Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;10(3):385–394. doi: 10.1111/j.1750-3639.2000.tb00270.x

Expression Analysis of Ataxin‐7 mRNA and Protein in Human Brain: Evidence for a Widespread Distribution and Focal Protein Accumulation

Katrin S Lindenberg 1, Gaël Yvert 2, Klaus Müller 3, G Bernhard Landwehrmeyer 1,
PMCID: PMC8098210  PMID: 10885657

Abstract

Spinocerebellar ataxia 7 (SCA7) is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG‐trinucleotide repeat in the coding region of the SCA7 gene. The expansion is translated into an extended polyglutamine stretch in the protein ataxin‐7, a protein of unknown function. By Northern blot analysis expression of ataxin‐7 was detected in numerous regions of human brain and some peripheral tissues. It is unknown, however, if ataxin‐7 is enriched at sites of the SCA7 pathology. We studied the regional and cellular expression pattern of ataxin‐7 at the mRNA level by in situ hybridization histochemistry in normal human brain. Furthermore we used a monoclonal and two polyclonal antibodies raised against the normal ataxin‐7 to establish the distribution of this protein in brain, retina and peripheral organs. At the mRNA level ataxin‐7 was preferentially expressed in neurons; the regional distribution reflected neuronal packing density. Ataxin‐7 immunoreactivity (IR) was similarly widely expressed. In most neurons, ataxin‐7 IR was preferentially localized to the cytoplasmatic compartment although some nuclear ataxin‐7 IR was detected in most neurons. A more intense and more prominently nuclear ataxin‐7 IR was observed in neurons of the pons and the inferior olive, brain regions severly affected by the disease, suggesting that the subcellular localization and abundance of ataxin‐7 is regulated in a regionally specific way. Since neurons displaying more intense and more prominently nuclear ataxin‐7 IR belonged to the class of susceptible cells in SCA7, an enrichment of normal ataxin‐7 in the nuclear compartment may contribute to neurodegeneration. However not all sites of SCA7 pathology displayed a strong cytoplasmatic and nuclear immunoreactivity.

Full Text

The Full Text of this article is available as a PDF (153.8 KB).

References

  • 1. Benomar A, Krols L, Stevanin G, Cancel G, LeGuern E, David G, Ouhabi H, Martin JJ, Dürr A, Zaim A, Ravise N, Busque C, Penet C, Van Regemorter N, Weissenbach J, Yahyaoui M, Chkili T, Agid Y, Van Broeckhoven C, Brice A. (1995) The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3p12‐p21.1. Nat Genet 10: 84–88. [DOI] [PubMed] [Google Scholar]
  • 2. David G, Abbas N, Stevanin G, Dürr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F, Antoniou E, Drabkin H, Gemmill R, Giunti P, Benomar A, Wood N, Ruberg M, Agid Y, Mandel JL, Brice A (1997) Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 17: 65–70. [DOI] [PubMed] [Google Scholar]
  • 3. David G, Dürr A, Stevanin G, Cancel G, Abbas N, Benomar A, Belal S, Lebre AS, Abada‐Bendib M, Grid D, Holmberg M, Yahyaoui M, Hentati F, Chkili T, Agid Y, Brice A (1998) Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). Hum Mol Genet 7: 165–170. [DOI] [PubMed] [Google Scholar]
  • 4. Devys D, Lutz Y, Rouyer N, Bellocq JP, Mandel JL (1993) The FMR‐1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nat Genet 4: 335–340. [DOI] [PubMed] [Google Scholar]
  • 5. Enevoldson TP, Sanders MD, Harding AE (1994) Autosomal dominant cerebellar ataxia with pigmentary macular dystrophy. A clinical and genetic study of eight families. Brain 117: 445–460. [DOI] [PubMed] [Google Scholar]
  • 6. Gouw LG, Digre KB, Harris CP, Haines JH, Ptacek LJ (1994) Autosomal dominant cerebellar ataxia with retinal degeneration: clinical, neuropathologic, and genetic analysis of a large kindred. Neurology 44: 1441–1447. [DOI] [PubMed] [Google Scholar]
  • 7. Gouw LG, Kaplan CD, Haines JH, Digre KB, Rutledge SL, Matilla A, Leppert M, Zoghbi HY, Ptacek LJ (1995) Retinal degeneration characterizes a spinocerebellar ataxia mapping to chromosome 3p. Nat Genet 10: 89–93. [DOI] [PubMed] [Google Scholar]
  • 8. Harding AE (1982) The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the ‘the Drew family of Walworth. Brain 105: 1–28. [DOI] [PubMed] [Google Scholar]
  • 9. Holmberg M, Duyckaerts C, Dürr A, Cancel G, Gourfinkel‐An I, Damier P, Faucheux B, Trottier Y, Hirsch EC, Agid Y, Brice A (1998) Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum Mol Genet 7: 913–918. [DOI] [PubMed] [Google Scholar]
  • 10. Holmberg M, Johansson J, Forsgren L, Heijbel J, Sandgren O, Holmgren G (1995) Localization of autosomal dominant cerebellar ataxia associated with retinal degeneration and anticipation to chromosome 3p12‐p21.1. Hum Mol Genet 4: 1441–1445. [DOI] [PubMed] [Google Scholar]
  • 11. Huynh DP, Del Bigio MR, Ho DH, Pulst SM (1999) Expression of ataxin‐2 in brains from normal individuals and patients with Alzheimer's disease and spinocerebellar ataxia 2. Ann Neurol 45: 232–241. [DOI] [PubMed] [Google Scholar]
  • 12. Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, Weber C, Mandel JL, Cancel G, Abbas N, Dürr A, Didierjean O, Stevanin G, Agid Y, Brice A (1996) Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 14: 285–291. [DOI] [PubMed] [Google Scholar]
  • 13. Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, Kimura J, Naru‐miya S, Kakizuka A (1994) CAG expansions in a novel gene for Machado‐Joseph disease at chromosome 14q32.1. Nat Genet 8: 221–228. [DOI] [PubMed] [Google Scholar]
  • 14. Kaytor MD, Duvick LA, Skinner PJ, Koob MD, Ranum LP, Orr HT (1999) Nuclear localization of the spinocerebellar ataxia type 7 protein, ataxin‐7. Hum Mol Genet 8: 1657–1664. [DOI] [PubMed] [Google Scholar]
  • 15. Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, Takahashi H, Kondo R, Ishikawa A, Hayashi T, Saito M, Tomoda A, Miike T, Naito H, Ikuta F, Tsuji S (1994) Unstable expansion of CAG repeat in hereditary dentatorubral‐pallidoluysian atrophy (DRPLA). Nat Genet 6: 9–13. [DOI] [PubMed] [Google Scholar]
  • 16. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X‐linked spinal and bulbar muscular atrophy. Nature 352: 77–79. [DOI] [PubMed] [Google Scholar]
  • 17. Landwehrmeyer GB, McNeil SM, Dure LS IV, Ge P, Aizawa H, Huang Q, Ambrose CM, Duyao MP, Bird ED, Bonilla E, De Young M, Avila‐Gonzales AJ, Wexler NS, DiFiglia M, Gusella JF, MacDonald ME, Penney JB, Young AB, Vonsattel JP (1995) Huntington's disease gene: regional and cellular expression in brain of normal and affected individuals. Ann Neurol 37: 218–230. [DOI] [PubMed] [Google Scholar]
  • 18. Li SH, Schilling G, Young WS 3d, Li XJ, Margolis RL, Stine OC, Wagster MV, Abbott MH, Franz ML, Ranen NG, Folstein SE, Hedreen JC, Ross CA (1993) Huntington's disease gene (IT15) is widely expressed in human and rat tissues. Neuron 11: 985–993. [DOI] [PubMed] [Google Scholar]
  • 19. Nagafuchi S, Yanagisawa H, Ohsaki E, Shirayama T, Tadokoro K, Inoue T, Yamada M (1994) Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nat Genet 8: 177–182. [DOI] [PubMed] [Google Scholar]
  • 20. Nagafuchi S, Yanagisawa H, Sato K, Shirayama T, Ohsaki E, Bundo M, Takeda T, Tadokoro K, Kondo I, Murayama N, Tanaka Y, Kikushima H, Umino K, Kurosawa H, Furukawa T, Nihei K, Inoue T, Sano A, Komure O, Takahashi M, Yoshizawa T, Kanazawa I, Yamada (1994) Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet 6: 14–18. [DOI] [PubMed] [Google Scholar]
  • 21. Nishiyama K, Murayama S, Goto J, Watanabe M, Hashida H, Katayama S, Nomura Y, Nakamura S, Kanazawa I (1996) Regional and cellular expression of the Machado‐Joseph disease gene in brains of normal and affected individuals. Ann Neurol 40: 776–781. [DOI] [PubMed] [Google Scholar]
  • 22. Nishiyama K, Nakamura K, Murayama S, Yamada M, Kanazawa I (1997) Regional and cellular expression of the dentatorubral‐pallidoluysian atrophy gene in brains of normal and affected individuals. Ann Neurol 41: 599–605. [DOI] [PubMed] [Google Scholar]
  • 23. Oliver KR, Wainwright A, Heavens RP, Sirinathsinghji DJ (1997) Retrieval of cellular mRNA in paraffin‐embedded human brain using hydrated autoclaving. J Neurosci Methods 77: 169–174. [DOI] [PubMed] [Google Scholar]
  • 24. Orr HT, Chung MY, Banfi S, Kwiatkowski TJ Jr, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, Zoghbi HY (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4: 221–226. [DOI] [PubMed] [Google Scholar]
  • 25. Paulson HL, Das SS, Crino PB, Perez MK, Patel SC, Gotsdiner D, Fischbeck KH, Pittman RN (1997) Machado‐Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann Neurol 41: 453–462. [DOI] [PubMed] [Google Scholar]
  • 26. Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, Wakisaka A, Tashiro K, Ishida Y, Ikeuchi T, Koide R, Saito M, Sato A, Tanaka T, Hanyu S, Takiyama Y, Nishizawa M, Shimizu N, Nomura Y, Segawa M, Iwabuchi K, Eguchi I, Tanaka H, Takahashi H, Tsuji S (1996) Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 14: 277–284. [DOI] [PubMed] [Google Scholar]
  • 27. Schmidt T, Landwehrmeyer GB, Schmitt I, Trottier Y, Auburger G, Laccone F, Klockgether T, Volpel M, Epplen JT, Schöls L, Riess O (1998) An isoform of ataxin‐3 accumulates in the nucleus of neuronal cells in affected brain regions of SCA3 patients. Brain Pathol 8: 669–679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Servadio A, Koshy B, Armstrong D, Antalffy B, Orr HT, Zoghbi HY (1995) Expression analysis of the ataxin‐1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals. Nat Genet 10: 94–98. [DOI] [PubMed] [Google Scholar]
  • 29. Sharp AH, Loev SJ, Schilling G, Li SH, Li XJ, Bao J, Wagster MV, Kotzuk JA, Steiner JP, Lo A, Hedreen J, Sisodia S, Snyder SH, Dawson TM, Ryugo DK, Ross CA (1995) Widespread expression of Huntington's disease gene (IT15) protein product. Neuron 14: 1065–1074. [DOI] [PubMed] [Google Scholar]
  • 30. The Huntington's Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72: 971–983. [DOI] [PubMed] [Google Scholar]
  • 31. Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G, Saudou F, Weber C, David G, Tora L, Agid Y, Brice A, Mandel JL (1995) Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature 378: 403–406. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES