Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;9(1):93–117. doi: 10.1111/j.1750-3639.1999.tb00213.x

Oxidative Metabolism, Apoptosis and Perinatal Brain Injury

Deanna L Taylor 1, A David Edwards 1, Huseyin Mehmet 1,
PMCID: PMC8098214  PMID: 9989454

Abstract

Perinatal hypoxic‐ischaemic injury (HII) is a significant cause of neurodevelopmental impairment and disability. Studies employing 31P magnetic resonance spectroscopy to measure phosphorus metabolites in situ in the brains of newborn infants and animals have demonstrated that transient hypoxia‐ischaemia leads to a delayed disruption in cerebral energy metabolism, the magnitude of which correlates with the subsequent neurodevelopmental impairment.

Prominent among the biochemical features of HII is the loss of cellular ATP, resulting in increased intracellular Na+ and Ca2+, and decreased intracellular K+.These ionic imbalances, together with a breakdown in cellular defence systems following HII, can contribute to oxidative stress with a net increase in reactive oxygen species. Subsequent damage to lipids, proteins, and DNA and inactivation of key cellular enzymes leads ultimately to cell death.

Although the precise mechanisms of neuronal loss are unclear, it is now clear both apoptosis and necrosis are the significant components of cell death following HII. A number of different factors influence whether a cell will undergo apoptosis or necrosis, including the stage of development, cell type, severity of mitochondrial injury and the availability of ATP for apoptotic execution.

This review will focus on some pathological mechanisms of cell death in which there is a disruption to oxidative metabolism. The first sections will discuss the process of damage to oxidative metabolism, covering the data collected both from human infants and from animal models. Following sections will deal with the molecular mechanisms that may underlie cerebral energy failure and cell death in this form of brain injury, with a particular emphasis on the role of apoptosis and mitochondria.

Full Text

The Full Text of this article is available as a PDF (344.9 KB).

References

  • 1. Adachi S, Cross AR, Babior BM, Gottlieb RA (1997) Bcl‐2 and the outer mitochondrial membrane in the inactivation of cytochrome c during Fas‐mediated apoptosis. J Biol Chem 272(35): 21878–21882. [DOI] [PubMed] [Google Scholar]
  • 2. Aguan K, Taylor DL, Blumberg RM, Thompson LP, Edwards AD, Weiner CP (1997) Effect of acute focal hypoxia on Ca++‐dependent and ‐independent NOS activity and mRNA expression in the immature rat brain. J Soc Gynaecol Invest 5: 163A (abstract). [Google Scholar]
  • 3. Akagi Y, Ito K, Sawada S (1993) Radiation‐induced apoptosis and necrosis in Molt‐4 cells: a study of dose‐effect relationships and their modification. Int J Radiat Biol 64(1): 47–56. [DOI] [PubMed] [Google Scholar]
  • 4. Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P (1995) Glutamate‐induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15(4): 961–973. [DOI] [PubMed] [Google Scholar]
  • 5. Ashwal S, Cole DJ, Osborne S, Osborne TN, Pearce WJ (1995) L‐NAME reduces infarct volume in a filament model of transient middle cerebral artery occlusion in the rat pup. Pediatr Res 38: 652–656. [DOI] [PubMed] [Google Scholar]
  • 6. Azzopardi D, Wyatt JS, Cady EB, Delpy DT, Baudin J, Stewart AL, Hope PL, Hamilton PA, Reynolds EO. (1989) Prognosis of newborn infants with hypoxic‐ischemic brain injury assessed by phosphorus magnetic resonance spectroscopy. Pediatr Res 25: 445–451. [DOI] [PubMed] [Google Scholar]
  • 7. BadenAmissah K, Cox PM, Joashi U, Mehmet H, Blumberg R, Edwards AD (1997) Induction of beta‐amyloid precursor protein (β‐APP) expression after neonatal hypoxic ischaemic cerebral injury (HII). J Pathol 182: A49. [Google Scholar]
  • 8. Bagenholm R, Andine P, Hagberg H (1991) Effects of 21 aminosteroid U74006F on brain damage and edema following perinatal hypoxia‐ischemia in the rat. J Cereb Blood Flow Metab 11: S134. [Google Scholar]
  • 9. Beckham J, Ye Y, Chen J, Conger K (1996) The interactioin of nitric oxide with oxygen radicals and scavengers in cerebral ischemic injury. Advances Neurol 71: 339–354. [PubMed] [Google Scholar]
  • 10. Beg AA, Baltimore D (1996) An essential role for NF‐kappaB in preventing TNF‐alpha‐induced cell death (see comments). Science 274(5288): 782–784. [DOI] [PubMed] [Google Scholar]
  • 11. Behl C, Davis JB, Lesley R, Schubert D (1994) Hydrogen peroxide mediates amyloid β protein neurotoxicity Cell 77: 817–827. [DOI] [PubMed] [Google Scholar]
  • 12. Beilharz EJ, Bassett NS, Sirimanne ES, Williams CE, Gluckman PD (1995) Insulin‐like growth factor II is induced during wound repair following hypoxic‐ischemic injury in the developing rat brain. BrainRes Mol Brain Res 29(1): 81–91. [DOI] [PubMed] [Google Scholar]
  • 13. Betz AL (1985) Identification of hypoxanthine transport and xanthine oxidase activity in brain capillaries. J Neurochem 44: 574–579. [DOI] [PubMed] [Google Scholar]
  • 14. Blumberg RM, Cady EB, Wigglesworth JS, McKenzie JE, Edwards AD (1996) Relation between delayed impairment of cerebral energy metabolism and infarction following transient focal hypoxia ischaemia in the developing brain. Exp Brain Res 113: 130–137. [DOI] [PubMed] [Google Scholar]
  • 15. Bolanas JP Almeida A, Stewart V, Peuchen SL, Clark JB, Heales SJR (1997) Nitric oxide‐mediated mitochondrial damage in the brain: mechanisms and implication for neurodegenerative diseases J Neurochem 68: 2227–2240. [DOI] [PubMed] [Google Scholar]
  • 16. Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N‐methyl‐D‐aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 92(16): 7162–7166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Bossenmeyer C, Chihab R, Muller S, Schroeder H, Daval JL (1998) Hypoxia/reoxygenation induces apoptosis through biphasic induction of protein synthesis in cultured rat brain neurons. Brain Res 787(1): 107–116. [DOI] [PubMed] [Google Scholar]
  • 18. Bossy‐Wetzel E, Newmeyer DD, Green DR (1998) Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD‐specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J 17(1): 37–49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Botchkina GI, Meistrell ME 3rd, Botchkina IL, Tracey KJ (1997) Expression of TNF and TNF receptors (p55 and p75) in the rat brain after focal cerebral ischemia. Mol Med 3(11): 765–781. [PMC free article] [PubMed] [Google Scholar]
  • 20. Bruce AJ, Boling W, Kindy MS, Peschon J, Kraemer PJ, Carpenter MK, Holtsberg FW, Mattson MP (1996) Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med 2(7): 788–794. [DOI] [PubMed] [Google Scholar]
  • 21. Cady EB (1990) Clinical Magnetic Resonance Spectroscopy Plenum; New York . [Google Scholar]
  • 22. Chan PH, Kamii H, Yang G, Gafni J, Epstein CJ, Carlson E, Reola L (1993) Brain infarction is not reduced in SOD‐1 transgenic mice after a permanent focal cerebral ischemia Neuroreport 5(3): 293–6. [DOI] [PubMed] [Google Scholar]
  • 23. Chauhan D, Pandey P, Ogata A, Teoh G, Krett N, Halgren R, Rosen S, Kufe D, Kharbanda S, Anderson K (1997) Cytochrome c‐dependent and ‐independent induction of apoptosis in multiple myeloma cells. J Biol Chem 272(48): 29995–29997. [DOI] [PubMed] [Google Scholar]
  • 24. Chernyak BV (1997) Redox regulation of the mitochondrial permeability transition pore. Biosci Rep 17(3): 293–302. [DOI] [PubMed] [Google Scholar]
  • 25. Cleeter MW, Cooper JM, Darley‐Usmar VM, Moncada S, Schapira AVH (1994) Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. FEBS Lett 345:50–54. [DOI] [PubMed] [Google Scholar]
  • 26. Clemens JA, Stephenson DT, Dixon EP, Smalstig EB, Mincy RE, Rash KS, Little SP (1997) Global cerebral ischemia activates nuclear factor‐kappa B prior to evidence of DNA fragmentation. Brain Res Mol Brain Res 48(2): 187–96. [DOI] [PubMed] [Google Scholar]
  • 27. Clemens JA, Stephenson DT, Smalstig EB, Dixon EP, Little SP (1997) Global ischemia activates nuclear factor‐kappa B in forebrain neurons of rats. Stroke 28(5): 1073–80; discussion 1080–1. [DOI] [PubMed] [Google Scholar]
  • 28. Copin JC, Li Y, Reola L, Chan PH (1998) Trolox and 6,7‐dinitroquinoxaline‐2,3‐dione prevent necrosis but not apoptosis in cultured neurons subjected to oxygen deprivation. Brain Res 784(1–2): 25–36. [DOI] [PubMed] [Google Scholar]
  • 29. Cowan F, Pennock JM, Hanrahan D, Manji K, Edwards AD. (1994). Early detection of infarction and hypoxic‐ischaemic encephalopathy in neonates using diffusion weighted magnetic resonance imaging. Neuropediatr 25: 172–175. [DOI] [PubMed] [Google Scholar]
  • 30. Cox DW, Morris PG, Bachelard HS (1988) Kinetic analysis of the cerebral creatine kinase reaction under hypoxic and hypoglycaemic conditions in vitro. A 31P-NMR study Biochem J 255(2): 523–527. [PMC free article] [PubMed] [Google Scholar]
  • 31. Ditelberg JS, Sheldon RA, Epstein CJ, Ferriero DM (1996) Brain injury after perinatal hypoxia‐ischemia is exacerbated in copper/zinc superoxide dismutase transgenic mice Pediatr Res 39:204–208. [DOI] [PubMed] [Google Scholar]
  • 32. Dragunow M, Preston K (1995) The role of inducible transcription factors in apoptotic nerve cell death. Brain Res Rev 21(1): 1–28. [DOI] [PubMed] [Google Scholar]
  • 33. Du C, Hu R, Csernansky CA, Hsu CY, Choi DW. (1996). Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis J Cereb Blood Flow Metab 16: 195–201. [DOI] [PubMed] [Google Scholar]
  • 34. Edwards AD, Yue X, Squier MV, Thoresen M, Cady EB, Penrice J, Cooper C, Wyatt JS, Reynolds EOR, Mehmet H. (1995). Specific inhibition of apoptosis after cerebral hypoxia‐ischaemia by moderate post‐insult hypothermia. Biochem Biophys Res Commun 217(3): 1193–1199. [DOI] [PubMed] [Google Scholar]
  • 35. Edwards AD, Yue X, Cox P, Hope PL, Azzopardi D, Squier MV, Mehmet H. (1997). Apoptosis in the brains of infants suffering intrauterine cerebral injury. Pediatr Res 42: 684–689. [DOI] [PubMed] [Google Scholar]
  • 36. Eguchi Y, Shimizu S, Tsujimoto Y (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57(10): 1835–40. [PubMed] [Google Scholar]
  • 37. Ekholm A, Asplund B, Siesjö BK (1992) Perturbation of cellular energy in complete ischemia: Relationship to dissipative ion fluxes. Exp Brain Res 90: 47–53. [DOI] [PubMed] [Google Scholar]
  • 38. Ekholm A, Katsura K, Kristián T, Lui M, Folbergrová J, Siesjö BK (1993) Coupling of cellular energy state and ion homeostasis during recovery following brain ischemia. Brain Res 604: 185–191. [DOI] [PubMed] [Google Scholar]
  • 39. Eliasson MJ, Sampei K, Mandir AS, Hum PD, Traystman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder SH, Dawson VL (1997) Poly(ADP‐ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med. 3(10): 1089–95. [DOI] [PubMed] [Google Scholar]
  • 40. Ellerby HM, Martin SJ, Ellerby LM, Naiem SS, Rabizadeh S, Salvesen GS, Casiano CA, Cashman NR, Green DR, Bredesen DE (1997) Establishment of a cell‐free system of neuronal apoptosis: comparison of premitochondrial, mitochondrial, and postmitochondrial phases. J Neurosci 17(16): 6165–78. [PMC free article] [PubMed] [Google Scholar]
  • 41. Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA (1997) Ischemie brain injury is mediated by the activation of poly (ADP‐ribose)polymerase. J Cereb Blood Flow Metab 17(11): 1143–51. [DOI] [PubMed] [Google Scholar]
  • 42. Endres M, Namura S, Shimizu‐Sasamata M, Waeber C, Zhang L, Gomezlsla T, Hyman BT, Moskowitz MA (1998) Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J Cereb Blood Flow Metab 18(3): 238–47. [DOI] [PubMed] [Google Scholar]
  • 43. Enokido Y, Hatanaka H (1993) Apoptotic cell death occurs in hippocampal neurons cultured in a high oxygen atmosphere Neurosci 57: 965–972. [DOI] [PubMed] [Google Scholar]
  • 44. Erecinska M, Silver IA (1994) Ions and energy in mammalian brain. Prog Neurobiol 43: 37–71. [DOI] [PubMed] [Google Scholar]
  • 45. Ferrer I, Tortosa A, Macaya A, Sierra A, Moreno D, Munell F, Blanco R, Squier W (1994) Evidence of nuclear DNA fragmentation following hypoxia‐ischemia in the infant rat brain, and transient forebrain ischemia in the adult gerbil. Brain Pathol 4(2): 115–22. [DOI] [PubMed] [Google Scholar]
  • 46. Ferrer I, Martin F, Serrano T, Reiriz J, Perez‐Navarro E, Alberch J, Macaya A, Planas AM (1995) Both apoptosis and necrosis occur following intrastriatal administration of excitotoxins. Acta Neuropathol Berl 90(5): 504–10. [DOI] [PubMed] [Google Scholar]
  • 47. Ferriero DM, Holtzman DM, Black SM, Sheldon RA (1996) Neonatal mice lacking neuronal nitric oxide synthase are less vulnerable to hypoxic‐ischemic injury. Neurobiol Dis 3(1): 64–71. [DOI] [PubMed] [Google Scholar]
  • 48. Fiers W, Beyaert R, Boone E, Cornelis S, Declercq W, Decoster E, Denecker G, Depuydt B, De‐Valck D, De‐Wilde G, Goossens V, Grooten J, Haegeman G, Heyninck K, Penning L, Plaisance S, Vancompernolle K, Van‐Criekinge W, Vandenabeele P, Vanden‐Berghe W, Van de Craen M, Vandevoorde V, Vercammen D (199596) TNF‐induced intracellular signaling leading to gene induction or to cytotoxicity by necrosis or by apoptosis. J Inflamm 47(1–2): 67–75. [PubMed] [Google Scholar]
  • 49. Forloni G, Chiesa R, Smiroldo S, Verga L, Salmona M, Tagliavini F, Angertetti N (1993) Apoptosis mediated neurotoxicity induced by chronic application of β‐amyloid fragment 25–35 Neurorep 4: 523–52. [DOI] [PubMed] [Google Scholar]
  • 50. Gluckman PD, Klempt N, Guan J, Mallard C, Sirimanne E, Dragunow M, Klempt M, Singh K, Williams CE, Nikolics K. (1992) A role for IGF‐1 in the rescue of CNS neurons following hypoxic‐ischemic injury Biochem Biophys Res Commun 182:593–599. [DOI] [PubMed] [Google Scholar]
  • 51. Goto K, Ishige A, Sekiguchi K, Lizuka S, Sugimoto A, Yuzurihara M, Aburada M, Hosoya E, Kogure K (1990) Effects of cycloheximide on delayed neuronal death in rat hippocampus Brain Res 534:299–302. [DOI] [PubMed] [Google Scholar]
  • 52. Gottron FJ, Ying HS, Choi DW (1997) Caspase inhibition selectively reduces the apoptotic component of oxygen‐glucose deprivation‐induced cortical neuronal cell death. Mol Cell Neurosci 9(3): 159–69. [DOI] [PubMed] [Google Scholar]
  • 53. Greenlund LJS, Deckwerth TL, Johnson EM (1995) Superoxide dismutase delays neuronal apoptosis: A role for reactive oxygen species in programmed neuronal death. Neuron 14: 303–315. [DOI] [PubMed] [Google Scholar]
  • 54. Greisen G, Pryds O (1989). Low CBF, discontinuous EEG activity, and periventricular brain injury in ill, preterm neonates. Brain Dev 11:164–168. [DOI] [PubMed] [Google Scholar]
  • 55. Grether JK, Nelson KB. (1997). Maternal infection and cerebral palsy in infants of normal birth weight. JAMA 278: 207–211. [PubMed] [Google Scholar]
  • 56. Gwag BJ, Lobner D, Koh JY, Wie MB, Choi DW (1995) Blockade of glutamate receptors unmasks neuronal apoptosis after oxygen‐glucose deprivation in vitro. Neuroscience 68(3): 615–9. [DOI] [PubMed] [Google Scholar]
  • 57. Halestrap AP, Connern CP, Griffiths EJ, Kerr PM (1997) Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol Cell Biochem 174(1–2): 167–72. [PubMed] [Google Scholar]
  • 58. Halliwell B (1992) Oxygen radicals as key mediators in neurological disease: fact or fiction Ann Neurol 32 Suppl: S10–5. [DOI] [PubMed] [Google Scholar]
  • 59. Hamilton PA, Hope PL, Cady EB, Delpy DT, Wyatt JS, Reynolds EO. (1986). Impaired energy metabolism in brains of newborn infants with increased cerebral echodensities. Lancet 1: 1242–1246. [DOI] [PubMed] [Google Scholar]
  • 60. Hanrahan D, Sargentoni J, Azzopardi D, Manji K, Cowan F, Rutherford MA, Cox IJ, Bell DJ, Bryant D, Edwards AD (1996). Cerebral metabolism within 18 hours of birth asphyxia: a proton magnetic resonance spectroscopy study. Pediatr Res 39(4): 584–590. [DOI] [PubMed] [Google Scholar]
  • 61. Hanrahan D, Cox IJ, Edwards AD, Cowan F, Sargentoni J, Bell JD, Bryant DJ, Rutherford MA, Azzopardi D. (1998). Persistent increases in cerebral lactate concentration after birth asphyxia. Pediatr Res 44: 304–311. [DOI] [PubMed] [Google Scholar]
  • 62. Hansen AJ (1985) Effect of anoxia on ion distribution in the brain Physiol Rev 65: 101–148. [DOI] [PubMed] [Google Scholar]
  • 63. Hansen AJ, Nedergaard M (1988) Brain ion homeostasis in cerebral ischemia. Neurochem Pathol 9: 195–209. [DOI] [PubMed] [Google Scholar]
  • 64. Harmon BV, Corder AM, Collins RJ, Gobe GC, Allen J, Allan DJ, Kerr JF (1990) Cell death induced in a murine mastocytoma by 42–47 degrees C heating in vitro: evidence that the form of death changes from apoptosis to necrosis above a critical heat load. Int J Radiat Biol 58(5): 845–58. [DOI] [PubMed] [Google Scholar]
  • 65. Hartley A, Stone JM, Heron C, Cooper JM, Schapira AH (1994) Complex I inhibitors induce dose‐dependent apoptosis in PC12 cells: relevance to Parkinson's disease. J Neurochem 63(5): 1987–90. [DOI] [PubMed] [Google Scholar]
  • 66. Hasegawa K, Litt L, Espanol MT, Sharp FR, Chan PH (1998) Expression of c‐fos and hsp70 mRNA in neonatal rat cerebrocortical slices during NMDA‐induced necrosis and apoptosis. Brain Res. 785(2): 262–78. [DOI] [PubMed] [Google Scholar]
  • 67. Hennet T, Bertoni G, Richter C, Peterhans E (1993) Expression of BCL‐2 protein enhances the survival of mouse fibrosarcoid cells in tumor necrosis factor‐mediated cytotoxicity. Cancer Res 53(6): 1456–60. [PubMed] [Google Scholar]
  • 68. Hennet T, Richter C, Peterhans E (1993) Tumour necrosis factor‐alpha induces superoxide anion generation in mitochondria of L929 cells Biochem J 289 (Pt 2): 587–92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Herdegen T, Skene P, Bahr M (1997) The c‐Jun transcription factor‐bipotential mediator of neuronal death, survival and regeneration. Trends Neurosci 20(5): 227–31. [DOI] [PubMed] [Google Scholar]
  • 70. Higuchi Y, Hattori H, Kume T, Tsuji M, Akaike A, Furusho K (1998) Increase in nitric oxide in the hypoxic‐ischemic neonatal rat brain and suppression by 7‐nitroindazole and aminoguanidine. Eur J Pharmacol 19: 47–49. [DOI] [PubMed] [Google Scholar]
  • 71. Hirsch T, Susin SA, Marzo I, Marchetti P, Zamzami N, Kroemer G (1998) Mitochondrial permeability transition in apoptosis and necrosis. Cell Biol Toxicol 14(2): 141–5. [DOI] [PubMed] [Google Scholar]
  • 72. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ (1990) Bcl‐2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348(6299): 334–6. [DOI] [PubMed] [Google Scholar]
  • 73. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ (1993) Bcl‐2 functions in an antioxidant pathway to prevent apoptosis Cell 75: 241–251. [DOI] [PubMed] [Google Scholar]
  • 74. Hope PL, Costello AM, Cady EB, Delpy DT, Tofts PS, Chu A, Hamilton PA, Reynolds EO, Wilkie DR. (1984). Cerebral energy metabolism studied with phosphorus NMR spectroscopy in normal and birth‐asphyxiated infants. Lancet 2: 366–370. [DOI] [PubMed] [Google Scholar]
  • 75. Hope PL, Cady EB, Chu A, Delpy DT, Gardiner RM, Reynolds EOR. (1987). Brain metabolism and intracellular pH during ischaemia and hypoxia: an in vivo 31P and 1H nuclear magnetic resonance study in the lamb. J Neurochem 49: 75–82. [DOI] [PubMed] [Google Scholar]
  • 76. Holtsberg FW, Steiner MR, Keller JN, Mark RJ, Mattson MP, Steiner SM (1998) Lysophosphatidic acid induces necrosis and apoptosis in hippocampal neuron. J Neurochem 70(1): 66–76. [DOI] [PubMed] [Google Scholar]
  • 77. Hu Y, Metzler B. and Xu Q. (1997) Discordant activation of stress‐activated protein kinases or c‐Jun NH2‐terminal protein kinases in tissues of heat stressed mice. J Biol Chem 272: 9113–9119. [DOI] [PubMed] [Google Scholar]
  • 78. Hu Y, Benedict MA, Wu D, Inohara N, Nunez G (1998) Bel‐XL interacts with Apaf‐1 and inhibits Apaf‐1‐dependent caspase‐9 activation. Proc Natl Acad Sci U S A 95(8): 4386–91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79. Huang Z, Huang P, Panahian N, Dalkara T, Fishman M, Moskowitz M (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase Science 265: 1883–1885. [DOI] [PubMed] [Google Scholar]
  • 80. Hudrome S, Palmer C, Roberts RL, Mauger D, Housman C, Towfighi J (1997) The role of neutrophils in the production of hypoxic‐ischemic brain injury in the neonatal rat. Pediatr Res 41(5): 607–616. [DOI] [PubMed] [Google Scholar]
  • 81. Iadecola C, Zhang F, Xu S, Casey R, Ross M (1995) Inducible nitric oxide synthase gene expression in brain following cerebral ischemia J Cereb Blood Flow Metab 15: 378–384. [DOI] [PubMed] [Google Scholar]
  • 82. Inder TE, Graham P, Sanderson K, Taylor BJ (1994) Lipid peroxidation as a measure of oxygen free radical damage in the very low birthweight infant. Arch Dis Child Fetal Neonat 70: F107–111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83. Jacobson MD, Weil M and Raff MC. (1997) Programmed cell death in animal development. Cell 88: 347–354. [DOI] [PubMed] [Google Scholar]
  • 84. Joashi UC, Greenwood K, Taylor DL, Kozma M, Mazarakis ND, Edwards AD, Mehmet H (1998) Poly(ADP ribose) polymerase cleavage precedes neuronal death in the hippocampus and cerebellum following injury to the developing rat forebrain. Eur J Neurosci (in press). [DOI] [PubMed] [Google Scholar]
  • 85. Jouvet P, Rustin P, Felderhoff U, Pocock J, Joashi U, Mazarakis D, Sarraf C, Edwards AD, Mehmet H (1998) Maple syrup urine disease metabolites induce apoptosis in neural cells without cytochrome c release or changes in mitochondrial membrane potential. Biochem Soc Trans 26: S341. [DOI] [PubMed] [Google Scholar]
  • 86. Kalda A, Eriste E, Vassiljev V, Zharkovsky A (1998) Medium transitory oxygen‐glucose deprivation induced both apoptosis and necrosis in cerebellar granule cells. Neurosci Lett 240(1): 21–4. [DOI] [PubMed] [Google Scholar]
  • 87. Kane DJ, Sarafian TA, Anton R, Hahn H, Butler Gralla E, Selverstone Valentine J, Ord T, Bredesen DE (1993) Bcl‐2 inhibition of neural death:decreased generation of reactive oxygen species Science 262: 1274–1277. [DOI] [PubMed] [Google Scholar]
  • 88. Kass GE, Eriksson JE, Weis M, Orrenius S, Chow SC (1996) Chromatin condensation during apoptosis requires ATP. Biochem J 318 (Pt 3): 749–52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89. Kato H, Kogure K, Liu X‐H, Araki T, Itoyama Y (1996) Progressive expression of immunomolecules on activated microglia and invading leucocytes following focal cerebral ischemia in the rat. Brain Res 734: 203–212. [PubMed] [Google Scholar]
  • 90. Kato H, Kanellopoulos GK, Matsuo S, Wu YJ, Jacquin MF, Hsu CY, Choi DW, Kouchoukos NT (1997) Protection of rat spinal cord from ischemia with dextrorphan and cyclo‐heximide: effects on necrosis and apoptosis. J Thorac Cardiovasc Surg 114(4): 609–18. [DOI] [PubMed] [Google Scholar]
  • 91. Kato H, Kanellopoulos GK, Matsuo S, Wu YJ, Jacquin MF, Hsu CY, Kouchoukos NT, Choi DW (1997) Neuronal apoptosis and necrosis following spinal cord ischemia in the ra. Exp Neurol 148(2): 464–74. [DOI] [PubMed] [Google Scholar]
  • 92. Kawasaki H., Morooka T., Shimohama S., Kimura J., Hirano T., Gotoh Y and Nishida E. (1997) Activation and involvement of p38 mitogen‐activated protein kinase in glutamate‐induced apoptosis in rat cerebellar granule cells. J Bio Chem 272: 18518–18521. [DOI] [PubMed] [Google Scholar]
  • 93. Kayahara M, Felderhoff U, Pocock J, Hughes MN, Mehmet H (1998) Nitric oxide (NO) and the nitrosonium cation (NO+) reduce mitochondrial membrane potential and triggers apoptosis in neuonal PC12 cells. Biochem Soc Trans 26: S340. [DOI] [PubMed] [Google Scholar]
  • 94. Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, Germeyer A, Steiner SM, Bruce‐Keller AJ, Hutchins JB, Mattson MP (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunctio. J Neurosci 18(2): 687–97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95. Khan S, Kayahara M, Joashi U, Mazarakis ND, Sarraf C, Edwards AD, Hughes MN, Mehmet H (1997) Differential induction of apoptosis in Swiss 3T3 cells by nitric oxide and the nitrosonium cation. J Cell Sci 110 (Pt 18): 2315–22. [DOI] [PubMed] [Google Scholar]
  • 96. Kogure K, Kato H (1993) Altered gene expression in cerebral ischemia. Stroke 24(12): 2121–7. [DOI] [PubMed] [Google Scholar]
  • 97. Koh JY, Gwag BJ, Lobner D, Choi DW (1995) Potentiated necrosis of cultured cortical neurons by neurotrophins (see comments. Science 268(5210): 573–5. [DOI] [PubMed] [Google Scholar]
  • 98. Kroemer G, Zamzami N, Susin SA (1997) Mitochondrial control of apoptosis. Immunol Today 18(1): 44–51. [DOI] [PubMed] [Google Scholar]
  • 99. Kroemer G, Dallaporta B, Resche‐Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60: 619–42. [DOI] [PubMed] [Google Scholar]
  • 100. Lazebnik Y A, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC (1994) Cleavage of poly(ADP‐ribose) polymerase by a proteinase with properties like ICE Nature 371: 346–347. [DOI] [PubMed] [Google Scholar]
  • 101. Leib SL, Kim YS, Chow LL, Sheldon RA, Tauber MG (1996) Reactive oxygen intermediates contribute to necrotic and apoptotic neuronal injury in an infant rat model of bacterial meningitis due to group B streptococci. J Clin Invest 98(11): 2632–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102. Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 85(8): 1481–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103. Leist M, Single B, Kunstle G, Volbracht C, Hentze H, Nicotera P (1997) Apoptosis in the absence of poly‐(ADP‐ribose) polymerase. Biochem Biophys Res Commun 233(2): 518–22. [DOI] [PubMed] [Google Scholar]
  • 104. Lesort M, Esclaire F, Yardin C, Hugon J (1997) NMDA induces apoptosis and necrosis in neuronal cultures. Increased APP immunoreactivity is linked to apoptotic cells. Neurosci Lett 221(2–3): 213–6. [DOI] [PubMed] [Google Scholar]
  • 105. Li F, Srinivasan A, Wang Y, Armstrong RC, Tomaselli KJ, Fritz LC (1997) Cell‐specific induction of apoptosis by microinjection of cytochrome c. Bcl‐xL has activity independent of cytochrome c release. J Biol Chem 272(48): 30299–305. [DOI] [PubMed] [Google Scholar]
  • 106. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP‐dependent formation of Apaf‐1/caspase‐9 complex initiates an apoptotic protease cascade. Cell 91(4): 479–89. [DOI] [PubMed] [Google Scholar]
  • 107. Lieberthal W, Menza SA, Levine JS (1998) Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells. Am J Physiol 274 (2 Pt 2): F315–27. [DOI] [PubMed] [Google Scholar]
  • 108. Linnik MD, Zorbrist RH, Hatfield MD (1993) Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats Stroke 24: 2002–2008. [DOI] [PubMed] [Google Scholar]
  • 109. Lipton SA (1997) NO‐related species: neuroprotection versus neurodestruction. In: Primer on Cerebrovascular Diseases, Welch KMA, Caplan LR, Reis DJ, Siesjö BK, Weir B, (Eds.), Chapter 60, pp 210–213, Academic Press; London . [Google Scholar]
  • 110. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell‐free extracts: requirement for dATP and cytochrome c. Cell 86(1): 147–57. [DOI] [PubMed] [Google Scholar]
  • 111. Ljunggren B, Schutz H, Siesjö BK (1974) Changes in energy state and acid‐base parameters of the rat brain during compression ischemia Brain Res 73: 277–289. [DOI] [PubMed] [Google Scholar]
  • 112. Lobner D, Choi DW (1996) Preincubation with protein synthesis inhibitors protects cortical neurons against oxygen‐glucose deprivation‐induced death. Neuroscience 72(2): 335–41. [DOI] [PubMed] [Google Scholar]
  • 113. Loddick SA, Rothwell NJ (1996) Neuroprotective effects of human recombinant interleukin‐1 receptor antagonist in focal cerebral ischaemia in the rat. J Cereb Blood Flow Metab 16(5): 932–40. [DOI] [PubMed] [Google Scholar]
  • 114. Loddick SA, MacKenzie A, Rothwell NJ (1996) An ICE inhibitor, z‐VAD‐DCB attenuates ischaemic brain damage in the rat. Neuroreport 7(9): 1465–8. [DOI] [PubMed] [Google Scholar]
  • 115. Loddick SA, Turnbull AV, Rothwell NJ (1998) Cerebral interleukin‐6 is neuroprotective during permanent focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 18(2): 176–9. [DOI] [PubMed] [Google Scholar]
  • 116. Loo DT, Copani A, Pike CJ, Wittemore ER, Walencewicz AJ, Cotman CW (1993) Apoptosis is induced by β‐amyloid in cultured central nervous system neurons Proc Natl Acad Sci USA 90: 7951–7955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117. Lorek A, Takei Y, Cady EB, Wyatt JS, Penrice J, Edwards AD, Peebles DM, Wylezinska M, Owen‐Rees H, Kirkbride V, Cooper C, Aldridge RF, Roth SC, Brown G, Delpy DT, Reynolds EOR. (1994). Delayed (‘secondary’) cerebral energy failure following acute hypoxia‐ischaemia in the newborn piglet: continuous 48‐hour studies by 31P magnetic resonance spectroscopy. Pediatr Res 36: 699–706. [DOI] [PubMed] [Google Scholar]
  • 118. Lowry OH, Passonneau JV, Hasselberger FK, Schultz DW (1964) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J Biol Chem 239: 18–30. [PubMed] [Google Scholar]
  • 119. MacDonald RL, Stoodley M (1998) Pathophysiology of cerebral ischemia. Neurol Med Chir Tokyo 38(1): 1–11. [DOI] [PubMed] [Google Scholar]
  • 120. MacManus JP, Linnik MD (1997) Gene expression induced by cerebral ischemia: an apoptotic perspective. J Cereb Blood Flow Metab 17(8): 815–32. [DOI] [PubMed] [Google Scholar]
  • 121. MacManus JP, Buchan AM, Hill IE, Rasquinha I, Preston E (1993) Global ischemia can cause DNA fragmentation indicative of apoptosis in rat brain. Neurosci Lett 164(1–2): 89–92. [DOI] [PubMed] [Google Scholar]
  • 122. MacManus JP, Hill IE, Huang ZG, Rasquinha I, Xue D, Buchan AM (1994) DNA damage consistent with apoptosis in transient focal ischaemic neocortex Neuroreport 5: 493–496. [DOI] [PubMed] [Google Scholar]
  • 123. Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death (see comments. Am J Pathol 146(1): 3–15. [PMC free article] [PubMed] [Google Scholar]
  • 124. Marchetti P, Castedo M, Susin SA, Zamzami N, Hirsch T, Macho A, Haeffner A, Hirsch F, Geuskens M, Kroemer G (1996) Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 184(3): 1155–60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125. Marks KA, Mallard EC, Roberts I, Williams CE, Gluckman P, Edwards AD. (1996). Nitric oxide synthase inhibition attenuates delayed vasodilation and increases injury following cerebral ischaemia in fetal sheep. Pediatr Res 40: 185–191. [DOI] [PubMed] [Google Scholar]
  • 126. Marks KA, Mallard EC, Roberts I, Williams CE, Gluckman PD, Edwards AD. (1996). Nitric oxide synthase inhibition and the delayed fall in oxidised cytochrome oxidase after cerebral ischaemia in fetal sheep. Pediatr Res 40(3): 541 (abstract). [Google Scholar]
  • 127. Marks KA, Mallard EC, Roberts I, Williams CE, Sirimanne ES, Johnston B, Gluckman PD, Edwards AD (1996) Delayed vasodilation and altered oxygenation after cerebral ischemia in fetal sheep. Pediatr Res 39: 48–54. [DOI] [PubMed] [Google Scholar]
  • 128. Maroney AC, Glicksman MA, Basma AN, Walton KM, Knight E Jr, Murphy CA, Bartlett BA, Finn JP, Angeles T Matsuda Y, Neff NT, Dionne CA (1998) Motoneuron apoptosis is blocked by CEP‐1347 (KT 7515), a novel inhibitor of the JNK signaling pathway. J Neurosci 18(1): 104–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129. Martin E, Buchli R, Ritter S, Schmid R, Largo RH, Boltshauser E, Fanconi S, Duc G, Rumpel H. (1996). Diagnostic and prognostic value of cerebral 31P magnetic resonance spectroscopy in neonates with perinatal asphyxia. Pediatr Res 40: 749–758. [DOI] [PubMed] [Google Scholar]
  • 130. Martinou JC, Dubois‐Dauphin M, Staple JK, Rodriguez I, Frankowski H, Missotten M, Albertini P, Talabot D, Catsicas S, Pietra C et‐al (1994) Overexpression of BCL‐2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13(4): 1017–30. [DOI] [PubMed] [Google Scholar]
  • 131. Marton A, Mihalik R, Bratincsak A, Adleff V, Petak I, Vegh M, Bauer PI, Krajcsi P (1997) Apoptotic cell death induced by inhibitors of energy conservation‐Bcl‐2 inhibits apoptosis downstream of a fall of ATP level. Eur J Biochem 250(2): 467–75. [DOI] [PubMed] [Google Scholar]
  • 132. Martz D, Rayos G, Schielke GP, Betz AL (1989) Allopurinol and dimethyliourea reduce brain infarction following midle cerebral artery occlusion in rats Stroke 20: 488–494. [DOI] [PubMed] [Google Scholar]
  • 133. Matsuyama T, Hata R, Tagaya M, Yamamoto Y, Nakajima T., Furuyama J, Wanaka A, Sugita M (1994) Fas antigen induction in postischemic murine brain. Brain research 657:342–346. [DOI] [PubMed] [Google Scholar]
  • 134. Maundrell K, Antonsson B, Magnenat E, Camps M, Muda M, Chabert C, Gillieron C, Boschert U, Vial‐Knecht E, Martinou JC, Arkinstall S (1997) Bcl‐2 undergoes phosphorylation by c‐Jun N‐terminal kinase/stress‐activated protein kinases in the presence of the constitutively active GTP‐binding protein Rac1. J Biol Chem 372(40): 25238–42. [DOI] [PubMed] [Google Scholar]
  • 135. McCarthy, N.J. , Whyte, M.K. , Gilbert, C.S. , & Evan, G.I. (1997) Inhibition of Ced‐3/ICE‐related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl‐2 homologue Bak. J Cell Biol 136: 215–227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136. Mehmet H, Yue X, Penrice J, Cady E, Wyatt JS, Sarraf C, Squier MV Edwards AD (1998) Relation of impaired energy metabolism to apoptosis and necrosis following transient cerebral hypoxia‐ischaemia Cell Death Diff 5: 321–329. [DOI] [PubMed] [Google Scholar]
  • 137. Mehmet H, Yue X, Squier MV, Lorek A, Cady E, Penrice J, Sarraf C, Wylezinska M, Kirkbride V, Cooper C, Brown GC, Wyatt JS, Reynolds EOR, Edwards AD (1994) Increased apoptosis in the cingulate sulcus of newborn piglets following transient hypoxia‐ischaemia is related to the degree of high energy phosphate depletion during the insult. Neurosci Lett. 181(1–2): 121–5. [DOI] [PubMed] [Google Scholar]
  • 138. Mignotte B, Vayssiere JL (1998) Mitochondria and apoptosis. Eur J Biochem 252(1): 1–15. [DOI] [PubMed] [Google Scholar]
  • 139. Mischel RE, Kim YS, Sheldon RA, Ferriero DM (1997) Hydrogen peroxide is selectively toxic to immature murine neurons in vitr. Neurosci Lett 231(1): 17–20. [DOI] [PubMed] [Google Scholar]
  • 140. Mizukami Y, Yoshida KI (1997) Tissue‐specific pattern of stress kinase activation in ischemia / reperfused heart and kidney. J Biol Chem 272: 19943–19950. [DOI] [PubMed] [Google Scholar]
  • 141. Morooka H, Bonventre JV, Pombo CM, Kyriakis JM, Force T (1995) Ischemia and reperfusion enhance ATF‐2 and c‐Jun binding to cAMP response elements and to an AP‐1 binding site from the c‐jun promoter. J Biol Chem 270(50): 30084–92. [DOI] [PubMed] [Google Scholar]
  • 142. Nagata S, Golstein P (1995) The Fas death facto. Science 267(5203): 1449–56. [DOI] [PubMed] [Google Scholar]
  • 143. Namura S, Zhu J, Fink K, Endres M, Srinivasan A, Tomaselli KJ, Yuan J, Moskowitz MA (1998) Activation and cleavage of caspase‐3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 18(10): 3659–68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144. Nelson KB, Dambrosia JM, Ting TY, Grether JK. (1996). Uncertain value of electronic fetal monitoring in predicting cerebral palsy (see comments). N Engl J Med 334: 613–618. [DOI] [PubMed] [Google Scholar]
  • 145. Obrenovitch TP, Scheller D, Matsumoto T, Tegtmeier F, Höller M, Symon L (1990) A rapid redistribution of hydrogen ions is associated with depolarization and repolarization subsequent to cerebral ischaemia/reperfusion. J Neurophysiol 64: 1125–1133. [DOI] [PubMed] [Google Scholar]
  • 146. Ochu EE, Rothwell NJ, Waters CM (1998) Caspases mediate 6‐hydroxydopamine‐induced apoptosis but not necrosis in PC12 cells. J Neurochem 70(6): 2637–40. [DOI] [PubMed] [Google Scholar]
  • 147. Okamoto M, Matsumoto M, Ohtsuki T, Taguchi A, Mikoshiba K, Yanagihara T, Kamada T (1993) Internucleosonal DNA cleavage involved in ischemia‐induced neuronal death Biochem Biophys Res Commun 196: 1356–1362. [DOI] [PubMed] [Google Scholar]
  • 148. Oppenheim RW (1991) Cell death during development of the nervous system. Ann Rev Neurosci 14: 453–501. [DOI] [PubMed] [Google Scholar]
  • 149. Packer MA, Murphy MP (1994) Peroxynitrite causes calcium efflux from mitochondria which is prevented by Cyclosporin A. FEBS Lett 345(2–3): 237–40. [DOI] [PubMed] [Google Scholar]
  • 150. Palmer C, Roberts RL (1991) Reduction of perinatal brain damage with oxypurinol treatment after hypoxic‐ischemic injury. Pediatr Res 29: 362A. 1906595 [Google Scholar]
  • 151. Palmer C, Brucklacher RM, Christensen MA, Vannucci RC (1990) Carbohydrate and energy metabolism during the evolution of hypoxic‐ischemic brain damage in the immature rat. J Cereb Blood Flow Metab 10: 227–235. [DOI] [PubMed] [Google Scholar]
  • 152. Palmer C, Vannucci RC, Towfighi J (1990) Reduction of perinatal hypoxic‐ischemic brain damage with allopurinol Pediatr Res 27: 332–336. [DOI] [PubMed] [Google Scholar]
  • 153. Palmer C, Roberts RL, Towfighi J (1993) Allopurinol administered after inducing hypoxia‐ischemia reduces brain inury in 7‐day old rats. Pediatr Res 33: 405–411. [DOI] [PubMed] [Google Scholar]
  • 154. Palmer C, Horrell L, Roberts RL (1994) Inhibition of nitric oxide synthase after cerebral hypoxia ischaemia recudces brain swelling in neonatal rats: a dose response study. Pediatr Res 35: 385A. [Google Scholar]
  • 155. Palmer C, Roberts RL, Bero C (1994) Deferoxamine postreatment reduces ischemic brain injury in neonatal rats Stroke 25: 1039–1045. [DOI] [PubMed] [Google Scholar]
  • 156. Palomba L, Sestili P, Cattabeni F, Azzi A, Cantoni O (1996) Prevention of necrosis and activation of apoptosis in oxidatively injured human myeloid leukemia U937 cells. FESS Lett 390(1): 91–4. [DOI] [PubMed] [Google Scholar]
  • 157. Pan G, O'Rourke K, Dixit VM (1998) Caspase‐9, Bcl‐XL, and Apaf‐1 form a ternary complex. J Biol Chem 273(10): 5841–5. [DOI] [PubMed] [Google Scholar]
  • 158. Pang Z, Geddes JW (1997) Mechanisms of cell death induced by the mitochondrial toxin 3‐nitropropionic acid: acute excitotoxic necrosis and delayed apoptosis. J Neurosci 17(9): 3064–73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159. Papassotiropoulos A, Ludwig M, Naib Majani W, Rao GS (1996) Induction of apoptosis and secondary necrosis in rat dorsal root ganglion cell cultures by oxidized low density lipoprotein. Neurosci Lett 209(1): 33–6. [DOI] [PubMed] [Google Scholar]
  • 160. Penrice J, Cady E, Lorek A, Wylezinska M, Amess P, Aldridge R, Stewart A, Wyatt JS, Reynolds EOR. (1996). Proton magnetic resonance spectroscopy of the brain in normal preterm and term infants, and early changes after perinatal hypoxia‐ischaemia. Pediatr Res 40: 6–14. [DOI] [PubMed] [Google Scholar]
  • 161. Penrice J, Amess P, Punwani S, Wylezinska M, Tyszczuk L, D'Souza P, Edwards AD, Cady E, Wyatt JS, Reynolds EOR. (1997). Magnesium sulphate after transient hypoxia‐ischaemia fails to prevent delayed cerebral energy failure in the newborn piglet. Pediatr Res 41: 443–449. [DOI] [PubMed] [Google Scholar]
  • 162. Penrice J, Lorek A, Cady EB, Amess P, Wylezinska M, Cooper CE, D'Souza P, Brown GC, Kirkbride V, Edwards AD, Wyatt JS, Reynolds EOR. (1997). Proton magnetic resonance spectroscopy of the brain during acute hypoxia‐ischemia and delayed cerebral energy failure in the newborn piglet. Pediatr Res 41: 795–802. [DOI] [PubMed] [Google Scholar]
  • 163. Perez‐Velazquez JL, Frantseva MV, Carlen PL (1997) In vitro ischemia promotes glutamate‐mediated free radical generation and intracellular calcium accumulation in hippocampal pyramidal neurons. J Neurosci 17(23): 9085–94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164. Petit PX, Susin SA, Zamzami N, Mignotte B, Kroemer G (1996) Mitochondria and programmed cell death: back to the future. FEBS Lett 396(1): 7–13. [DOI] [PubMed] [Google Scholar]
  • 165. Petit PX, Goubern M, Diolez P, Susin SA, Zamzami N, Kroemer G (1998) Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: the impact of irreversible permeability transition. FEBS Lett 426(1): 111–6. [DOI] [PubMed] [Google Scholar]
  • 166. Polla BS, Kantengwa S, Francois D, Salvioli S, Franceschi C, Marsac C, Cossarizza A (1996) Mitochondria are selective targets for the protective effects of heat shock against oxidative injury. Proc Natl Acad Sci USA 93(13): 6458–63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167. Portera‐Cailliau C, Price DL, Martin LJ (1997) Non‐NMDA and NMDA receptor‐mediated excitotoxic neuronal deaths in adult brain are morphologically distinct: further evidence for an apoptosis‐necrosis continuum. J Comp Neurol 378(1): 88–104. [PubMed] [Google Scholar]
  • 168. Pryds O, Greisen G, Lou H, Friis Hansen B. (1990). Vasoparalysis associated with brain damage in asphyxiated term infants. J Pediatr 117: 119–125. [DOI] [PubMed] [Google Scholar]
  • 169. Raffray M, Cohen GM (1997) Apoptosis and necrosis in toxicology: a continuum or distinct modes of cell death. Pharmacol Ther 75(3): 153–77. [DOI] [PubMed] [Google Scholar]
  • 170. Ratan RR, Murphy TH, Baraban JM (1994) Oxidative stress induces apoptosis in embryonic cortical neuron. J Neurochem 62(1): 376–9. [DOI] [PubMed] [Google Scholar]
  • 171. Reddy K, Mallard C, Guan J, Marks K, Bennet L, Gunning M, Gunn A, Gluckman P, Williams C. (1998). Maturational change in the cortical response to hypoperfusion injury in the fetal sheep. Pediatr Res 43: 674–682. [DOI] [PubMed] [Google Scholar]
  • 172. Robertson NJ, Cox IJ, Counsell S, Cowan F, Azzopardi D, Edwards AD (1998) Persistent lactate following perinatal hypoxic‐ischaemic encephalopathy and its relationship to energy failure studied by magnetic resonance spectroscopy. Early Human Dev 5: 73 (abstract). [Google Scholar]
  • 173. Rosenbaum DM, Michaelson M, Batter DK, Doshi P, Kessler JA (1994) Evidence for hypoxia‐induced, programmed cell death of cultured neurons. Ann Neurol 36(6): 864–70. [DOI] [PubMed] [Google Scholar]
  • 174. Ross ME (1996) Cell division and the nervous system: regulating the cycle from neural differentiation to death. Trends Neurosci 19(2): 62–8. [DOI] [PubMed] [Google Scholar]
  • 175. Roth SC, Edwards AD, Cady EB, Delpy DT, Wyatt JS, Azzopardi D, Baudin J, Townsend J, Stewart AL, Reynolds EOR. (1992). Relation between cerebral oxidative metabolism following birth asphyxia and neurodevelopmental outcome and brain growth at one year. Dev Med Child Neurol 34: 285–295. [DOI] [PubMed] [Google Scholar]
  • 176. Roth SC, Baudin J, Cady E, Johal K, Townsend JP, Wyatt JS, Reynolds EO, Stewart AL (1997). Relation of deranged neonatal cerebral oxidative metabolism with neurodevelopmental outcome and head circumference at 4 years. Dev Med Child Neurol 39: 718–725. [DOI] [PubMed] [Google Scholar]
  • 177. Roulston A, Reinhard C, Amiri P, Williams LT (1998) Early activation of c‐Jun N‐terminal kinase and p38 kinase regulate cell survival in response to tumor necrosis factor alpha. J Biol Chem 273: 10232–10239. [DOI] [PubMed] [Google Scholar]
  • 178. Rutherford MA, Pennock J, Counsell S, Mercuri E, Cowan F, Dubowitz L, Edwards AD. (1998). Abnormal magnetic resonance signal in the internal capsule predicts poor outcome in infants with hypoxic‐ischaemic encephalopathy. Pediatr 102: 323–328. [DOI] [PubMed] [Google Scholar]
  • 179. Saini KS, Thompson C, Winterford CM, Walker NI, Cameron DP (1996) Streptozotocin at low doses induces apoptosis and at high doses causes necrosis in a murine pancreatic beta cell line, INS‐1. Biochem Mol Biol Int. 39(6): 1229–36. [DOI] [PubMed] [Google Scholar]
  • 180. Sata N, Klonowski, Stumpe H, Han B, Haussinger D, Niederau C (1997) Menadione induces both necrosis and apoptosis in rat pancreatic acinar AR4–2J cells. Free Radic Biol Med 23(6): 844–50. [DOI] [PubMed] [Google Scholar]
  • 181. Saugstad OD (1996) Mechanisms of tissue injury by oxygen radicals: implications for neonatal disease Acta Paediatr 85: 1–4. [DOI] [PubMed] [Google Scholar]
  • 182. Scarlett JL, Murphy MP (1997) Release of apoptogenic proteins from the mitochondrial intermembrane space during the mitochondrial permeability transition. FEBS Lett 418(3): 282–6. [DOI] [PubMed] [Google Scholar]
  • 183. Scott RJ, Hegyi L (1997) Cell death in perinatal hypoxic‐ischaemic brain injury. Neuropathol Appl Neurobiol 23(4): 307–14. [PubMed] [Google Scholar]
  • 184. Seaton TA, Cooper JM, Schapira AH (1997) Free radical scavengers protect dopaminergic cell lines from apoptosis induced by complex I inhibitors. Brain Res 777(1–2): 110–8. [DOI] [PubMed] [Google Scholar]
  • 185. Siesjö BK (1981) Cell damage in the brain: A speculative synthesis J Cereb Blood Flow Metab 1: 155–185. [DOI] [PubMed] [Google Scholar]
  • 186. Siesjö BK, Folbergrová J, MacMillan V (1972) The effect of hypercapnia upon intracellular pH in the brain, evaluated by the bicarbonate‐carbonic acid method and from the creatine phosphokinase equilibrium J Neurochem 19: 2483–2495. [DOI] [PubMed] [Google Scholar]
  • 187. Silverstein F, Barks J, Hagan P, Liu X, Ivacko J, Szaflarski J (1997) Cytokines and perinatal brain injury. Neurochem Int 30(4–5):375–383. [DOI] [PubMed] [Google Scholar]
  • 188. Skulachev VP (1996) Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide‐producing mitochondria and cell. FEBS Lett 397(1): 7–10. [DOI] [PubMed] [Google Scholar]
  • 189. Skulachev VP (1998) Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett 423(3): 275–80. [DOI] [PubMed] [Google Scholar]
  • 190. Sloviter RS, Dean E, Sollas AL, Goodman JH (1996) Apoptosis and necrosis induced in different hippocampal neuron populations by repetitive perforant path stimulation in the rat. J Comp Neurol 366(3): 516–33. [DOI] [PubMed] [Google Scholar]
  • 191. Sutherland CL, Heath AW, Pelech SL, Young PR, Gold MR (1996) Differential activation of the ERK, JNK and p38 mitogen‐activated protein kinases by CD40 and the B‐cell antigen receptor. J Immunol 57: 3381–3390. [PubMed] [Google Scholar]
  • 192. Szaflarski J, Burtrum D, Silverstein F (1995) Cerebral hypoxia‐ischemia stimulates cytokine gene expression in perinatal rats. Stroke 26(6): 1093–1100. [DOI] [PubMed] [Google Scholar]
  • 193. Takahashi K, Greenberg JH, Jackson P, Maclin K, Zhang J (1997) Neuroprotective effects of inhibiting poly(ADP‐ribose) synthetase on focal cerebral ischemia in rats. J Cereb Blood Flow Metab 17(11): 1137–42. [DOI] [PubMed] [Google Scholar]
  • 194. Takashima S, Kuruta H, Mito T, Houdou S, Konomi H, Yao R, Onodera K (1990) Immunohistochemistry of superoxide dismutase‐1 in developing human brai. Brain Dev 12(2): 211–3. [DOI] [PubMed] [Google Scholar]
  • 195. Tan S, Wood M, Maher P (1998) Oxidative stress induces a form of programmed cell death with characteristics of both apoptosis and necrosis in neuronal cell. J Neurochem 71(1): 95–105. [DOI] [PubMed] [Google Scholar]
  • 196. Tan WK, Williams CE, Gunn AJ, Mallard CE, Gluckman PD (1992) Suppression of postischemic epileptiform activity with MK‐801 improves neural outcome in fetal sheep Ann Neurol 32:677–682. [DOI] [PubMed] [Google Scholar]
  • 197. Tan WK, Williams CE, During MJ, Mallard CE, Gunning Ml, Gunn AJ, Gluckman PD. (1996). Accumulation of cytotoxins during the development of seizures and edema after hypoxic‐ischaemic injury in late gestation fetal sheep. Pediatric Research 39(5): 791–797. [DOI] [PubMed] [Google Scholar]
  • 198. Tang DG, Li L, Zhu Z, Joshi B (1998) Apoptosis in the absence of cytochrome c accumulation in the cytosol. Biochem Biophys Res Commun. 242(2): 380–4. [DOI] [PubMed] [Google Scholar]
  • 199. Terada LS, Willingham IR, Rosandich ME, Leff JA, Kindt GW, Repine JE (1991) Generation of superoxide by brain endothelial cell xanthine oxidase J Cell Physiol 148: 191–196. [DOI] [PubMed] [Google Scholar]
  • 200. Thoresen M, Penrice J, Lorek A, Cady E, Wylezinska M, Kirkbride V, Cooper C, Brown GC, Edwards AD, Wyatt JS, Reynolds EOR (1995) Mild hypothermia following severe transient hypoxia‐ischaemia ameliorates delayed cerebral energy failure in the newborn piglet. Pediatr Res 37: 667–670. [DOI] [PubMed] [Google Scholar]
  • 201. Thornton JS, Ordidge RJ, Penrice J, Cady E, Amess PN, Punwani S, Clemence M, Wyatt JS. (1998). Temporal and anatomical variations of brain water apparent diffusion coefficient in perinatal cerebral hypoxic‐ischemic injury: relationships to cerebral energy metabolism. Mag Res Med 39: 920–927. [DOI] [PubMed] [Google Scholar]
  • 202. Trump BF, Berezesky IK, Chang SH, Phelps PC (1997) The pathways of cell death: oncosis, apoptosis, and necrosis. Toxicol Pathol 25(1): 82–8. [DOI] [PubMed] [Google Scholar]
  • 203. Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB (1997) Bcl‐xL regulates the membrane potential and volume homeostasis of mitochondria (see comments. Cell 91(5): 627–37. [DOI] [PubMed] [Google Scholar]
  • 204. Vannucci RC, Hellmann J, Hernandez MJ, Vannucci SJ (1980) Lactic acid as an energy source in perinatal brain. In: Cerebral metabolsim and Neural Function (Passonneau JV, Hawkins RA, Lust WD, Welsh FA eds) pp 264–270 Baltimore Williams and Wilkins Baltimore. [Google Scholar]
  • 205. Vannucci RC, Yager JY, Vannucci SJ (1994) Cerebral glucose and energy utilization during the evolution of hypoxic‐ischemic brain damage in the immature rat J Cereb Blood Flow Metab 14: 279–288. [DOI] [PubMed] [Google Scholar]
  • 206. Villalba M, Bockaert J, Journot L (1997) Concomitant induction of apoptosis and necrosis in cerebellar granule cells following serum and potassium withdrawal. Neuroreport 8(4): 981–5. [DOI] [PubMed] [Google Scholar]
  • 207. Vogt M, Bauer MK, Ferrari D, Schulze‐Osthoff K (1998) Oxidative stress and hypoxia/reoxygenation trigger CD95 (APO‐1/Fas) ligand expression in microglial cells. FEBS Lett 429(1): 67–72. [DOI] [PubMed] [Google Scholar]
  • 208. Volpe JJ. (1994). Hypoxic‐ischemic encephalopathy: neuropathology and pathogenesis. In: Neurology of the Newborn, Volpe JJ, (Ed.) pp 279–314, W.B. Saunders, Philadelphia . [Google Scholar]
  • 209. Walton KM, DiRocco R, Barlett BA, Koury E, Marcy VR, Jarvis B, Schaefer EM and Bhat RV (1998) Activation of p38(MAPK) in microglia after ischemia. J Neurochem 70: 1764–1767. [DOI] [PubMed] [Google Scholar]
  • 210. Wang Y, Su B, Sah VP, Heller Brown J, Han J, Chien KR (1998) Cardiac hypertrophy‐induced by mitogen‐activated protein kinase 7, a specific activator for c‐Jun NH2‐terminal kinase in ventricular muscle cells. J. Biol Chem 273: 5423–5426. [DOI] [PubMed] [Google Scholar]
  • 211. Wang Y, Huang S, Sah VP, Ross J Jr, Heller Brown J, Han J Chien KR (1998) Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen‐activated protein kinase family. J Biol Chem 273, 2161–2168. [DOI] [PubMed] [Google Scholar]
  • 212. Wang ZQ, Stingl L, Morrison C, Jantsch M, Los M, Schulze‐Osthoff K, Wagner EF (1997) PARP is important for genomic stability but dispensable in apoptosis. Genes Dev 11(18): 2347–58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 213. Watson AJ, Askew JN, Benson RS (1995) Poly(adenosine diphosphate ribose) polymerase inhibition prevents necrosis induced by H2O2 but not apoptosis. Gastroenterology 109(2): 472–82. [DOI] [PubMed] [Google Scholar]
  • 214. Welsh FA, Vannucci RC, Brierley JB (1982) Columar alterations of NNADH flourescence during hypoxia‐ischemia in immature rat brain J Cereb Blood Flow Metab 2: 221–228. [DOI] [PubMed] [Google Scholar]
  • 215. Williams C, Gunn A, Mallard C, Gluckman P. (1992). Outcome after ischemia in developing sheep brain:an electroencephalographic and histological study. Ann Neurol 31: 14–21. [DOI] [PubMed] [Google Scholar]
  • 216. Williams GD, Palmer C, Heitjan DF, Smith MB (1992) Allopurinol preserves cerebral energy metabolism during perinatal hypoxia‐ischemia: a 31P NMR study in unanesthetized immature rats Neurosci Lett 144: 103–6. [DOI] [PubMed] [Google Scholar]
  • 217. Wolvetang EJ, Johnson KL, Krauer K, Ralph SJ, Linnane AW (1994) Mitochondrial respiratory chain inhibitors induce apoptosis. FEBS Lett 339(1–2): 40–4. [DOI] [PubMed] [Google Scholar]
  • 218. Wood KA, Youle RJ (1994) Apoptosis and free radicals. Ann NY Acad Sci 738: 400–7. [DOI] [PubMed] [Google Scholar]
  • 219. Wyatt JS, Cope M, Delpy DT, Richardson C, Edwards AD, Wray SC, Reynolds EOR. (1990). Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy. J Appl Physiol 68: 1086–1091. [DOI] [PubMed] [Google Scholar]
  • 220. Wyatt JS, Edwards AD, Cope M, Delpy DT, McCormick DC, Potter A, Reynolds EOR. (1991). Response of cerebral blood volume to changes in arterial carbon dioxide tension in preterm and term infants. Pediatr Res 29: 553–557. [DOI] [PubMed] [Google Scholar]
  • 221. Yager JY, Brucklacher RM, Vannucci RC (1991) Cerebral oxidative metabolism and redox state during hypoxia‐ischemia and early recovery in the immature rat. Am J Physiol 261: H1102–H1108. [DOI] [PubMed] [Google Scholar]
  • 222. Yager JY, Brucklacher RM, Vannucci RC. (1992). Cerebral energy metabolism during hypoxia‐ischaemia and early recovery in immature rats. Am J Physiol Heart Circ Physiol 262: H672–H677. [DOI] [PubMed] [Google Scholar]
  • 223. Yang NN, Venugopalan M, Hardikar S, Glasebrook A (1997) Correction: raloxifene response needs more than an element (letter) Science 275(5304): 1249. [DOI] [PubMed] [Google Scholar]
  • 224. Yoon BH, Romero R, Yang SH, Jun JK, Kim IO, Choi JH, Syn HC. (1996). Interleukin‐6 concentrations in umbilical cord plasma are elevated in neonates with white matter lesions associated with periventricular leukomalacia. Am J Obstet Gynecol 174: 1433–1440. [DOI] [PubMed] [Google Scholar]
  • 225. Yoon BH, Jun JK, Romero R, Park KH, Gomez R, Choi JH, Kim IO. (1997). Amniotic fluid inflammatory cytokines (interleukin‐6, interleukin‐1beta, and tumor necrosis factor‐alpha), neonatal brain white matter lesions, and cerebral palsy. Am J Obstet Gynecol 177: 19–26. [DOI] [PubMed] [Google Scholar]
  • 226. Yoon BH, Kim CJ, Romero R, Jun JK, Park KH, Choi ST, Chi JG. (1997). Experimentally induced intrauterine infection causes fetal brain white matter lesions in rabbits. Am J Obstet Gynecol 177: 797–802. [DOI] [PubMed] [Google Scholar]
  • 227. Yoon BH, Romero R, Kim CJ, Koo JN, Choe G, Syn HC, Chi JG. (1997). High expression of tumor necrosis factor‐alpha and interleukin‐6 in periventricular leukomalacia. Am J Obstet Gynecol 177: 406–411. [DOI] [PubMed] [Google Scholar]
  • 228. Yue X, Mehmet H, Penrice J, Cooper C, Cady E, Wyatt JS, Reynolds EO, Edwards AD, Squier MV (1997) Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia‐ischaemi. Neuropathol Appl Neurobiol 23(1): 16–25. [PubMed] [Google Scholar]
  • 229. Zhang J, Dawson VL, Dawson TM, Snyder SH (1994) Nitric oxide activation of poly(ADP‐ribose) synthetase in neurotoxicity Science 263:687–689. [DOI] [PubMed] [Google Scholar]
  • 230. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf‐1, a human protein homologous to C. elegans CED‐4, participates in cytochrome c‐dependent activation of cas‐pase‐3 (see comments. Cell 90(3): 405–13. [DOI] [PubMed] [Google Scholar]
  • 231. Zychlinsky A, Zheng LM, Liu CC, Young JD (1991) Cytolytic lymphocytes induce both apoptosis and necrosis in target cells. J Immunol. 146(1): 393–400. [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES