synaptopodin immunoreactivity in the dendritic layers of CA3, in the hilus and in the inner molecular layer of the dentate gyrus (DG) was initially reduced. Eight weeks after KA treatment Synaptopodin protein expression returned to control levels in dendritic layers of CA3 and in the entire molecular layer of the DG. The recovery of protein expression was accompanied by simultaneous supra‐ and infragranular mossy fiber sprouting. Postictal upregulation of Synaptopodin mRNA levels in target cell populations of limbic epilepsy‐elicited damage and subsequent Synaptopodin protein expression largely co‐localized with remodeling processes as demonstrated by mossy fiber sprouting. It may thus represent a novel postsynaptic molecular correlate of hippocampal neuroplasticity.

Full Text

The Full Text of this article is available as a PDF (767.2 KB).

References

  • 1. Acsády L, Katona I, Gulyás AI, Shigemoto R, Freund TF (1997) Immunostaining for substance P receptor labels GABAergic cells with distinct termination patterns in the hippocampus. J Comp Neurol 378: 320–336. [PubMed] [Google Scholar]
  • 2. Amaral DG (1978) Golgi study of cell types in the hila region of the hippocampus in the rat. J Comp Neurol 82: 851–914. [DOI] [PubMed] [Google Scholar]
  • 3. Babb TL, Brown WJ, Pretorius J, Davenport C, Lieb JP, Crandall PH (1984) Temporal lobe volumetric cell densities in temporal lobe epilepsy. Epilepsia 25: 729–740. [DOI] [PubMed] [Google Scholar]
  • 4. Babb TL, Brown WJ (1987) Pathological findings in epilepsy In: Surgical Treatment of the Epilepsies, Engel J Jr (ed.), pp. 511–540. Raven Press, New York . [Google Scholar]
  • 5. Babb TL, Kupfer WR, Pretorius JK, Crandall PH, Levesque MF (1991) Synaptic reorganization by mossy fiber in human epileptic fascia dentata. Neuroscience 42: 351–363. [DOI] [PubMed] [Google Scholar]
  • 6. Baude A, Nusser Z, Roberts JDB, Mulvihill E, McIlhinney RAJ, Somogyi P (1993) The metabotropic glutamate receptor (mGluR1α) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11: 771–787. [DOI] [PubMed] [Google Scholar]
  • 7. Ben‐Ari Y, Tremblay E, Riche D, Ghilini G, Naquet R (1981) Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or penetrazole: metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neuroscience 6: 1361–1391. [DOI] [PubMed] [Google Scholar]
  • 8. Ben‐Ari Y (1985) Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14: 375–403. [DOI] [PubMed] [Google Scholar]
  • 9. Ben‐Ari Y, Represa A (1990) Brief seizure episodes induce long‐term potentiation and mossy fibre sprouting in the hippocampus. Trends Neurosci 13: 312–318. [DOI] [PubMed] [Google Scholar]
  • 10. Bering R, Draguhn A, Diemer NH, Johansen FF (1997) Ischemia changes the coexpression of somatostatin and neuropeptide Y in hippocampal interneurons. Exp Brain Res 115: 423–429. [DOI] [PubMed] [Google Scholar]
  • 11. Blackstad TW, Kjaerheim A (1961) Special axo‐dendritic synapses in the hippocampal cortex: electron ans light microscopic studies on the layer of the mossy fibers. J Comp Neurol 117: 113–159. [DOI] [PubMed] [Google Scholar]
  • 12. Buckmaster PS, Schwartzkroin PA (1995) Interneurons and inhibition in the dentate gyrus of the rat in vivo . J Neurosci 15: 774–789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Buckmaster PS, Schwarztkroin PA (1995) Physiological and morphological heterogeneity of dentate gyrus‐hilus interneurons inthe gerbil hippocampus in vivo . Eur J Neurosci 7: 1393–1402. [PubMed] [Google Scholar]
  • 14. Buckmaster PS, Wenzel HJ, Kunkel DD, Schwarztkroin PA (1996) Axons arbors and synaptic connection of the hippocampal mossy cells in the rat in vivo . J Comp Neurol 366: 270–292. [DOI] [PubMed] [Google Scholar]
  • 15. Cavazos JE, Sutula TP (1990) Progressive neuronal loss induced by kindling: a possible mechanism for mossy fiber synaptic reorganization and hippocampal sclerosis. Brain Res 52: 1–6. [DOI] [PubMed] [Google Scholar]
  • 16. Deller T, Merten T, Roth SU, Mundel P, Frotscher M (2000) Actin‐associated protein synaptopodin in the rat hippocampal formation: Localization in the spine neck and close association with the spine apparatus of principal neurons. J Comp Neurol 418: 164–181. [DOI] [PubMed] [Google Scholar]
  • 17. Deller T, Frotscher M (1997) Lesion‐induced plasticity of central neurons: sprouting of single fibers in the rat hippocampus after unilateral entorhinal cortex lesion. Prog Neurobiol 53: 687–727. [DOI] [PubMed] [Google Scholar]
  • 18. Fifkova E (1985) A possible mechanism of morphometric changes in dendrite spines induced by stimulation. Cell Mol Neurobiol 5: 47–63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Fischer M, Seress L, Knutti D, Matus A (1998) Rapid actin‐based plasticity in dendritic spines. Neuron 20: 847–854. [DOI] [PubMed] [Google Scholar]
  • 20. Franck JE, Roberts DL (1990) Combined kainate and ischemia produces ‘mesial temporal sclerosis. Neurosci Lett 118: 159–163. [DOI] [PubMed] [Google Scholar]
  • 21. Freund TF, Ylinen A, Miettinen R, Pitkanen A, Lahtinen H, Baimbridge KG, Riekkinen PJ (1992) Pattern of neuronal death in the rat hippocamus after status epilepticus. Relationship to calcium binding protein content and ischemic vulnerability. Brain Res Bull 28: 27–38. [DOI] [PubMed] [Google Scholar]
  • 22. Gass P, Herdegen T, Bravo R, Kiessling M (1993) Spatiotemporal induction of immediate early genes in the rat brain after limbic seizures: effects of NMDA receptor antagonist MK‐801. Eur J Neurosci 5: 933–943. [DOI] [PubMed] [Google Scholar]
  • 23. Gastaut H, Gastaut JL, Goncalves E Silva GE and Fernandez Sanchez GR (1975) Relative frequency of different types of epilepsy: a study employing the classification of epileptic seizures. Epilepsia 16: 457–461. [DOI] [PubMed] [Google Scholar]
  • 24. Golarai G, Cavazos JE, Sutula TP (1992) Activation of the dentate gyrus by pentylenetetrazol evoked seizures induces mossy fibre synaptic reorganisation. Brain Res 9: 2691–2697. [DOI] [PubMed] [Google Scholar]
  • 25. Gulyás AI, Tóth K, Dános P, Freund TF (1991) Subpopulations of GABAergic neurons containing parvalbumin, calbindin‐d28k and cholecystokinin in the rat hippocampus. J Comp Neurol 312: 371–378. [DOI] [PubMed] [Google Scholar]
  • 26. Gulyás AI, Miettinen R, Jacobowitz DM, Freund TF (1992) Calretinin is present in non‐pyramidal cells of the rat hippocampus. A new type of neuron specifically associated with the mossy fiber system. Neuroscience 48: 1–27. [DOI] [PubMed] [Google Scholar]
  • 27. Hájos N, Acsády L, Freund TF (1996) Target selectivity and neurochemical characteristics of VIP‐immunoreactive interneurons in the rat dentate gyrus. Eur J Neurosci 8: 1415–1431. [DOI] [PubMed] [Google Scholar]
  • 28. Harris KM (1999) Structure, development and plasticity of dendritic spines. Curr Opin Neurobiol 9: 343–8. [DOI] [PubMed] [Google Scholar]
  • 29. Henke H, Beaudet A, Cuenod M (1981) Autoradiographic localization of specific kainic acid binding sites in pigeon and rat cerebellum. Brain Res 219: 95–105. [DOI] [PubMed] [Google Scholar]
  • 30. Houser CR, Miyashiro JE, Swartz BE, Walsh GO, Rich JR, Delgado‐Escuta AV (1990) Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy. J Neurosci 10: 267–282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Katona I, Acsády L, Gulyás A, Freund TF (1996) Somatostatin containing cells in the rat hippocampus: Connectivity and neurochemical heterogenity. Eur J Neurosci 9 (Supp): 176. [Google Scholar]
  • 32. Kotti T, Riekkinen PJ, Miettinen R (1997) Characterization of target cells for aberrant mossy fiber collaterals in the dentate gyrus of epileptic rats. Exp Neurol 146: 323–330. [DOI] [PubMed] [Google Scholar]
  • 33. Kwak S, Matus A (1988) Denervation induces long‐lasting changes in the distribution of microtubule proteins in hippocampal neurons. J Neurocytol 17: 189–195. [DOI] [PubMed] [Google Scholar]
  • 34. Lie AA, Blümcke I, Beck H, Wiestler O, Elger CE, Schoen SW (1999) 5′‐nucleotidase activity indicates sites of synaptic plasticity and reactive synaptogenesis in the human brain. J Neuropath Exp Neurol 58: 451–458. [DOI] [PubMed] [Google Scholar]
  • 35. Lothman EW, Collins RC (1981) Kainic acid induced limbic seizures: metabolic, behavioural, electroencephalographic and neuropathological correlates. Brain Res 218: 299–318. [DOI] [PubMed] [Google Scholar]
  • 36. Marksteiner J, Prommegger A, Sperk G (1990) Effect of anticonvulsant treatment on kainic acid‐induced increases in peptide levels. Eur J Pharm 181: 214–246. [DOI] [PubMed] [Google Scholar]
  • 37. Mathern GW, Cifuentes F, Leite JP, Pretorius JK, Babb TL (1993) Hippocampal EEG excitability and chronic spontanous seizures are associated with aberrant synaptic reorganization in the rat intrahippocampal kainate model. Electroencephalogr Clin Neurophysiol 87: 326–339. [DOI] [PubMed] [Google Scholar]
  • 38. Matus A, Ackermann M, Pehling G, Byers HR, Fujiwara K (1982) High actin concentrations in brain dendritic spines and postsynaptic densities. Proc Natl Acad Sci USA 79: 7590–7594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Miettinen R, Gulyás A, Baimbridge K, Jacobowitz D, Freund T (1992) Calretinin is present in non‐pyramidal cells of the rat hippocampus‐II. Coexistence with other calcium binding proteins and GABA. Neuroscience 48: 29–43. [DOI] [PubMed] [Google Scholar]
  • 40. Monaghan DT, Yao D, Cotman CW (1985) L‐(3H)Glutamate binds to kainate‐, NMDA‐ and AMPA‐sensitive binding sites: an autoradiographic analysis. Brain Res 340: 378–383. [DOI] [PubMed] [Google Scholar]
  • 41. Morales M, Fifkova E (1989) In situ localization of myosin and actin in dendritic spines with the immunogold technique. J Comp Neurol 279: 666–674. [DOI] [PubMed] [Google Scholar]
  • 42. Mundel P, Kriz W (1995) Structure and function of podocytes: an update. Anat Embryol 192: 385–397. [DOI] [PubMed] [Google Scholar]
  • 43. Mundel P, Heid HW, Mundel TM, Kruger M, Reiser J, Kriz W (1997) Synaptopodin: an actin‐associated protein in telencephalic dendrites and renal podocytes. J Cell Biol 139: 193–204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Nadler JV (1981) Kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci 29: 2031–2042. [DOI] [PubMed] [Google Scholar]
  • 45. Obenaus A, Esclapez M, Houser CR (1993) Loss of glutamate decarboxylase mRNA‐containing neurons in the rat dentate gyrus following pilocarpine‐induced seizures. J Neurosci 13: 4470–4485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Okazaki MM, Evenson DA, Nadler VJ (1995) Hippocampal mossy fiber sprouting and synapse formation after status epilepticus in rats: visualization after retrograde transport of biotin. J Comp Neurol 352: 515–534. [DOI] [PubMed] [Google Scholar]
  • 47. Olney JW, Rhee V, Ho OL (1974) Kainic acid: a powerful neurotoxic analogue of glutamate. Brain Res 77: 507–512. [DOI] [PubMed] [Google Scholar]
  • 48. Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17: 3727–3738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic press, San Diego . [DOI] [PubMed] [Google Scholar]
  • 50. Pinard E, Ben‐Ari Y, Tremblay E, Seylaz J (1983) Is intratissuelar hypoxia responsible for lesions during seizures induced by kainac acid? In: Cerebral Blood Flow, Metabolism and Epilepsy, Baldy‐Moulinier M. (ed), J. Libby, London pp. 252–257. [Google Scholar]
  • 51. Represa A, Tremblay E, Ben‐Ari Y (1987) Kainate binding sites in the hippocampal mossy fibres: localizaiton and plasticity. Neuroscience 20: 739–748. [DOI] [PubMed] [Google Scholar]
  • 52. Represa A, Ben‐Ari Y (1992) Kindling is associated with formation of novel mossy fiber synapses in the CA3 region. Exp Brain Res 92: 69–78. [DOI] [PubMed] [Google Scholar]
  • 53. Represa A, Jorquera I, LeGal La Salle G, Ben‐Ari Y (1993) Epilepsy induced collateral sprouting of hippocampal mossy fibers: does it induce the development of ectopic synapses with granule cell dendrites Hippocampus 3: 257–268. [DOI] [PubMed] [Google Scholar]
  • 54. Ribak CE, Peterson GM (1991) Intragranular mossy fibres in rats and gerbils form synapses with the somata and proximal dendrites of basket cells in the dentate gyrus. Hippocampus 1: 355–364. [DOI] [PubMed] [Google Scholar]
  • 55. Sik A, Penttonen M, Buzsáki G (1997) Interneurons in the hippocampal dentate gyrus: an in vivo intracellular study. Eur J Neurosci 9: 573–588. [DOI] [PubMed] [Google Scholar]
  • 56. Simpson JN, Zhang W‐Q, Bing G, Hong J‐S (1997) Kainic acid‐induced sprouting of dynorphin‐ and enkephalin‐containing mossy fibers in the dentate gyrus of the rat hippocampus. Brain Res 747: 318–323. [DOI] [PubMed] [Google Scholar]
  • 57. Sloviter RS (1982) A simplified Timm stain procedure compatible with formaldehyde fixation and routine paraffin embedding of rat brain. Brain Res Bull 8: 771–774. [DOI] [PubMed] [Google Scholar]
  • 58. Sommer C, Gass P, Kiessling M (1995) Selective c‐JUN expression in CA1 neurons of the gerbil hippocampus during and after acquisition of an ischaemia‐tolerant state. Brain Pathol 5: 135–144. [DOI] [PubMed] [Google Scholar]
  • 59. Sommer C, Roth SU, Kiessling M (2001) Kainate induced epilepsy alters protein expression of AMPA receptor sub‐units GluR1, GluR2 and AMPA receptor binding protein (ABP) in the rat hippocampus: an immunohistochemical study. Acta Neuropathol (in press). [DOI] [PubMed] [Google Scholar]
  • 60. Sperk G, Lassmann H, Baran H, Kish SJ, Seitelberger F, Hornykiewicz O (1983) Kainic acid induced seizures: neurochemical and histopathological changes. Neuroscience 10: 1301–1315. [DOI] [PubMed] [Google Scholar]
  • 61. Sperk G, Lassmann H, Baran H, Seitelberger F, Hornykiewicz O (1985) Kainic acid induced seizures: dose‐relationship of behavioural, neurochemical and histopathological changes. Brain Res 338: 289–295. [DOI] [PubMed] [Google Scholar]
  • 62. Sperk G, Marksteiner J, Gruber B, Bellmann R, Mahata M, Ortler M (1992) Functional changes in neuropeptide Y and somatostatin‐containing neurons induced by limbic seizures in the rat. Neuroscience 50: 831–846. [DOI] [PubMed] [Google Scholar]
  • 63. Sutula T, Cascino G, Cavazos J, Parada I, Ramirez L (1989) Mossy fiber synaptic reorganization inthe epileptic human temporal lobe. Ann Neurol 26: 321–330. [DOI] [PubMed] [Google Scholar]
  • 64. Tauck D, Nadler JV (1985) Evidence of functional mossy fiber sprouting in hippocampal formation of kainic‐acid treated rats. J Neurosci 5: 1016–1022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Toth K, Freund TF (1992) Calbindin D28k‐containing non‐pyramidal cells in the rat hippocampus: their immunoreactivity for GABA and projection to the medial septum. Neuroscience 49: 793–805. [DOI] [PubMed] [Google Scholar]
  • 66. Unnerstall JR, Wamsley JK (1983) Autoradiographic localization of high‐affinity (3H) kainic acid binding sites in the rat forebrain. Eur J Pharm 86: 361–371. [DOI] [PubMed] [Google Scholar]
  • 67. Wenzel HJ, Buckmaster PS, Anderson NL, Wenzel ME, Schwartzkroin PA (1997) Ultrastructural localization of neurotransmitter immunoreactivity in mossy cell axons and their synaptic targets in the rat dentate gyrus. Hippocampus 7: 559–570. [DOI] [PubMed] [Google Scholar]
  • 68. Witter MP (1990) Organization of the entorhinal projections to the hippocampal formation of the rat. Soc Neurosci Abstr 16: 124. [Google Scholar]
  • 69. Witter MP (1993) Organization of the entorhinal‐hippocampal system: A review of current anatomical data. Hippocampus 3 (Supp): 33–44. [PubMed] [Google Scholar]
  • 70. Van der Zee CE, Rashid K, Le K, Moore K, Stanisz J, Diamond J, Racine RJ, Fahnestock M (1995) Intraventricular administration of antibodies to nerve growth factor retards kindling and blocks mossy fiber sprouting in adult rats. J Neurosci 15: 5316–5323. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES