Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;9(1):119–131. doi: 10.1111/j.1750-3639.1999.tb00214.x

Oxidative Stress in Brain Ischemia

Seth Love 1,
PMCID: PMC8098220  PMID: 9989455

Abstract

Brain ischemia initiates a complex cascade of metabolic events, several of which involve the generation of nitrogen and oxygen free radicals. These free radicals and related reactive chemical species mediate much of damage that occurs after transient brain ischemia, and in the penumbral region of infarcts caused by permanent ischemia. Nitric oxide, a water‐ and lipid‐soluble free radical, is generated by the action of nitric oxide synthases. Ischemia causes a surge in nitric oxide synthase 1 (NOS 1) activity in neurons and, possibly, glia, increased NOS 3 activity in vascular endothelium, and later an increase in NOS 2 activity in a range of cells including infiltrating neutrophils and macrophages, activated microglia and astrocytes. The effects of ischemia on the activity of NOS 1, a Ca2+‐dependent enzyme, are thought to be secondary to reversal of glutamate reuptake at synapses, activation of NMDA receptors, and resulting elevation of intracellular Ca2+. The up‐regulation of NOS 2 activity is mediated by transcriptional inducers. In the context of brain ischemia, the activity of NOS 1 and NOS 2 is broadly deleterious, and their inhibition or inactivation is neuroprotective. However, the production of nitric oxide in blood vessels by NOS 3, which, like NOS 1, is Ca2+‐dependent, causes vasodilatation and improves blood flow in the penumbral region of brain infarcts. In addition to causing the synthesis of nitric oxide, brain ischemia leads to the generation of superoxide, through the action of nitric oxide synthases, xanthine oxidase, leakage from the mito‐chondrial electron transport chain, and other mechanisms. Nitric oxide and superoxide are themselves highly reactive but can also combine to form a highly toxic an ion, peroxynitrite. The toxicity of the free radicals and peroxynitrite results from their modification of macromolecules, especially DNA, and from the resulting induction of apoptotic and necrotic pathways. The mode of cell death that prevails probably depends on the severity and precise nature of the ischemie injury. Recent studies have emphasized the role of peroxynitrite in causing singlestand breaks in DNA, which activate the DNA repair protein poly(ADP‐ribose) polymerase (PARP). This catalyzes the cleavage and thereby the consumption of NAD+, the source of energy for many vital cellular processes. Over‐activation of PARP, with resulting depletion of NAD+, has been shown to make a major contribution to brain damage after transient focal ischemia in experimental animals. Neuronal accumulation of poly(ADP‐ribose), the end‐product of PARP activity has been demonstrated after brain ischemia in man. Several therapeutic strategies have been used to try to prevent oxidative damage and its consequences after brain ischemia in man. Although some of the drugs used in early studies were ineffective or had unacceptable side effects, other trials with antioxidant drugs have proven highly encouraging. The findings in recent animal studies are likely to lead to a range of further pharmacological strategies to limit brain injury in stroke patients.

Full Text

The Full Text of this article is available as a PDF (185.8 KB).

References

  • 1. Amato A, Barbour B, Szatkowski M, Attwell D (1994) Counter‐transport of potassium by the glutamate uptake carrier in glial cells isolated from the tiger salamander retina. J Physiol Lond 479: 371–380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Arnet UA, McMillan A, Dinerman JL, Ballermann B, Lowenstein CJ (1996) Regulation of endothelial nitricoxide synthase during hypoxia. J Biol Chem 271: 15069–15073. [DOI] [PubMed] [Google Scholar]
  • 3. Arstall MA, Yang J, Stafford I, Betts WH, Horowitz JD (1995) N‐acetylcysteine in combination with nitroglycerin and streptokinase for the treatment of evolving acute myocardial infarction. Safety and biochemical effects. Circulation 92: 2855–2862. [DOI] [PubMed] [Google Scholar]
  • 4. Barbour B, Brew H, Attwell D (1988) Electrogenic glutamate uptake is activated by intracellular potassium. Nature 335: 433–435. [DOI] [PubMed] [Google Scholar]
  • 5. Beasley TC, Bari F, Thore C, Thrikawala N, Louis T, Busija D (1998) Cerebral ischemia/reperfusion increases endothelial nitric oxide synthase levels by an indomethacin‐sensitive mechanism. J Cereb Blood Flow Metab 18: 88–96. [DOI] [PubMed] [Google Scholar]
  • 6. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271: C1424–C1437. [DOI] [PubMed] [Google Scholar]
  • 7. Beetsch JW, Park TS, Dugan LL, Shah AR, Gidday JM (1998) Xanthine oxidase‐derived superoxide causes reoxygenation injury of ischemie cerebral endothelial cells. Brain Res 786: 89–95. [DOI] [PubMed] [Google Scholar]
  • 8. Bloch KD, Wolfram JR, Brown DM, Roberts JD Jr, Zapol DG, Lepore JJ, Filippov G, Thomas JE, Jacob HJ, Bloch DB (1995) Three members of the nitric oxide synthase II gene family (NOS2A, NOS2B, and NOS2C) colocalize to human chromosome 17. Genomics 27: 526–530. [DOI] [PubMed] [Google Scholar]
  • 9. Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N‐methyl‐D‐aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 92: 7162–7166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Brown GC (1977) Nitric oxide inhibition of cytochrome oxidase and mitochondrial respiration: implications for inflammatory, neurodegenerative and ischaemic pathologies. Mol Cell Biochem 174:189–192. [PubMed] [Google Scholar]
  • 11. Caggiano AO, Kraig RP (1998) Neuronal nitric oxide synthase expression is induced in neocortical astrocytes after spreading depression. J Cereb Blood Flow Metab 18: 75–87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Chen J, Jin K, Chen M, Pei W, Kawaguchi K, Greenberg DA, Simon RP (1997) Early detection of DNA strand breaks in the brain after transient focal ischemia: implications for the role of DNA damage in apoptosis and neuronal cell death. J Neurochem 69: 232–245. [DOI] [PubMed] [Google Scholar]
  • 13. Chen J, Nagayama T, Jin K, Stetler RA, Zhu RL, Graham SH, Simon RP (1998) Induction of caspase‐3‐like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci 18:4914–4928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Chopp M, Li Y (1996) Apoptosis in focal cerebral ischemia. Ada Neurochir 66(suppl): 21–26. [DOI] [PubMed] [Google Scholar]
  • 15. Coppola S, Nosseri C, Maresca V, Ghibelli L (1995) Different basal NAD levels determine opposite effects of poly(ADP‐ribosyl)polymerase inhibitors on H2O2‐induced apoptosis. Exp Cell Res 221: 462–469. [DOI] [PubMed] [Google Scholar]
  • 16. Crow JP, Beckman JS (1996) The importance of superoxide in nitric oxide‐dependent toxicity: evidence for peroxynitrite‐mediated injury. Adv Exp Med Biol 387: 147–161. [DOI] [PubMed] [Google Scholar]
  • 17. Dalkara T, Moskowitz MA (1994) The complex role of nitric oxide in the pathophysiology of focal cerebral ischemia. Brain Pathol 1994; 49–57. [DOI] [PubMed] [Google Scholar]
  • 18. Dalkara T, Moskowitz MA (1997) Neurotoxic and neuroprotective roles of nitric oxide in cerebral ischemia. Int Rev Neurobiol 40: 319–336. [DOI] [PubMed] [Google Scholar]
  • 19. Dawson TM, Dawson VL (1995) Nitric oxide: actions and pathological roles. Neuroscientist 1:7–18. [Google Scholar]
  • 20. Dawson TM, Snyder SH (1994) Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 14:5147–5149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. De Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A, LeMeur M, Walztinger C, Chambon P, De Murcia G (1997) Requirement of poly(ADP‐ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA 94: 7303–7307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Delaney CA, Green IC, Lowe JE, Cunningham JM, Butler AR, Renton L, D'Costa I, Green MH (1997) Use of the comet assay to investigate possible interactions of nitric oxide and reactive oxygen species in the induction of DNA damage. Mutation Res 375: 137–146. [DOI] [PubMed] [Google Scholar]
  • 23. Desmarais Y, Menard L, Lagueux J, Poirier GG (1991) Enzymological properties of poly(ADP‐ribose)polymerase: characterization of automodification sites and NADase activity. Biochim Biophys Acta 1078:179–186. [DOI] [PubMed] [Google Scholar]
  • 24. Dinerman JL, Dawson TM, Schell MJ, Snowman A, Snyder SH (1994) Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implications for synaptic plasticity. Proc Natl Acad Sci USA. 91: 4214–4218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Doyle CA, Slater P (1997) Localization of neuronal and endothelial nitric oxide synthase isoforms in human hippocampus. Neuroscience 76: 387–395. [DOI] [PubMed] [Google Scholar]
  • 26. Du C, Hu R, Csernansky CA, Hsu CY, Choi DW (1996) Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis J Cereb Blood Flow Metab 16: 195–201. [DOI] [PubMed] [Google Scholar]
  • 27. Dugan LL, Sensi SL, Canzoniero LM, Handran SD, Rothman SM, Lin TS, Goldberg MR Choi DW (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N‐methyl‐D‐aspartate. J Neurosci 15: 6377–6388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Duriez PJ, Shah GM (1997) Cleavage of poly(ADP‐ribose) polymerase: a sensitive parameter to study cell death. Biochem Cell Biol 75: 337–349. [PubMed] [Google Scholar]
  • 29. Eiserich JP, Cross CE, Jones AD, Halliwell B, van der Vliet A (1996) Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide‐mediated protein modification. J Biol Chem 271: 19199–19208. [DOI] [PubMed] [Google Scholar]
  • 30. Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, van der Vliet A (1998) Formation of nitric oxide derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391: 393–397. [DOI] [PubMed] [Google Scholar]
  • 31. Eki T (1994) Poly (ADP‐ribose) polymerase inhibits DNA replication by human replicative DNA polymerase a, 5 and e in vitro. FEBS Lett 356:261–266. [DOI] [PubMed] [Google Scholar]
  • 32. Eliasson MJ, Blackshaw S, Schell MJ, Snyder SH (1997) Neuronal nitric oxide synthase alternatively spliced forms: prominent functional localizations in the brain. Proc Natl Acad Sci USA 94: 3396–3401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Eliasson MJL, Sampei K, Mandir AS, Hum PD, Traystman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder SH, Dawson VL (1997) Poly(ADP‐ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nature Med 3: 1089–1095. [DOI] [PubMed] [Google Scholar]
  • 34. Elliott RB, Pilcher CC, Fergusson DM, Stewart AW (1996) A population based strategy to prevent insulin‐dependent diabetes using nicotinamide. J Pediatr Endocrinol Metab 9: 501–509. [DOI] [PubMed] [Google Scholar]
  • 35. Ellis JA, Cross AR, Jones OT (1989) Studies on the electron‐transfer mechanism of the human neutrophil NADPH oxidase. Biochem J 262: 575–579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA (1997) Ischemie brain injury is mediated by the activation of poly(ADP‐ribose)polymerase. J Cereb Blood Flow Metab 17: 1143–1151. [DOI] [PubMed] [Google Scholar]
  • 37. Endres M, Namura S, Shimizu‐Sasamata M, Waeber C, Zhang L, Gomez‐lsla T, Hyman BT, Moskowitz MA (1998) Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J Cereb Blood Flow Metab 18: 238–247. [DOI] [PubMed] [Google Scholar]
  • 38. Epe B, Ballmaier D, Adam W, Grimm GN, Saha‐Moller CR (1996) Photolysis on N‐hydroxpyridinethiones: a new source of hydroxyl radicals for the direct damage of cellfree and cellular DNA. Nucleic Acids Res 24: 1625–1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Epe B, Ballmaier D, Roussyn I, Briviba K, Sies H (1996) DNA damage by peroxynitrite characterized with DNA repair enzymes. Nucleic Acids Res 24: 4105–4110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Epe B, Pflaum M, Haring M, Hegler J, Rudiger H (1993) Use of repair endonucelases to characterize DNA damage induced by reactive oxygen species in cellular and cell‐free systems. ToxicoI Lett 67: 57–72. [DOI] [PubMed] [Google Scholar]
  • 41. Escott KJ, Beech JS, Haga KK, Williams SC, Meldrum BS, Bath PM (1998) Cerebroprotective effect of the nitric oxide synthase inhibitors, 1‐(2‐trifluoromethylphenyl) imidazole and 7‐nitro indazole, after transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 18: 281–287. [DOI] [PubMed] [Google Scholar]
  • 42. Fernandes‐Alnemri T, Litwack G, Alnemri ES (1994) CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced‐3 and mammalian interleukin‐1 beta‐converting enzyme. J Biol Chem 269: 30761–30764. [PubMed] [Google Scholar]
  • 43. Fivenson DP, Kimbrough TL (1997) Lichen planus pemphigoides: combination therapy with tetracycline and nicotinamide. J Am Acad Dermatol 36: 638–640. [DOI] [PubMed] [Google Scholar]
  • 44. Gale EA (1996) Molecular mechanisms of β‐cell destruction in IDDM: the role of nicotinamide. Hormone Res 45 Suppl 1: 39–43. [PubMed] [Google Scholar]
  • 45. Garthwaite J, Boulton CI (1995) Nitric oxide signaling in the central nervous system. Annu Rev Physiol 57: 683–706. [DOI] [PubMed] [Google Scholar]
  • 46. Gross SS, Wolin MS (1995) Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol 57: 737–769. [DOI] [PubMed] [Google Scholar]
  • 47. Haley EC Jr, Kassell NF, Apperson‐Hansen C, Maile MH, Alves WM (1997) A randomized, double‐blind, vehiclecontrolled trial of tirilazad mesylate in patients with aneurysmal subarachnoid hemorrhage: a cooperative study in North America. J Neurosurg 86: 467–474. [DOI] [PubMed] [Google Scholar]
  • 48. Hara H, Huang PL, Panahian N, Fishman MC, Moskowitz MA (1996) Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J Cereb Blood Flow Metab 16:605–611. [DOI] [PubMed] [Google Scholar]
  • 49. Hara H, Friedlander RM, Gagliardini V, Ayata C, Fink K, Huang Z, Shimizu‐Sasamata M, Yuan J, Moskowitz MA (1997) Inhibition of interleukin 1β (3 converting enzyme family proteases reduces ischemie and excitotoxic neuronal damage. Proc Natl Acad Sci USA 94: 2007–2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Henderson LM, Chappell JB, Jones OT (1987) The superoxide‐generating NADPH oxidase of human neutrophils is electrogenic and associated with an H+ channel. Biochem J 246: 325–329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Hibbs JB Jr, Vavrin Z, Taintor RR (1987) L‐arginine is required for expression of the activated macrophage effector mechanism causing selective inhibition in target cells. J Immunol 138: 550–565. [PubMed] [Google Scholar]
  • 52. Hille R (1994) The conversion ofxanthine dehydrogenase to xanthine oxidase and the role of the enzyme in reperfusion injury. Biochim Biophys Acta 1184: 143–169. 8130250 [Google Scholar]
  • 53. Hornschuh B, Hamm H, Wever S, Hashimoto T, Schroder U, Brocker EB, Zillikens D (1997) Treatment of 16 patients with bullous pemphigoid with oral tetracycline and niacinamide and topical clobetasol. J Am Acad Dermatol 36: 101–103. [DOI] [PubMed] [Google Scholar]
  • 54. Hossmann K‐A (1994) Glutamate‐mediated injury in focal cerebral ischemia: the excitotoxin hypothesis revisited. Brain Pathol 4: 23–36. [DOI] [PubMed] [Google Scholar]
  • 55. Huang PL, Fishman MC (1996) Genetic analysis of nitric oxide synthase isoforms: targeted mutation in mice. J Molec Med 74: 415–421. [DOI] [PubMed] [Google Scholar]
  • 56. Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377: 239–242. [DOI] [PubMed] [Google Scholar]
  • 57. Huang Z, Huang PL, Ma J, Meng W, Ayata C, Fishman MC, Moskowitz MA (1996) Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro‐L‐arginine. J Cereb Blood Flow Metab 16: 981–987. [DOI] [PubMed] [Google Scholar]
  • 58. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265: 1883–1885. [DOI] [PubMed] [Google Scholar]
  • 59. Ladecola C (1997) Bright and dark sides of nitric oxide in ischemie brain injury. Trends Neurosci 20: 132–139. [DOI] [PubMed] [Google Scholar]
  • 60. Ladecola C, Zhang F, Casey R, Nagayama M, Ross ME (1997) Delayed reduction of ischemie brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci 17: 9157–9164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61. Ladecola C, Zhang F, Xu X (1995) Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemie damage. Am J Physiol 268: R286–R292. [DOI] [PubMed] [Google Scholar]
  • 62. Inoue S, Kawanishi S (1995) Oxidative DNA damage induced by simultaneous generation of nitric oxide and superoxide. FEBS Lett 371: 86–88. [DOI] [PubMed] [Google Scholar]
  • 63. Izumi Y, Benz AM, Clifford DB, Zorumski CF (1996) Nitric oxide inhibitors attenuate ischemie degeneration in the CA1 region of rat hippocampal slices. Neurosci Lett 210: 157–160. [DOI] [PubMed] [Google Scholar]
  • 64. Jeggo PA (1998) DNA repair: PARP ‐ another guardian angel. Curr Biol 8:R49–R51. [DOI] [PubMed] [Google Scholar]
  • 65. Jonas WB, Rapoza CP, Blair WF (1996) The effect of niacinamide on osteoarthritis: a pilot study. Inflammation Res 45: 330–334. [DOI] [PubMed] [Google Scholar]
  • 66. Kassell NF, Haley EC Jr, Apperson‐Hansen C, Alves WM (1996) Randomized, double‐blind, vehicle‐controlled trial of tirilazad mesylate in patients with aneurysmal subarachnoid hemorrhage: a cooperative study in Europe, Australia, and New Zealand. J Neurosurg 84: 221–228. [DOI] [PubMed] [Google Scholar]
  • 67. Klaidman LK, Mukherjee SK, Hutchin TP, Adams JD (1996) Nicotinamide as a precursor for NAD* prevents apoptosis in the mouse brain induced by tertiary‐butylhydroperoxide. Neurosci Lett 206: 5–8. [DOI] [PubMed] [Google Scholar]
  • 68. Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298: 249–258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Kugler P, Drenckhahn D (1996) Astrocytes and Bergmann glia as an important site of nitric oxide synthase I. Glia 16: 165–173. [DOI] [PubMed] [Google Scholar]
  • 70. Kuklinski B, Weissenbacher E, Fahnrich A (1994) Coenzyme Q10 and antioxidants in acute myocardial infarction. Mol Aspect Mec 15 (Suppl): s143–s147. [DOI] [PubMed] [Google Scholar]
  • 71. Kuo ML, Chau YP, Wang JH, Shiah SG (1996) Inhibitors of poly(ADP‐ribose) polymerase block nitric oxide‐induced apoptosis but not differentiation in human leukemia HL‐60 cells. Biochem Biophys Res Comm 219: 502–508. [DOI] [PubMed] [Google Scholar]
  • 72. Lam TT (1997) The effect of 3‐aminobenzamide, an inhibitor of poly‐ADP‐ribose polymerase, on ischemia/reperfusion damage in rat retina. Res. Comm Molec Pathol Pharmacol 95: 241–252. [PubMed] [Google Scholar]
  • 73. Lautier D, Lagueux J, Thibodeau J, Menard L, Poirier GG (1993) Molecular and biochemical features of poly (ADP‐ribose) metabolism. Mol Cell Biochem 122: 171–193. [DOI] [PubMed] [Google Scholar]
  • 74. Lautier D, Poirier D, Boudreau A, Alaoui JM, Castonguay A, Poirier G (1990) Stimulation of poly(ADP‐ribose) synthesis by free radicals in C3H10T1/2 cells: relationship with NAD metabolism and DNA breakage. Biochem Cell 68:602–608. [DOI] [PubMed] [Google Scholar]
  • 75. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC (1994) Cleavage of poly(ADP‐ribose) polymerase by a proteinase with properties like ICE. Nature 371: 346–347. [DOI] [PubMed] [Google Scholar]
  • 76. Lees KR (1997) Cerestat and other NMDA antagonists in ischemie stroke. Neurology 49: s66–9. [DOI] [PubMed] [Google Scholar]
  • 77. Leist M, Single B, Kunstle G, Volbracht C, Hentze H, Nicotera P (1997) Apoptosis in the absence of poly‐(ADP‐ribose) polymerase. Biochem Biophys Res Comm 233: 518–522. [DOI] [PubMed] [Google Scholar]
  • 78. Leist M, Volbracht C, Kuhnle S, Fava E, Ferrando‐May E, Nicotera P (1997) Caspase‐mediated apoptosis in neuronal excitotoxicity triggered by nitric oxide. Molec Wed 3: 750–764. [PMC free article] [PubMed] [Google Scholar]
  • 79. Li Y, Chopp M, Jiang N, Yao F, Zaloga C (1995) Temporal profile of in situ DNA fragmentation after transient middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 15: 389–397. [DOI] [PubMed] [Google Scholar]
  • 80. Li Y, Chopp M, Jiang N, Zhang ZG, Zaloga C (1995) Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral ischemia in rats. Stroke 26: 1252–1257. [DOI] [PubMed] [Google Scholar]
  • 81. Liu PK, Hsu CY, Dizdaroglu M, Floyd RA, Kow YW, Karakaya A, Rabow LE, Cui JK (1996) Damage, repair, and mutagenesis in nuclear genes after mouse forebrain ischemia‐reperfusion. J Neurosci 16: 6795–6806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. Liu RH, Hotchkiss JH (1995) Potential genotoxicity of chronically elevated nitric oxide: a review. Mutation Res 339: 73–89. [DOI] [PubMed] [Google Scholar]
  • 83. Lo EH, Bosque‐Hamilton P, Meng W (1998) Inhibition of poly(ADP‐ribose) polymerase: reduction of ischemie injury and attenuation of N‐methyl‐D‐aspartate‐induced neurotransmitter dysregulation. Stroke 29: 830–836. [DOI] [PubMed] [Google Scholar]
  • 84. Lo EH, Hara H, Rogowska J, Trocha M, Pierce AR, Huang PL, Fishman MC, Wolf GL, Moskowitz MA (1996) Temporal correlation mapping analysis of the hemodynamic penumbra in mutant mice deficient in endothelial nitric oxide synthase gene expression. Stroke 27: 1381–1385. [DOI] [PubMed] [Google Scholar]
  • 85. Love S, Barber R, Wilcock GK (1998) DNA fragmentation and repair in ischaemic brain injury in man. Neuropathol Appl Neurobiol 24: 134–135. [Google Scholar]
  • 86. Love S, Barber R, Wilcock GK (1998) Apoptosis and expression of DNA repair proteins in ischaemic brain injury in man. NeuroReportQ: 955–959. [DOI] [PubMed]
  • 87. Love S, Barber R, Wilcock GK (In press) Neuronal accumulation of poly(ADP‐ribose) after brain ischaemia. Neuropathol Appl Neurobiol . [DOI] [PubMed]
  • 88. Marsden PA, Schappert KT, Chen HS, Flowers M, Sundell CL, Wilcox JN, Lamas S, Michel T (1992) Molecular cloning and characterization of human endothelial nitric oxide synthase. FEBS Lett. 307: 287–293. [DOI] [PubMed] [Google Scholar]
  • 89. Merrill JE, Murphy SP, Mitrovic B, Mackenzie‐Graham A, Dopp JC, Ding M, Griscavage J, Ignarro LJ, Lowenstein CJ (1997) Inducible nitric oxide synthase and nitric oxide production by oligodendrocytes. J Neurosci Res 48: 372–384. [PubMed] [Google Scholar]
  • 90. Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43: 109–142. [PubMed] [Google Scholar]
  • 91. Morley P, Hogan MJ, Hakim AM (1994) Calcium‐mediated mechanisms of ischemie injury and protection. Brain Pathol 4: 37–47. [DOI] [PubMed] [Google Scholar]
  • 92. Muir KW, Lees KR (1995) Clinical experience with excitatory amino acid antagonist drugs. Stroke 26: 503–513. [DOI] [PubMed] [Google Scholar]
  • 93. Murphy SN, Miller RJ (1988) A glutamate receptor regulates Ca2* mobilization in hippocampal neurons. Proc Natl Acad Sci USA 85: 8737–8741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94. Nagafuji T, Sugiyama M, Muto A, Makino T, Miyauchi T, Nabata H (1995) The neuroprotective effect of a potent and selective inhibitor of type I NOS (L‐MIN) in a rat model of focal cerebral ischaemia. Neuroreport 6: 1541–1545. [DOI] [PubMed] [Google Scholar]
  • 95. Nagele A (1995) Poly(ADP‐ribosyl)ation as a fail‐safe, transcription‐independent, suicide mechanism in acutely DNA‐damaged cells: a hypothesis. Radiat Environ Biophys 34:251–254. [DOI] [PubMed] [Google Scholar]
  • 96. Nakanishi S. (1992). Molecular diversity of glutamate receptors and implications for brain function. Science 258: 597–603. [DOI] [PubMed] [Google Scholar]
  • 97. Namura S, Zhu J, Fink K, Endres M, Srinivasan A, Tomaselli KJ, Yuan J, Moskowitz MA (1998) Activation and cleavage of caspase‐3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 18: 3659–3668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98. Nathan C, Xie Q (1994) Regulation of biosynthesis of nitric oxide. J Biol Chem 269:13725–13728. [PubMed] [Google Scholar]
  • 99. Nguyen T, Brunson D, Crespi CL, Penman BW, Wishnok JS, Tannenbaum SR (1992) DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci USA 89: 3030–3034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100. Ni B, Wu X, Su Y, Stephenson D, Smalstig EB Clemens J, Paul SM (1998) Transient global forebrain ischemia induces a prolonged expression of the caspase‐3 mRNA in rat hippocampal CA1 pyramidal neurons. J Cereb Blood Flow Metab 18:248–256. [DOI] [PubMed] [Google Scholar]
  • 101. Nicholson DW, A AN, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, Munday NA, Raju SM, Smulson ME, Yamin T‐T, Yu VL, Miller DK (1995) Identification and inhibition of the ICE/CED‐3 protease necessary for mammalian apoptosis. Nature 376: 37–43. [DOI] [PubMed] [Google Scholar]
  • 102. Nicotera P, Ankarcrona M, Bonfoco E, Orrenius S, Lipton SA (1997) Neuronal necrosis and apoptosis: two distinct events induced by exposure to glutamate or oxidative stress. Adv Neurol 72: 95–101. [PubMed] [Google Scholar]
  • 103. Nishino T, Tamura I (1991) The mechanism of conversion of xanthine dehydrogenase to oxidase and the role of the enzyme in reperfusion injury. Adv Exp Med Biol 309A: 327–333. [DOI] [PubMed] [Google Scholar]
  • 104. Nosseri C, Coppola S, Ghibelli L (1994) Possible involvement of poly(ADP‐ribosyl) polymerase in triggering stress‐induced apoptosis. Exp Cell Res 212: 367–373. [DOI] [PubMed] [Google Scholar]
  • 105. Obrenovitch TP, Richards DA (1995) Extracellular neurotransmitter changes in cerebral ischaemia. Cerebrovasc Brain Metab Rev 7: 1–54. [PubMed] [Google Scholar]
  • 106. Oei SL, Griesenbeck J, Ziegler M, Schweiger M. A novel function of poly(ADP‐ribosyl)ation: silencing of RNA polymerase ll‐dependent transcription (1998) Biochemistry 37:1465–1469. [DOI] [PubMed] [Google Scholar]
  • 107. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endotheliumderived relaxing factor. Nature 327: 524–526. [DOI] [PubMed] [Google Scholar]
  • 108. Piantadosi CA, Zhang J, Forman HJ (1996) Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke 27: 327–332. [DOI] [PubMed] [Google Scholar]
  • 109. Poskitt L, Wojnarowska F (1995) Treatment of cicatricial pemphigoid with tetracycline and nicotinamide. Clin Exp Dermatol 20: 258–259. [DOI] [PubMed] [Google Scholar]
  • 110. Pourcyrous M, Leffler CW, Bada HS, Korones SB, Busija, DW (1993) Brain superoxide anion generation in asphyxiated piglets and the effect of indomethacin at therapeutic dose. Pediatr Res 34: 366–369. [DOI] [PubMed] [Google Scholar]
  • 111. Pozzilli P, Browne PD, Kolb H (1996) Meta‐analysis of nicotinamide treatment in patients with recent‐onset IDDM. The Nicotinamide Trialists. Diabetes Care 19: 1357–1363. [DOI] [PubMed] [Google Scholar]
  • 112. Pozzilli P, Visalli N, Cavallo MG, Signore A, Baroni MG, Buzzetti R, Fioriti E, Mesturino C, Fiori R, Romiti A, Giovannini C, Lucentini L, Matteoli MC, Crino A, Teodonio C, Paci F, Amoretti R, Pisano L, Suraci MT, Multari G, Suppa M, Sulli N, De Mattia G, Faldetta MR, Ghirlanda G, et al (1997) Vitamin E and nicotinamide have similar effects in maintaining residual β‐cell function in recent onset insulin‐dependent diabetes (the IMDIAB IV study). Eur J Endocrinol 137: 234–239. [DOI] [PubMed] [Google Scholar]
  • 113. Pozzilli P, Visalli N, Signore A, Baroni MG, Buzzetti R, Cavallo MG, Boccuni ML, Fava D, Gragnoli C, Andreani D, et al (1995) Double blind trial of nicotinamide in recentonset IDDM (the IMDIAB III study). Diabetologia 38: 848–852. [DOI] [PubMed] [Google Scholar]
  • 114. Radi R, Rodriguez M, Castro L, Telleri R (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308: 89–95. [DOI] [PubMed] [Google Scholar]
  • 115. Radomsky MW, Palmer RMJ, Moncada S (1990) An L‐arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA 87: 5193–5197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116. Robinson LJ, Weremowicz S, Morton CC, Michel T (1994) Isolation and chromosomal localization of the human endothelial nitric oxide synthase (NOS3) gene. Genomics 19: 350–357. [DOI] [PubMed] [Google Scholar]
  • 117. Rosenthal DS, Ding R, Simbulan‐Rosenthal CM, Vaillancourt JP, Nicholson DW, Smulson M (1997) Intact cell evidence for the early synthesis, and subsequent late apopain‐mediated suppression, of poly(ADP‐ribose) during apoptosis. Exp Cell Res 232: 313–321. [DOI] [PubMed] [Google Scholar]
  • 118. Rudat V, Kupper JH, Weber KJ (1998) Trans‐dominant inhibition of poly(ADP‐ribosyl)ation leads to decreased recovery from ionizing radiation‐induced cell killing. Int J Radiat Biol 73: 325–330. [DOI] [PubMed] [Google Scholar]
  • 119. Saito I, Asano T, Sano K, Takakura K, Abe H, Yoshimoto T, Kikuchi H, Ohta T, Ishibashi S (1998) Neuroprotective effect of an antioxidant, ebselen, in patients with delayed neurological deficits after aneurysmal subarachnoid hemorrhage. Neurosurgery 42: 269–277. [DOI] [PubMed] [Google Scholar]
  • 120. Salgo MG, Bermudez E, Squadrito G, Pryor W (1995a) DNA damage and oxidation of thiols peroxynitrite causes in rat thymocytes. Arch Biochem Biophys 322: 500–505. [DOI] [PubMed] [Google Scholar]
  • 121. Salgo MG, Stone K, Squadrito GL, Battista JR, Pryor WA (1995b) Peroxynitrite causes DNA nicks in plasmid pBR322. Biochem Biophys Res Comm 210: 1025–1030. [DOI] [PubMed] [Google Scholar]
  • 122. Samdani AF, Dawson TM, Dawson VL (1997) Nitric oxide synthase in models of focal ischemia. Stroke 28: 1283–1288. [DOI] [PubMed] [Google Scholar]
  • 123. Satoh MS, Lindahl T (1992) Role of poly(ADP‐ribose) formation in DNA repair. Nature 356: 356–358. [DOI] [PubMed] [Google Scholar]
  • 124. Schmidt HHHW, Walter U (1994) NO at work. Cell 78: 919–925. [DOI] [PubMed] [Google Scholar]
  • 125. Schoepp DD, Conn PJ (1993). Metabotropic glutamate receptors in brain function and pathology. Trend Pharmacol Sci 14: 13–20. [DOI] [PubMed] [Google Scholar]
  • 126. Shall S (1995) ADP‐ribosylation reactions. Biochimie 77: 313–318. [DOI] [PubMed] [Google Scholar]
  • 127. Silver IA, Erecinska M (1990) Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo. J Gen Physiol 95: 837–866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128. Silver IA, Erecinska M (1992) Ion homeostasis in rat brain in vivo: intra‐ and extracellular [Ca2+] and [H+] in the hippocampus during recovery from short‐term, transient ischemia. J Cereb Blood Flow Metab 12: 759–772. [DOI] [PubMed] [Google Scholar]
  • 129. Simbulan‐Rosenthal CM, Rosenthal DS, Hilz H, Hickey R, Malkas L, Applegren N, Wu Y, Bers G, Smulson ME (1996) The expression of poly(ADP‐ribose) polymerase during differentiation‐linked DNA replication reveals that it is a component of the multiprotein DNA replication complex. Biochemistry 35: 11622–11633. [DOI] [PubMed] [Google Scholar]
  • 130. Sims NR, Zaidan E (1995) Biochemical changes associated with selective neuronal death following short‐term cerebral ischaemia. Int J Biochem Cell Biol 27: 531–550. [DOI] [PubMed] [Google Scholar]
  • 131. Spencer JP, Jenner A, Chimel K, Aruoma Ol, Cross CE, Wu R, Halliwell B (1995) DNA strand breakage and base modification induced by hydrogen peroxide treatment of human respiratory tract epithelial cells. FEBS Lett 374: 233–236. [DOI] [PubMed] [Google Scholar]
  • 132. Spencer JP, Wong J, Jenner A, Aruoma OI, Cross CE, Halliwell B (1996) Base modification and strand breakage in isolated calf thymus DNA and in DNA from human skin epidermal keratinocytes exposed to peroxynitrite or 3‐morpholinosydnonimine. Chem Res ToxicolQ: 1152–1158. [DOI] [PubMed]
  • 133. Szabó C, Ohshima H (1997) DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide 1: 373–385. [DOI] [PubMed] [Google Scholar]
  • 134. Szabó C, Zingarelli B, O'Connor M, Salzman AL (1996) DNA strand breakage, activation of poly (ADP‐ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc Natl Acad Sci USA 93: 1753–1758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135. Szatkowski M, Attwell D (1994) Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms. Trend Neurosci 17:359–365. [DOI] [PubMed] [Google Scholar]
  • 136. Takahashi M, Billups B, Rossi D, Sarantis M, Hamann M, Attwell D (1997) The role of glutamate transporters in glutamate homeostasis in the brain. J Exp Biol 200: 401–409. [DOI] [PubMed] [Google Scholar]
  • 137. Takahashi K, Greenberg JH, Jackson P, Maclin K, Zhang J (1997) Neuroprotective effects of inhibiting poly(ADP‐ribose) synthetase on focal cerebral ischemia in rats. J Cereb Blood Flow Metab 17:1137–1142. [DOI] [PubMed] [Google Scholar]
  • 138. Tanaka Y, Yoshihara K, Tohno Y, Kojima K, Kameoka M, Kamiya T (1995) Inhibition and down‐regulation of poly(ADP‐ribose) polymerase results in a marked resistance of HL‐60 cells to various apoptosis‐inducers. Cell Molec 41: 771–781. [PubMed] [Google Scholar]
  • 139. van der Vliet A, Eiserich JP, Halliwell B, Cross CE (1997) Formation of reactive nitrogen species during peroxidasecatalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide‐dependent toxicity. J Biol Chem 272: 7617–7625. [DOI] [PubMed] [Google Scholar]
  • 140. Walder CE, Green SP, Darbonne WC, Mathias J, Rae J, Dinauer MC, Curnutte JT, Thomas GR, Wolin MS (1997) Ischemie stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28: 2252–2258. [DOI] [PubMed] [Google Scholar]
  • 141. Wang ZQ, Auer B, Stingl L, Berghammer H, Haidacher D, Schweiger M, Wagner EF (1995) Mice lacking ADPRT and poly(ADP‐ribosyl)ation develop normally but are susceptible to skin disease. Genes Devel: 9:509–520. [DOI] [PubMed] [Google Scholar]
  • 142. Wang ZQ, Stingl L, Morrison C, Jantsch M, Los M, Schulze‐Osthoff K, Wagner EF (1997) PARP is important for genomic stability but dispensable in apoptosis. Genes Dev 11: 2347–2358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143. Weinfeld M, Chaudhry MA, D'Amours D, Pelletier JD, Poirier GG, Povirk LF, Lees‐Miller SP (1997) Interaction of DNA‐dependent protein kinase and poly(ADP‐ribose) polymerase with radiation‐induced DNA strand breaks. Radiat Res 148:22–28. [PubMed] [Google Scholar]
  • 144. Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula TA, Kock WH, Andrews AW, Allen JS, Keefer LK (1991) DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254: 1001–1003. [DOI] [PubMed] [Google Scholar]
  • 145. Wisden W, Seeburg P. (1993). Mammalian ionotropic glutamate receptors. Current Opinion NeurobiolZ: 291–298. [DOI] [PubMed]
  • 146. Xu W, Gorman P, Sheer D, Bates G, Kishimoto J, Lizhi L, Emson P (1993) Regional localization of the gene coding for human brain nitric oxide synthase (NOS1) to 12q24.2–24.31 by fluorescent in situ hybridization. Cytogenet Cell Genet 64: 62–63. [DOI] [PubMed] [Google Scholar]
  • 147. Yamaguchi T, Sano K, Takakura K, Saito I, Shinohara Y, Asano T, Yasuhara H (1998) Ebselen in acute ischemie stroke: a placebo‐controlled, double‐blind clinical trial. Ebselen Study Group. Stroke 29: 12–7. [DOI] [PubMed] [Google Scholar]
  • 148. Yoon YS, Kim JW, Kang KW, Kim YS, Choi KH, Joe CO (1996) Poly(ADP‐ribosyl)ation of histone H1 correlates with internucleosomal DNA fragmentation during apoptosis. J Biol Chem 271: 9129–9134. [DOI] [PubMed] [Google Scholar]
  • 149. Yoshida T, Limmroth V, Irikura K, Moskowitz MA (1994) The NOS inhibitor, 7‐nitroindazole, decreases focal infarct volume but not the response to topical acetylcholine in pial vessels. J Cereb Blood Flow Metab 14: 924–929. [DOI] [PubMed] [Google Scholar]
  • 150. Zaharchuk G, Hara H, Huang PL, Fishman MC, Moskowitz MA, Jenkins BG, Rosen BR (1997) Neuronal nitric oxide synthase mutant mice show smaller infarcts and attenuated apparent diffusion coefficient changes in the peri‐infarct zone during focal cerebral ischemia. Magnetic Resonance Med 37: 170–175. [DOI] [PubMed] [Google Scholar]
  • 151. Zhang F, Casey RM, Ross ME, Ladecola C (1996) Aminoguanidine ameliorates and L‐arginine worsens brain damage from intraluminal middle cerebral artery occlusion. Stroke 27: 317–323. [DOI] [PubMed] [Google Scholar]
  • 152. Zhang ZG, Chopp M, Gautam S, Zaloga C, Chang RL, Schmidt HHHHW, Pollock JS, Förstermann U (1994) Upregulation of neuronal nitric oxide synthase and mRNA, and selective sparing of nitric oxide synthase‐containing neurones after focal cerebral ischemia in rat. Brain Res 654: 85–95. [DOI] [PubMed] [Google Scholar]
  • 153. Zhang ZG, Chopp M, Zaloga C, Pollock JS, Forstermann U (1993) Cerebral endothelial nitric oxide synthase expression after focal cerebral ischemia in rats. Stroke 24: 2016–2021. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES