Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;9(4):707–720. doi: 10.1111/j.1750-3639.1999.tb00552.x

Alpha‐synuclein in Lewy Body Disease and Alzheimer's Disease

Makoto Hashimoto 1, Eliezer Masliah 1,2,
PMCID: PMC8098211  PMID: 10517509

Abstract

Alzheimer's disease (AD) and Lewy body disease (LBD) are the most common causes of dementia in the elderly population. Previous studies have shown that cognitive alterations in these disorders are associated with synaptic loss. Injury and loss of synapses might be associated with altered function of synaptic proteins. Among them, recent studies have shown that abnormal aggregation and accumulation of synaptic proteins, such as α‐synuclein, might be associated with plaque formation in AD and Lewy body formation in LBD. Further reinforcing the hypothesis that α‐synuclein plays a major role in the pathogenesis of these disorders, recent work has shown that mutations that alter the conformation of this molecule are associated with familial forms of Parkinson's disease. The mechanisms by which altered function or aggregation of α‐synuclein might lead to neurodegeneration are not completely clear; however, new evidence points to a potential role for this molecule in synaptic damage and neurotoxicity via amyloid‐like fibril formation and mitochondrial dysfunction. In this manuscript we review the data linking α‐synuclein to the pathogenesis of AD and LBD.

Full Text

The Full Text of this article is available as a PDF (297.9 KB).

References

  • 1. Adams J, Odunze IN (1991) Oxygen free radicals and Parkinson's disease. Free Radic Biol Med 10: 161–169. [DOI] [PubMed] [Google Scholar]
  • 2. Akopian AN, Wood JN (1995) Peripheral nervous system‐specific genes identified by subtractive cDNA cloning. J Biol Chem 270: 21264–21270. [DOI] [PubMed] [Google Scholar]
  • 3. Arai H, Lee V‐Y, Hill WD, Greenberg BD, Trojanowski JO (1992) Lewy bodies contain beta‐amyloid precursor proteins of Alzheimer's disease. Brain Res 585: 386–390. [DOI] [PubMed] [Google Scholar]
  • 4. Arima K, Ueda K, Sunohara N, Arakawa K, Hirai S, Nakamura M, Tonozuka‐Euhara H, Kawai M (1998) NACP/alpha‐synuclein immunoreactivity in fibrillary components of neuronal and oligodendroglial cytoplasmic inclusions in the pontine nuclei in multiple system atrophy. Acta Neuropathol 96: 439–444. [DOI] [PubMed] [Google Scholar]
  • 5. Askanas V, McFerrin J, Baque S, Alvarez RB, Sarkozi E, Engel WK (1996) Transfer of β‐amyloid precursor protein gene using adenovirus vector causes mitochondrial abnormalities in cultures of normal human muscle. Proc Natl Acad Sci USA 93: 1314–1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Baba M, Nakajo S, Tu P‐H, Tomita T, Nakaya K, Lee VM‐Y, Trojanowski JQ, Iwatsubo T (1998) Aggregation of α‐synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am J Pathol 152: 879–884. [PMC free article] [PubMed] [Google Scholar]
  • 7. Beach TG, Walker R, McGeer EG (1989) Patterns of gliosis in Alzheimer's disease and aging cerebrum. GLIA 2: 420–436. [DOI] [PubMed] [Google Scholar]
  • 8. Behl C, Davis J, Lesley R, Schubert D (1994) Hydrogen peroxide mediates amyloid β protein toxicity. Cell 77: 817–827. [DOI] [PubMed] [Google Scholar]
  • 9. Brookes AJ, Clair D St. (1994) Synuclein proteins and Alzheimer's disease. Trends Neurosci 17: 404–405. [DOI] [PubMed] [Google Scholar]
  • 10. Buchman VL, Hunter H, Pinon L, Thompson J, Privalova EM, Ninkina NN, Davies AM (1998) Persyn, a member of the synuclein family, has a distinct pattern of expression in the developing nervous system. J Neurosci 18: 9335–9341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Burkhardt CR, Filley CM, Kleinschmidt‐DeMasters BK, de la Monte S, Norenberg MD, Schneck SA (1988) Diffuse Lewy body disease and progressive dementia. Neurology 38: 1520–1528. [DOI] [PubMed] [Google Scholar]
  • 12. Campion D, Martin C, Heilig R, Charbonnier F, Moreau V, Flaman JM, Petit JL, Hannequin D, Brice A, Frebourg T (1995) The NACP/synuclein gene: chromosomal assignment and screening for alterations in Alzheimer disease. Genomics 26: 254–257. [DOI] [PubMed] [Google Scholar]
  • 13. Chan P, Tanner CM, Jiang X, Langston JW (1998) Failure to find the alpha‐synuclein gene missense mutation (G209A) in 100 patients with younger onset Parkinson's disease. Neurology 50: 513–514. [DOI] [PubMed] [Google Scholar]
  • 14. Clayton DF, George JM (1998) The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. TINS 21: 249–254. [DOI] [PubMed] [Google Scholar]
  • 15. Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant alpha‐synuclein linked to early‐onset Parkinson disease. Nature Med 4: 1318–1320. [DOI] [PubMed] [Google Scholar]
  • 16. Crowther RA, Jakes R, Spillantini MG, Goedert M (1998) Synthetic filaments assembled from C‐terminally truncated alpha‐synuclein. FEBS Lett 436: 309–312. [DOI] [PubMed] [Google Scholar]
  • 17. Cuello AC, Garofalo L, Kenisberg RL, Maysinger D (1989) Gangliosides potentiate in vivo and in vitro effects of nerve growth factor on central cholinergic neurons. Proc Natl Acad Sci USA 86: 2056–2060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of alpha‐synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273: 9443–9449. [DOI] [PubMed] [Google Scholar]
  • 19. Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90: 537–548. [DOI] [PubMed] [Google Scholar]
  • 20. DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann Neurol 27: 457–464. [DOI] [PubMed] [Google Scholar]
  • 21. Dickson DW, Crystal H, Mattiace LA, Kress Y, Schwagerl A, Ksiezak‐Reding H, Davies P, Yen S‐HC (1989) Diffuse Lewy body disease: light and electron microscopic immunocytochemistry of senile plaques. Acta Neuropathol 78: 572–584. [DOI] [PubMed] [Google Scholar]
  • 22. Dickson DW, Davies P, Mayeux R, Crystal H, Horoupian DS, Thompson A, Goldman JE (1987) Diffuse Lewy body disease. Neuropathological and biochemical studies of six patients. Acta Neuropathol 75: 8–15. [DOI] [PubMed] [Google Scholar]
  • 23. Eggertson DE, Sima A (1986) Dementia with cerebral Lewy bodies. A mesocortical dopaminergic effect Arch Neurol 43: 524–527. [DOI] [PubMed] [Google Scholar]
  • 24. Engelender S, Kaminsky Z, Guo X, Sharp AH, Amaravi RK, Kleiderlein JJ, Margolis RL, Troncoso JC, Lanahan AA, Worley PF, Dawson VL, Dawson TM, Ross CA (1999) Synphilin‐1 associates with alpha‐synuclein and promotes the formation of cytosolic inclusions. Nature Gen 22: 110–114. [DOI] [PubMed] [Google Scholar]
  • 25. Farrer M, Wavrant‐De Vrieze F, Crook R, Boles L, Perez‐Tur J, Hardy J, Johnson WG, Steele J, Maraganore D, Gwinn K (1998) Low frequency of alpha‐synuclein mutations in familial Parkinson's disease. Ann Neurol 43: 394–397. 9506559 [Google Scholar]
  • 26. Gaspar P, Graf F (1984) Dementia in idiopathic Parkinson's disease. Acta Neuropathol 64: 43–52. [DOI] [PubMed] [Google Scholar]
  • 27. Gasser T, Muller‐Myhsok B, Wszolek ZK, Oehlmann R, Calne DB, Bonifati V, Bereznai B, Fabrizio E, Vieregge P, Horstmann RD (1998) A susceptibility locus for Parkinson's disease maps to chromosome 2p13. Nature Gen 18: 262–265. [DOI] [PubMed] [Google Scholar]
  • 28. George JM, Jin H, Woods WS, Clayton DF (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15: 361–372. [DOI] [PubMed] [Google Scholar]
  • 29. Giasson BI, Uryu K, Trojanowski JQ, Lee V‐M (1999) Mutant and wild type human alpha‐synucleins assemble into elongated filaments with distinct morphologies in vitro. J Biol Chem 274: 7619–7622. [DOI] [PubMed] [Google Scholar]
  • 30. Gibb W, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. J Neurol Neurosurg Psychiatry 51: 745–752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Grant SM, Shankar SL, Chalmers‐Redman R, Tatton WG, Szyf M, Cuello AC (1999) Mitochondrial abnormalities in neuroectodermal cells stably expressing human amyloid precursor protein (hAPP751). NeuroReport 10: 41–46. [DOI] [PubMed] [Google Scholar]
  • 32. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281: 1309–1312. [DOI] [PubMed] [Google Scholar]
  • 33. Group TFPSDS (1998) Alpha‐synuclein gene and Parkinson's disease. Science 279: 1116–1117. [PubMed] [Google Scholar]
  • 34. Hansen L, Salmon D, Galasko D, Masliah E, Katzman R, De Teresa R, Thal L, Pay MM, Hofstetter R, Klauber M (1990) The Lewy body variant of Alzheimer's disease: a clinical and pathologic entity. Neurology 40: 1–7. [DOI] [PubMed] [Google Scholar]
  • 35. Hardy J, Gwinn‐Hardy K (1998) Genetic classification of primary neurodegenerative disease. Science 282: 1075–1079. [DOI] [PubMed] [Google Scholar]
  • 36. Hashimoto M, Hsu LJ, Sisk A, Xia Y, Takeda A, Sundsmo M, Masliah E (1998) Human recombinant NACP/α‐synuclein is aggregated and fibrillated in vitro: Relevance for Lewy body disease. Brain Res 799: 301–306. [DOI] [PubMed] [Google Scholar]
  • 37. Hashimoto M, Hsu LJ, Xia Y, Takeda A, Sundsmo M, Masliah E (1999) Oxidative stress induces amyloid‐like aggregate formation of NACP/α‐synuclein in vitro. NeuroReport 10: 717–721. [DOI] [PubMed] [Google Scholar]
  • 38. Hashimoto M, Takeda A, Hsu LJ, Takenouchi T, Masliah E (1999) Role of cytochrome casa stimulator of α‐synuclein aggregation in Lewy body disease. J Biol Chem (in Press). [DOI] [PubMed] [Google Scholar]
  • 39. Hashimoto M, Yoshimoto M, Sisk A, Hsu LJ, Sundsmo M, Kittel A, Saitoh T, Miller A, Masliah E (1997) NACP, a synaptic protein involved in Alzheimer's disease, is differentially regulated during megakaryocyte differentiation. Biochem Biophys Res Comm 237: 611–616. [DOI] [PubMed] [Google Scholar]
  • 40. Hof PR, Cox K, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer's disease: I. Superior frontal and inferior temporal cortex. J Comp Neurol 301: 44–54. [DOI] [PubMed] [Google Scholar]
  • 41. Hsu LJ, Mallory M, Xia Y, Veinbergs I, Hashimoto M, Yoshimoto M, Thal LJ, Saitoh T, Masliah E (1998) Expression pattern of the non‐Aβ component of Alzheimer's disease amyloid precursor protein (NACP/α‐synuclein) during brain development. J Neurochem 71: 338–344. [DOI] [PubMed] [Google Scholar]
  • 42. Hyman BT, VanHoesen GW, Damasio AR, Barnes CL (1984) Alzheimer's disease: Cell‐specific pathology isolates the hippocampal formation. Science 225: 1168–1170. [DOI] [PubMed] [Google Scholar]
  • 43. Ip NY, Li Y, Yancopoulos GD, Lindsay RM (1993) Cultured hippocampal neurons show responses to BDNF, NT‐3, and NT‐4, but not NGF. J Neurosci 13: 3394–3405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Iwai A, Masliah E, Sundsmo MP, De Teresa R, Mallory M, Salmon DP, Saitoh T (1996) The synaptic protein NACP is abnormally expressed during the progression of Alzheimer's disease. Brain Res 720: 230–234. [DOI] [PubMed] [Google Scholar]
  • 45. Iwai A, Yoshimoto M, Masliah E, Saitoh T (1995) Non‐Aβ component of Alzheimer's disease amyloid (NAC) is amyloidogenic. Biochemistry 34: 10139–10145. [DOI] [PubMed] [Google Scholar]
  • 46. Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara I (1994) Visualization of A beta 42(43) and A beta 40 in senile plaques with end‐specific A beta monoclonals: evidence that an initially deposited species in A beta 42(43). Neuron 13: 45–53. [DOI] [PubMed] [Google Scholar]
  • 47. Iwatsubo T, Yamaguchi H, Fujimuro M, Yokosawa H, Ihara Y, Trojanowski JQ, Lee V‐M (1996) Purification and characterization of Lewy bodies from brains of patients with diffuse Lewy body disease. Am J Pathol 148: 1517–1529. [PMC free article] [PubMed] [Google Scholar]
  • 48. Jakes R, Spillantini MG, Goedert M (1994) Identification of two distinct synucleins from human brain. FEBS Lett 345: 27–32. [DOI] [PubMed] [Google Scholar]
  • 49. Jenco JM, Rawlingson A, Daniels B, Morris AJ (1998) Regulation of phospholipase D2: Selective inhibition of mammalian phospholipase D isoenzymes by α‐ and β‐synucleins. Biochemistry 37: 4901–4909. [DOI] [PubMed] [Google Scholar]
  • 50. Jensen PH, Nielsen MS, Jakes R, Dotti CG, Goedert M (1998) Binding of alpha‐synuclein to brain vesicles is abolished by familial Parkinson's disease mutation. J Biol Chem 273: 26292–26294. [DOI] [PubMed] [Google Scholar]
  • 51. Jensen PH, Hojrup P, Hager H, Nielsen MS, Jacobsen L, Olesen OF, Gliemann J, Jakes R (1997) Binding of Aβ to α‐ and β‐synucleins: identification of segments in α‐synuclein/ NAC precursor that bind Aβ and NAC. Biochem J 323: 539–546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Ji H, Liu YE, Wang M, Liu J, Xiao G, Joseph BK, Rosen C, Shi YE (1997) Identification of a breast cancer‐specific gene, BCSG1, by direct differential cDNA sequencing. Cancer Res 57: 759–764. [PubMed] [Google Scholar]
  • 53. Jia T, Liu YE, Liu J, Shi YE (1999) Stimulation of breast cancer invasion and metastasis by synuclein gamma. Cancer Res 59: 742–747. [PubMed] [Google Scholar]
  • 54. Kim H, Gearing M, Mirra SS (1995) Ubiquitin‐positive CA2/3 neurites in hippocampus coexist with cortical Lewy bodies. Neurology 45: 1768–1770. [DOI] [PubMed] [Google Scholar]
  • 55. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605–608. [DOI] [PubMed] [Google Scholar]
  • 56. Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM, Clark HB, Zoghbi HY, Orr HT (1998) Ataxin‐1 nuclear localization and aggregation: Role in polyglutamine‐induced disease in SCA1 transgenic mice. Cell 95: 41–53. [DOI] [PubMed] [Google Scholar]
  • 57. Kosaka K (1978) Lewy bodies in cerebral cortex. Report of three cases. Acta Neuropathol 42: 127–134. [DOI] [PubMed] [Google Scholar]
  • 58. Kosaka K, Yoshimura M, Ikeda K, Budka H (1984) Diffuse type of Lewy body disease. Progressive dementia with abundant cortical Lewy bodies and senile changes of varying degree A new disease i 3: 183–192. [PubMed] [Google Scholar]
  • 59. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Reiss O (1998) Ala30Pro mutation in the gene encoding α‐synuclein in Parkinson's disease. Nature Gen 18: 106–108. [DOI] [PubMed] [Google Scholar]
  • 60. Kruger R, Vieira‐Saecker AM, Kuhn W, Berg D, Muller T, Kuhnl N, Fuchs GA, Storch A, Hungs M, Woitalla D, Przuntek H, Epplen JT, Schols L, Riess O (1999) Increased susceptibility to sporadic Parkinson's disease by a certain combined alpha‐synuclein/apolipoprotein E genotype. Ann Neurol 45: 611–617. [DOI] [PubMed] [Google Scholar]
  • 61. Kuzuhara S, Mori H, Izumiyama N, Yoshimura M, Ihara Y (1988) Lewy bodies are ubiquitinated. A light and electron microscopic immunocytochemical study. Acta Neuropathol 75: 345–353. [DOI] [PubMed] [Google Scholar]
  • 62. Langlais PJ, Thal L, Hansen L, Galasko D, Alford M, Masliah E (1993) Neurotransmitters in basal ganglia and cortex of Alzheimer's disease with and without Lewy bodies. Neurology 43: 1927–1934. [DOI] [PubMed] [Google Scholar]
  • 63. Lansbury PT Jr (1999) Evolution of amyloid: What normal protein folding may tell us about fibrillogenesis and disease. Proc Natl Acad Sci USA 96: 3342–3344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. Lee SJ, Liyanage U, Bickel PE, Xia W, Lansbury PTJ, Kosik KS (1998) A detergent‐insoluble membrane compartment contains A beta in vivo. Nat Med 4: 730–734. [DOI] [PubMed] [Google Scholar]
  • 65. Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH (1998) The ubiquitin pathway in Parkinson's disease. Nature 395: 451–452. [DOI] [PubMed] [Google Scholar]
  • 66. Li S, Mallory M, Alford M, Tanaka S, Masliah E (1997) Glutamate transporter alterations in Alzheimer's disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol 56: 901–911. [DOI] [PubMed] [Google Scholar]
  • 67. Lippa CF, Fujiwara H, Mann DM, Giasson B, Baba M, Schmidt ML, Nee LE, O'Connell B, Pollen DA, George‐Hyslop P St. (1998) Lewy bodies contain altered alpha‐synuclein in brains of many familial Alzheimer's disease patients with mutations in presenilin and amyloid precursor protein genes. Am J Pathol 153: 1365–1370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Lorenzo A, Yankner BA (1994) β‐amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc Natl Acad Sci USA 91: 12243–12247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Lowe J, McDermott H, Landon M, Mayer RJ, Wilkinson KD (1990) Ubiquitin carboxyl‐terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases. J Pathol 161: 153–160. [DOI] [PubMed] [Google Scholar]
  • 70. Ma J. Yee A, Brewer HBJ, Das S, Potter H (1994) Amyloid‐associated proteins a1‐antichymotrypsin and apolipoprotein E promote assembly of Alzheimer β‐protein into filaments. Nature 372: 92–94. [DOI] [PubMed] [Google Scholar]
  • 71. Markesbery WR, Carney JM (1999) Oxidative alterations in Alzheimer's disease. Brain Pathol 9: 133–146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron‐specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8: 2804–2815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. Maroteaux L, Scheller RH (1991) The rat brain synucleins; family of proteins transiently associated with neuronal membrane. Mol Brain Res 11: 335–343. [DOI] [PubMed] [Google Scholar]
  • 74. Masliah E (1997) Role of amyloid precursor protein in the mechanisms of neurodegeneration in Alzheimer's disease. Lab Invest 77: 197–209. [PubMed] [Google Scholar]
  • 75. Masliah E (1998) Mechanisms of synaptic pathology in Alzheimer's disease. J Neural Transm 53 (Suppl): 147–158. [DOI] [PubMed] [Google Scholar]
  • 76. Masliah E (1998) The role of synaptic proteins in neurodegenerative disorders. Neurosci News 1: 14–20. [Google Scholar]
  • 77. Masliah E, Iwai A, Mallory M, Ueda K, Saitoh T (1996) Altered presynaptic protein NACP is associated with plaque formation and neurodegeneration in Alzheimer's disease. Am J Pathol 148: 201–210. [PMC free article] [PubMed] [Google Scholar]
  • 78. Masliah E, Mallory M, Hansen L, Alford M, Albright T, Terry R, Shapiro P, Sundsmo M, Saitoh T (1991) Immunoreactivity of CD45, a protein phosphotyrosine phosphatase, in Alzheimer disease. Acta Neuropathol 83: 12–20. [DOI] [PubMed] [Google Scholar]
  • 79. Masliah E, Mallory M, Hansen L, Alford M, De Teresa R, Terry R (1993) An antibody against phosphorylated neurofilaments identifies a subset of damaged association axons in Alzheimer's disease. Am J Pathol 142: 871–882. [PMC free article] [PubMed] [Google Scholar]
  • 80. Masliah E, Mallory M, Hansen L, De Teresa R, Alford M, Terry R (1994) Synaptic and neuritic alterations during the progression of Alzheimer's disease. Neurosci Lett 174: 67–72. [DOI] [PubMed] [Google Scholar]
  • 81. Masliah E, Sisk A, Mallory M, Mucke L, Schenk D, Games D (1996) Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F β‐amyloid precursor protein and Alzheimer's disease. J Neurosci 16: 5795–5811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. Mattson MP, Barger SW, Cheng B, Lieberburg I, Smith‐Swintosky VL, Rydel RE (1993) β‐amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer's disease. TINS 16: 409–414. [DOI] [PubMed] [Google Scholar]
  • 83. McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, Salmon DP, Lowe J, Mirra SS, Byrne EJ, Quinn NP, Edwardson JA, Ince PG, Bergeron C, Burns A, Miller BL, Lovestone S, Collerton D, Jansen E, De Vos R, Wilcock GK, Jellinger KA, Perry RH (1996) Clinical and pathological diagnosis of dementia with Lewy bodies (DLB): Report of the CDLB International Workshop. Neurology 47: 1113–1124. [DOI] [PubMed] [Google Scholar]
  • 84. Mezey E, Dehejia A, Harta G, Papp M, Polymeropoulos M, Brownstein M (1998) Alpha synuclein in neurodegenerative disorders: murderer or accomplice Nature Med 4: 755–757. [DOI] [PubMed] [Google Scholar]
  • 85. Morishima‐Kawashima M, Ihara Y (1998) The presence of amyloid b‐protein in the detergent‐soluble membrane compartment of human neuroblastoma cells. Biochemistry 37: 15247–15253. [DOI] [PubMed] [Google Scholar]
  • 86. Nakajo S (1990) Purification and characterization of a novel brain‐specific 14‐kDa protein. J Neurochem 55: 2031–2038. [DOI] [PubMed] [Google Scholar]
  • 87. Nakajo S, Tsukada K, Omata K, Nakamura Y, Nakaya K (1993) A new brain‐specific 14‐kDa protein is a phosphoprotein. It's complete amino acid sequence and evidence for phosphorylation. Eur J Biochem 217: 1057–1063. [DOI] [PubMed] [Google Scholar]
  • 88. Narhi L, Wood SJ, Steavenson S, Jiang Y, Wu GM, Anafi D, Kaufman SA, Martin F, Sitney K, Denis P, Louis JC, Wypych J, Biere AL, Citron M (1999) Both familial Parkinson's disease mutations accelerate alpha‐synuclein aggregation. J Biol Chem 214: 9843–9846. [DOI] [PubMed] [Google Scholar]
  • 89. Paik SR, Shin HJ, Lee JH, Chang CS, Kim J (1999) Copper(II)‐induced self‐oligomerization of alpha‐synuclein. Biochem J 340: 821–828. [PMC free article] [PubMed] [Google Scholar]
  • 90. Paik SR, Lee JH, Kim DH, Chang CS, Kim J (1997) Aluminum‐induced structural alterations of the precursor of the non‐A beta component of Alzheimer's disease amyloid. Arch Biochem Biophys 344: 325–334. [DOI] [PubMed] [Google Scholar]
  • 91. Paik SR, Lee JH, Kim DH, Chang CS, Kim YS (1998) Selfoligomerization of NACP, the precursor protein of the non‐amyloid beta/A4 protein (A beta) component of Alzheimer's disease amyloid, observed in the presence of a C‐terminal A beta fragment (residues 25–35). FEBS Lett 421: 73–76. [DOI] [PubMed] [Google Scholar]
  • 92. Palmer AM, Gershon S (1990) Is the neuronal basis of Alzheimer's disease cholinergic or glutamatergic FASEB J 2745: 2752. [DOI] [PubMed] [Google Scholar]
  • 93. Perry EK, Perry RH, Blessed G, Tomlinson BE (1977) Neurotransmitter enzyme abnormalities in senile dementia: CAT and GAD activities in necropsy tissue. J Neurol Sci 34: 247–265. [DOI] [PubMed] [Google Scholar]
  • 94. Perry RH, Irving D, Blessed G, Fairbairn A, Perry EK (1990) Senile dementia of Lewy body type. A clinically and neuropathologically distinct form of Lewy body dementia in the elderly. J Neurol Sci 95: 119–139. [DOI] [PubMed] [Google Scholar]
  • 95. Pike CJ, Walencewicz AJ, Glabe CG, Cottman CW (1991) In vitro aging of β‐amyloid protein causes peptide aggregation and neurotoxicity. Brain Res 563: 311–314. [DOI] [PubMed] [Google Scholar]
  • 96. Pilas B, Sarna T, Kalyanaraman B, Schwartz HM (1988) The effect of melanin on iron associated decomposition of hydrogen peroxide. Free Rad Biol Med 4: 285–293. [DOI] [PubMed] [Google Scholar]
  • 97. Pollanen MS, Dickson DW, Bergeron C (1993) Pathology and biology of the Lewy body. J Neuropathol Exp Neurol 52: 183–191. [DOI] [PubMed] [Google Scholar]
  • 98. Polymeropoulos MH, Higgins JJ, Golbe LI, Johnson WG, Ide SE, Di Iorio G, Sangers G, Stenroos ES, Pho LT, Schaffer AA, Lazzarini AM, Nussbaum RL, Duvoisin RC (1996) Mapping of a gene for Parkinson's disease to chromosome 4q21‐q23. Science 274: 1197–1199. [DOI] [PubMed] [Google Scholar]
  • 99. Polymeropoulos MH, Lavedant C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the α‐synuclein gene identified in families with Parkinson's disease. Science 276: 2045–2047. [DOI] [PubMed] [Google Scholar]
  • 100. Price DL, Sisodia SS, Gandy SE (1995) Amyloid beta amyloidosis in Alzheimer's disease. Curr Opin Neurol 8: 268–274. [DOI] [PubMed] [Google Scholar]
  • 101. Riederer P, Sofic E, Rausch W‐D, Schmidt B, Reynolds GP, Youdim MB (1989) Transition metals, ferritin, glutathione, and ascorbic acid in Parkinsonian brains. J Neurochem 52: 515–520. [DOI] [PubMed] [Google Scholar]
  • 102. Rogers J, Luber‐Narod J, Styren SD, Civin WH (1988) Expression of immune system‐associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer's disease. Neurobiol Aging 9: 339–349. [DOI] [PubMed] [Google Scholar]
  • 103. Saggu H, Cooksey J, Dexter D, Wells FR, Lees A, Jenner P, Marsden CD (1989) A selective increase in particulate superoxide dismutase activity in parkinsonian substantia nigra. J Neurochem 53: 692–697. [DOI] [PubMed] [Google Scholar]
  • 104. Saitoh T, Xia Y, Chen X, Masliah E, Galasko D, Shults C, Thal LJ, Hansen LA, Katzman R (1995) The CYP2D6B mutant allele is overrepresented in the Lewy body variant of Alzheimer's disease. Ann Neurol 37: 110–112. [DOI] [PubMed] [Google Scholar]
  • 105. Saudou F, Finkbeiner S, Devys D, Greenberg ME (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95: 55–66. [DOI] [PubMed] [Google Scholar]
  • 106. Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J, Hutton M, Kukull W, Larson E, Levy‐Lahad E, Viitanen M, Peskind E, Poorkaj P, Schellenberg G, Tanzi R, Wasco W, Lannfelt L, Selkoe D, Younkin S (1996) Secreted amyloid beta‐protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Med 2: 864–870. [DOI] [PubMed] [Google Scholar]
  • 107. Schmidt ML, Murray J, Lee VM‐Y, Hill WD, Wertkin A, Trojanowski JQ (1991) Epitope map of neurofilament protein domains in cortical and peripheral nervous system Lewy bodies. Am J Pathol 139: 53–65. [PMC free article] [PubMed] [Google Scholar]
  • 108. Seeman P, Tedesco JL, Lee T, Chau‐Wong M, Muller P, Bowles J, Whitaker PM, McManus C, Tittler M, Weinreich P, Friend WC, Brown GM (1978) Dopamine receptors in the central nervous system. Fed Proc 37: 131–136. [PubMed] [Google Scholar]
  • 109. Selkoe D (1994) Cell biology of the amyloid β‐protein precursor and the mechanisms of Alzheimer's disease. Ann Rev Cell Biol 10: 373–403. [DOI] [PubMed] [Google Scholar]
  • 110. Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 91: 10771–10778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111. Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy‐Agid F, Jenner P, Mardsen CD (1994) Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36: 348–355. [DOI] [PubMed] [Google Scholar]
  • 112. Sisodia SS, Price DL (1995) Role of the beta‐amyloid protein in Alzheimer's disease. FASEB J. 9: 366–370. [DOI] [PubMed] [Google Scholar]
  • 113. Skovronsky DM, Doms RW, Lee VMY (1998) Detection of a novel intraneuronal pool of insoluble amyloid β‐protein that accumulates with time in culture. J Cell Biol 141: 1031–1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114. Snow AD, Seikiguchi R, Nochlin D, Fraser P, Kimata K, Mizutani A, Arai M, Schreier WA, Morgan DG (1994) An important role of heparan sulfate proteoglycan (Perlecan) in a model system for the deposition and persistence of fibrillar A beta‐amyloid in rat brain. Neuron 12: 219–234. [DOI] [PubMed] [Google Scholar]
  • 115. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) alpha‐synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 95: 6469–6473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116. Spillantini MG, Schmidt ML, Lee V‐Y, Trojanowski JQ, Jakes R, Goedert M (1997) a‐Synuclein in Lewy bodies. Nature 388: 839–840. [DOI] [PubMed] [Google Scholar]
  • 117. Takeda A, Hashimoto M, Mallory M, Sundsmo M, Hansen L, Masliah E (1999) C‐terminal α‐synuclein immunoreactivity in structures other than Lewy bodies in neurodegenerative disorders. Acta Neuropathol (in Press). [DOI] [PubMed] [Google Scholar]
  • 118. Takeda A, Hashimoto M, Mallory M, Sundsmo M, Hansen L, Sisk A, Masliah E (1998) Human NACP/α‐synuclein distribution in Lewy body disease. Lab Invest 78: 1169–1177. [PubMed] [Google Scholar]
  • 119. Takeda A, Mallory M, Sundsmo M, Honer W, Hansen L, Masliah E (1998) Abnormal accumulation of NACP/a‐synuclein in neurodegenerative disorders. Am J Pathol 152: 367–372. [PMC free article] [PubMed] [Google Scholar]
  • 120. Terry RD, Hansen L, Masliah E. (1994) Structural alterations in Alzheimer disease In: Terry RD, Katzman R (eds) Alzheimer Disease. Raven Press, New York pp. 179–196. [Google Scholar]
  • 121. Terry RD, Masliah E, Salmon DP, Butters N, De Teresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30: 572–580. [DOI] [PubMed] [Google Scholar]
  • 122. Tobe T, Nakajo S, Tanaka A, Mitoya A, Omata K, Nakaya K, Tomita M, Nakamura Y (1992) Cloning and characterization of the cDNA encoding a novel brain‐specific 14 kDa protein. J Neurochem 59: 1624–1629. [DOI] [PubMed] [Google Scholar]
  • 123. Tompkins MM, Basgall EJ, Zamrini E, Hill WD (1997) Apoptotic‐like changes in Lewy‐body‐associated disorders and normal aging in substantia nigra neurons. Am J Pathol 150: 119–131. [PMC free article] [PubMed] [Google Scholar]
  • 124. Tompkins MM, Hill WD (1997) Contribution of somal Lewy bodies to neuronal death. Brain Res 775: 24–29. [DOI] [PubMed] [Google Scholar]
  • 125. Ueda K, Fukushima H, Masliah E, Xia Y, Iwai A, Otero D, Kondo J, Ihara Y, Saitoh T (1993) Molecular cloning of a novel component of amyloid in Alzheimer's disease. Proc Natl Acad Sci USA 90: 11282–11286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126. Ueda K, Saitoh T, Mori H (1994) Tissue‐dependent alternative splicing of mRNA for NACP, the precursor of non‐A beta component of Alzheimer's disease amyloid. Biochem Biophys Res Comm 205: 1366–1372. [DOI] [PubMed] [Google Scholar]
  • 127. Vaughan J, Durr A, Tassin J, Bereznai B, Gasser T, Bonifati V, De Michele G, Fabrizio E, Volpe G, Bandmann O, Johnson WG, Golbe LI, Breteler M, Meco G, Agid Y, Brice A, Marsden CD, Wood NW (1998) The alpha‐synuclein Ala53Thr mutation is not a common cause of familial Parkinson's disease: a study of 230 European cases. Ann Neurol 44: 270–273. [DOI] [PubMed] [Google Scholar]
  • 128. Veldman BA, Wijn AM, Knoers N, Praamstra P, Horstink MW (1998) Genetic and environmental risk factors in Parkinson's disease. Clin Neurol Neurosurg 100: 15–26. [DOI] [PubMed] [Google Scholar]
  • 129. Wakabayashi K, Yoshimoto M, Tsuji S, Takahashi H (1998) α‐synuclein immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy. Neurosci Lett 249: 180–182. [DOI] [PubMed] [Google Scholar]
  • 130. Wasco W, Gurubhagavatula S, Paradis MD, Romano CM, Sisodia SS, Hyman BT, Neve RL, Tanzi RE (1993) Isolation and characterization af APLP2 encoding a homologue of the Alzheimer's associated amyloid beta protein precursor. Nature Gen 5: 95–100. [DOI] [PubMed] [Google Scholar]
  • 131. Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr (1996) NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry 35: 13709–13715. [DOI] [PubMed] [Google Scholar]
  • 132. Wilcock GK, Esiri MM, Bowen DM, Hughes AO (1988) The differential involvement of subcortical nuclei in senile dementia of Alzheimer's type. J Neurol Neurosurg Psychiatry 51: 842–849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133. Wisniewski T, Castano EM, Golabek A, Vogel T, Frangione B (1994) Acceleration of Alzheimer's fibril formation by apolipoprotein E in vitro. Am J Pathol 145: 1030–1035. [PMC free article] [PubMed] [Google Scholar]
  • 134. Wood SJ, Wypych J, Steavenson S, Louis JC, Citron M, Biere AL (1999) Alpha‐synuclein fibrillogenesis is nucleation dependent. Implications for the pathogenesis of Parkinson's disease. J Biol Chem 274: 19509–19512. [DOI] [PubMed] [Google Scholar]
  • 135. Xia Y, De Silva H, Rosi BL, Yamaoka LH, Rimmler JB, Pericak‐Vance MA, Roses AD, Chen X, Masliah E, De Teresa R, Iwai A, Sundsmo M, Thomas RG, Hofstetter CR, Gregory E, Hansen LA, Katzman R, Thal LJ, Saitoh T (1996) Genetic studies in Alzheimer's disease with an NACP/alpha‐synuclein polymorphism. Ann Neurol 40: 207–215. [DOI] [PubMed] [Google Scholar]
  • 136. Yanagisawa K, Odaka A, Suzuki N, Ihara Y (1995) GM1 ganglioside‐bound amyloid beta‐protein (A beta): a possible form of preamyloid in Alzheimer's disease. Nature Med 1: 1062–1066. [DOI] [PubMed] [Google Scholar]
  • 137. Yang AJ, Chandswangbhuvana D, Shu T, Henschen A, Glabe CG (1999) Intracellular accumulation of insoluble, newly synthesized Abeta1‐42 in amyloid precursor protein‐transfected cells that have been treated with Abeta1‐42. J Biol Chem 274: 20650–20656. [DOI] [PubMed] [Google Scholar]
  • 138. Yoshimoto M, Iwai A, Kang D, Otero D, Xia Y, Saitoh T (1995) NACP, the precursor protein of non‐amyloid β/A4 protein (Aβ) component of Alzheimer disease amyloid, binds Aβ and stimulates Aβ aggregation. Proc Natl Acad Sci USA 92: 9141–9145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139. Yoshimura M (1983) Cortical changes in the parkinsonian brain: a contribution to the delineation of diffuse Lewy body disease. J Neurol 229: 17–32. [DOI] [PubMed] [Google Scholar]
  • 140. Youdim MB, Ben‐Schachar D, Riederer P (1989) Is Parkinson's disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration Acta Neurol Scand 126: 47–54. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES