Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;11(1):44–55. doi: 10.1111/j.1750-3639.2001.tb00380.x

Regulation of Microglia by CD4+ and CD8+ T Cells: Selective Analysis in CD45‐congenic Normal and Toxoplasma gondii‐infected Bone Marrow Chimeras

Dirk Schlüter 1, Timothy Meyer 1,2, Andreas Strack 2, Sabine Reiter 1,2, Marianne Kretschmar 1, Otmar D Wiestler 2, Herbert Hof 1, Martina Deckert 2,
PMCID: PMC8098179  PMID: 11145203

Abstract

Microglia, the resident macrophage population of the central nervous system, is rapidly activated in murine Toxoplasma encephalitis (TE). However, the precise contribution of microglia to intracerebral immune reactions and the in vivo regulation of microglial activity are still poorly understood. To selectively analyse microglial reactions in TE, we have established a model of radiation‐induced CD45‐congenic bone marrow chimeras between CD45.2+ C57BL/6 (recipient) and CD45.1+ B6.SJL (donor) mice. These chimeras allow a differentiation of radioresistant CD45.2+ microglia from all other leukocytes, which exhibit the CD45.1+ haplotype. In the normal brain, microglia produced tumor necrosis factor (TNF)‐α, interleukin (IL)‐1β, IL‐10, and IL‐15 mRNA. In TE, marked microglial activation was observed with a de novo expression of IL‐12p40 and inducible nitric oxide synthase mRNA, upregulation of IL‐1β and TNF‐α mRNA, a continuous production of IL‐10, and IL‐15 mRNA, an induction of major histocompatibility class I and II antigens, intercellular adhesion molecule‐1, and leukocyte function‐associated antigen‐1. Furthermore, selective depletion of CD4+ and/or CD8+ T cells in the chimeras revealed that microglial cytokine production was critically regulated by CD8+T cells, whereas expression of cell surface molecules was less dependent on T cells. These findings demonstrate a specific regulation of microglia by T lymphocytes during the course of TE.

Full Text

The Full Text of this article is available as a PDF (984.3 KB).

References

  • 1. Brinkmann R, Schwinn A, Narayan O, Zink C, Kreth HW, Roggendorf W, Dörries R, Schwender S, Imrich H, Ter‐Meulen V (1992) Human immunodeficiency virus infection in microglia: correlation between cells infected in the brain and cells cultured from infectious brain tissue. Ann Neurol 31:361–365. [DOI] [PubMed] [Google Scholar]
  • 2. Carson J, Reilly C R, Sutcliffe JG, Lo D (1998) Mature microglia resemble immature antigen‐presenting cells. Glia 22:72–85. [DOI] [PubMed] [Google Scholar]
  • 3. Chang HR, Grau GE, Pechère JC (1990) Role of TNF and IL‐1 in infections with Toxoplasma gondii. Immunology 69:33–37. [PMC free article] [PubMed] [Google Scholar]
  • 4. Chao CC, Hu S, Gekker G, Novick W J, Remington JS, Peterson PK (1993) Effects of cytokines on multiplication of Toxoplasma gondii in microglial cells. J Immunol 150:3404–3410. [PubMed] [Google Scholar]
  • 5. Chao CC, Gekker G, Hu S, Peterson PK (1994) Human microglial cell defense against Toxoplasma gondii. The role of cytokines. J Immunol 152:1246–1252. [PubMed] [Google Scholar]
  • 6. Deckert‐Schlüter M, Schlüter D, Hof H, Wiestler OD, Lassmann H (1994) Differential expression of ICAM‐1, VCAM‐1 and their ligands LFA‐1, Mac‐1, CD43, VLA‐4, and MHC class II antigens in murine Toxoplasma encephalitis: a light microscopic and ultrastructural immunohistochemical study. J Neuropathol Exp Neurol 53:457–468. [DOI] [PubMed] [Google Scholar]
  • 7. Deckert‐Schlüter M, Rang A, Weiner D, Huang S, Wiestler OD, Hof H, Schlüter D (1996) Interferon‐γ receptor‐deficiency renders mice highly susceptible to toxoplasmosis by decreased macrophage activation. Lab Invest 827–841. [PubMed]
  • 8. Deckert‐Schlüter M, Buck C, Weiner D, Kaefer N, Rang A, Hof H, Wiestler OD, Schlüter D (1997) Interleukin‐10 downregulates the intracerebal immune response in chronic Toxoplasma encephalitis. J Neuroimmunol 76:167–176. [DOI] [PubMed] [Google Scholar]
  • 9. Deckert‐Schlüter M, Bluethmann H, Rang A, Hof H, Schlüter D (1998) Crucial role of TNF receptor type 1 (p55), but not of TNF receptor type 2 (p75), in murine toxoplasmosis. J Immunol 160:3427–3436. [PubMed] [Google Scholar]
  • 10. Deckert‐Schlüter M, Bluethmann H, Kaefer N, Rang A, Schlüter D (1999) Interferon‐γ, but not tumor necrosis factor, is crucial for the activation of cerebral blood vessel endothelial cells and microglia in murine Toxoplasma encephalitis. Am J Pathol 154:1549–1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Doherty TM, Seder RA, Sher A (1996) Induction and regulation of IL‐15 expression in murine macrophages. J Immunol 156:735–741. [PubMed] [Google Scholar]
  • 12. Fischer HG, Bielinsky AK, Nitzgen B, Däubener W, Hadding U (1993) Functional dichotomy of mouse microglia developed in vitro: differential effects of macrophage and granulocyte/macrophage colony‐stimulating factor on cytokine secretion and antitoxoplasmic activity. J Neuroimmunol 45:193–201. [DOI] [PubMed] [Google Scholar]
  • 13. Ford AI, Foulcher E, Lemckert FA, Sedgwick JD (1996) Microglia induce CD4 T lymphocyte final efector function and death. J Exp Med 184:1737–1745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Frei K, Siepl C, Groscurth P, Bodmer S, Fontana A (1988) Immunobiology of microglial cells. Ann NY Acad Sci 540:218–227. [DOI] [PubMed] [Google Scholar]
  • 15. Gazzinelli R, Xu Y, Hieny S, Cheever A, Sher A (1991) Simultaneous depletion of CD4+ and CD8+ T lymphocytes is required to reactivate chronic infection with Toxoplasma gondii. J Immunol 149:175–180. [PubMed] [Google Scholar]
  • 16. Gazzinelli RT, Oswald IP, James SL, Sher A (1992) IL‐10 inhibits parasite killing and nitrogen oxide production by IFN‐γ‐activated macrophages. J Immunol 148:1792–1796. [PubMed] [Google Scholar]
  • 17. Gazzinelli RT, Hieny S, Wynn TA, Wolf S, Sher A (1993) Interleukin 12 is required for the T‐lymphocyte‐independent induction of interferon‐γ by an intracellular parasite and induces resistance in T‐cell‐deficient hosts. Proc Natl Acad Sci USA 90:6115–6119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Gazzinelli RT, Eltoum I, Wynn TA, Sher A (1993) Acute cerebral toxoplasmosis is induced by in vivo neutralization of TNF‐α and correlates with the down‐regulated expression of inducible nitric oxide synthase and other markers of macrophage activation. J Immunol 151:3672–3681. [PubMed] [Google Scholar]
  • 19. Gazzinelli RT, Wysocka M, Hayashi S, Denkers EY, Hieny S, Caspar P, Trinchieri G, Sher A (1994) Parasite‐induced IL‐12 stimulates early IFN‐γ synthesis and resistance during acute infection with Toxoplasma gondii. J Immunol 153:2533–2543. [PubMed] [Google Scholar]
  • 20. Haque S, Khan IA, Haque A, Kasper L (1994) Impairment of the cellular immune responses in acute murine toxoplasmosis: regulation of interleukin 2 production and macrophage‐mediated inhibitory effects. Infect Immun 62:2908–2916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Hickey WF, Kimura H (1988) Perivascular microglial cells of the CNS are bone marrowderived and present antigen in vivo. Science 239:290–292. [DOI] [PubMed] [Google Scholar]
  • 22. Hickey WF, Vass K, Lassmann H (1992) Bone marrowderived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J Neuropathol Exp Neurol 51:246–256. [DOI] [PubMed] [Google Scholar]
  • 23. Khan IA, Kasper L (1996) IL‐15 augments CD8+ T cell‐mediated immunity against Toxoplasma gondii infection in mice. J Immunol 157:2103–2108. [PubMed] [Google Scholar]
  • 24. Khan IA, Schwartzman JD, Matsuura T, Kasper LH (1997) A dichotomous role of nitric oxide during acute Toxoplasma gondii infection in mice. Proc Natl Acad Sci USA 94:13955–13960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Krakowski M, Owens T (1997) The central nervous system environment control effector CD4+ T cell cytokine profile in experimental allergic encephalomyelitis. Eur J Immunol 27:2840–2847. [DOI] [PubMed] [Google Scholar]
  • 26. Kure K, Weidenheim KM, Lyman WD, Dickson DW (1990) Morphology and distribution of HIV gp41 positive microglia in subacute AIDS encephalitis: pattern of involvement resembling a multisystem degeneration. Acta Neuropathol 80:393–400. [DOI] [PubMed] [Google Scholar]
  • 27. Langermans JA, van der Hulst ME, Nibbering PH, Hiemstra PS, Fransen L, Van Furth R (1992) IFN‐γ‐induced Larginine‐dependent toxoplasmastatic activity in murine peritoneal macrophages is mediated by endogenous tumor necrosis factor‐α. J Immunol 148:568–574. [PubMed] [Google Scholar]
  • 28. Luft J, Remington JS (1988) Toxoplasmic encephalitis. J Infect Dis 157:1–6. [DOI] [PubMed] [Google Scholar]
  • 29. Munoz‐Fernandez MA, Fresno M (1998) The role of tumor necrosis factor, interleukin 6, interferon‐γ and inducible nitric oxide synthase in the development and pathology of the central nervous system. Progr Neurobiol 56:307–340. [DOI] [PubMed] [Google Scholar]
  • 30. Murray HW, Teitelbaum RF (1992) L‐arginine‐dependent reactive nitrogen intermediates and the antimicrobial effect of activated human mononuclear phagocytes. J Infect Dis 165:513–517. [DOI] [PubMed] [Google Scholar]
  • 31. Pan W, Zadina JE, Harlan RE, Banks WA, Kastin AJ (1997) Tumor necrosis factor‐α: a neuromodulator in the CNS. Neurosci Biobehav Rev 21:603–613. [DOI] [PubMed] [Google Scholar]
  • 32. Raber J, Sorg O, Horn TF, Yu N, Koob GF, Campbell IL, Blooem FE (1998) Inflammatory cytokines: putative regulators of neuronal and neuroendocrine function. Brain Res Rev 26:320–326. [DOI] [PubMed] [Google Scholar]
  • 33. Renno T, Krakowski M, Piccirillo C, Lin J, Owens T (1995) TNF‐α expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines. J Immunol 154:944–953. [PubMed] [Google Scholar]
  • 34. Scharton‐Kersten TM, Yap G, Magram J, Sher A (1997) Inducible nitric oxide is essential for host control of persistent but not acute infection with the intracellular pathogen Toxoplasma gondii. J Exp Med 185:1261–1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Schlüter D, Löhler J, Deckert M, Hof H, Schwendemann G (1991) Toxoplasma encephalitis of immunocompetent and nude mice: immunohistochemical characterisation of Toxoplasma antigen, infiltrates and major histocompatibility complex gene products. J Neuroimmunol 31:185–198. [DOI] [PubMed] [Google Scholar]
  • 36. Schlüter D, Kaefer N, Hof H, Wiestler OD, DeckertSchlüter M (1997) Expression pattern and cellular origin of cytokines in the normal and Toxoplasma gondii‐infected brain. Am J Pathol 150:1021–1035. [PMC free article] [PubMed] [Google Scholar]
  • 37. Schlüter D, Deckert‐Schlüter M, Lorenz E, Meyer T, Röllinghoff M, Bogdan C (1999) Inhibition of inducible nitric oxide synthase exacerbates chronic cerebral toxoplasmosis in Toxoplasma gondii‐susceptible C57BL/6 mice but does not reactivate the latent disease in T. gondii‐resistant BALB/c mice. J Immunol 162:3512–3518. [PubMed] [Google Scholar]
  • 38. Sedgwick J, Schwender S, Imrich H, Dörries R, Butcher GW, TerMeulen V (1991) Isolation and characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci USA 88:7438–7442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Suzuki Y, Orellana MA, Schreiber RD, Remington JS (1988) Interferon‐γ: the major mediator of resistance against Toxoplasma gondii. Science 240:516–518. [DOI] [PubMed] [Google Scholar]
  • 40. Suzuki Y, Conley FK, Remington JS (1989) Importance of IFN‐γ for prevention of toxoplasmic encephalitis in mice. J Immunol 143:2045–2050. [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES