Abstract
Fifty years after the advent of antibiotics for clinical use, the rates of morbidity and mortality associated with bacterial meningitis remain high. The unfavourable clinical outcome is often due to intracranial complications including cerebrovascular insults, raised intracranial pressure, hydrocephalus, and brain edema. Reactive oxygen species (ROS) are known effector molecules in the antimicrobial armature of polymorphonuclear and mononuclear phagocytes. However, over the last decade, there has been a substantial body of work implicating a central role of ROS in the development of intracranial complications and brain damage in bacterial meningitis. Recently, it also became evident that reactive nitrogen species (RNS), especially nitric oxide, are important mediators of meningitis‐associated pathophysiological changes, at least during the early phase of the disease. There is now substantial evidence that much of the oxidative injury associated by simultaneous production of superoxide and nitric oxide is mediated by the strong oxidant peroxynitrite. ROS and peroxynitrite can be cytotoxic via a number of independent mechanisms. Their cytotoxic effects include initiation of lipid peroxidation and induction of DNA single strand breakage. Damaged DNA activates poly(ADP‐ribose) polymerase (PARP). Recent experimental data propose a role of lipid peroxidation and PARP activation in the development of meningitis‐associated intracranial complications and brain injury. Agents which interfere with the production of ROS and peroxynitrite, as well as with PARP activation and lipid peroxidation may represent novel, therapeutic strategies to limit meningitis‐associated brain damage, and, thus, to improve the outcome of this serious disease.
Full Text
The Full Text of this article is available as a PDF (131.9 KB).
References
- 1. AnSachkova B, Russev G, Poirier GG (1989) DNA replication and poly(ADP‐ribosyl)ation of chromatin. Cytobios 58:19–28. [PubMed] [Google Scholar]
- 2. Archibald FS, Fridovich (1983) Oxygen radicals, oxygen toxicity and the life of microorganisms. Acta Med Port 4:101–112. [PubMed] [Google Scholar]
- 3. Archibald FS, Duong MN (1986) Superoxide dismutase and oxygen toxicity defenses in the genus Neisseria. Infect Immun 51:631–641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. Babior BM (1978) Oxygen‐dependent microbial killing by phagocytes. N Engl J Med 298:659–668. [DOI] [PubMed] [Google Scholar]
- 5. Bautista AP, Spitzer JJ (1995) Acute endotoxin tolerance downregulates superoxide anion release by the perfused liver and isolated hepatic nonparenchymal cells. Hepatology 21:855–862. [PubMed] [Google Scholar]
- 6. Beckman JS (1990a) Ischaemic injury mediators. Nature 345:27–28. [DOI] [PubMed] [Google Scholar]
- 7. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990b) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87:1620–1624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and the ugly. Am J Physiol 271:C1424–C1437. [DOI] [PubMed] [Google Scholar]
- 9. Berger NA (1985) Poly(ADP‐ribose) in the cellular response to DNA damage. Radiat Res 101:4–15. [PubMed] [Google Scholar]
- 10. Berger NA, Whitacre CM, Hashimoto H, Berger SJ, Chatterjee S (1995) NAD and poly(ADP‐ribose) regulation of proteins involved in response to cellular stress and DNA damage. Biochimie 77:364–367. [DOI] [PubMed] [Google Scholar]
- 11. Berkowitz ID, Traystman RJ (1993) Oxygen radical scavengers prevent impairment of microvascular autoregulation in Haemophilus influenzae type b meningitis in rats. FASEB J 7:A530–A530. [Google Scholar]
- 12. Bernatowicz A, Koedel U, Frei K, Fontana A, Pfister H‐W (1995) Production of nitrite by primary rat astrocytes in response to pneumococci. J Neuroimmunol 60:53–61. [DOI] [PubMed] [Google Scholar]
- 13. Bernhardt LJ, Simberkoff MS, Rahal JJ Jr (1981) Deficient cerebrospinal fluid opsonization in experimental Escherichia coli meningitis. Infect Immun 32:411–413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. Bille MB, Angstwurm K, Einhaupl KM, Buerger W, Weber JR (1998) Pneumococcal meningitis in iNOS‐deficient mice: a new model , abstract B5 presented at the 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, September 24–27, 1998, San Diego, USA.
- 15. Bishai WR, Smith HO, Barcak GJ (1994) A peroxide/ascorbate‐inducible catalase from Haemophilus influenzae is homologous to the Escherichia coli katE gene product. J Bacteriol 176:2914–2921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Bohr V, Paulson OB, Rasmussen N (1984) Pneumococcal meningitis: Late neurologic sequelae and features of prognostic impact. Arch Neurol 41:1045–1049. [DOI] [PubMed] [Google Scholar]
- 17. Boje KM, Arora PK (1992) Microglial‐produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 587:250–256. [DOI] [PubMed] [Google Scholar]
- 18. Boje KMK (1995) Cerebrovascular permeability changes during experimental meningitis in the rat. J Pharmacol Exp Ther 274:1199–1203. [PubMed] [Google Scholar]
- 19. Boje KMK (1996) Inhibition of nitric oxide synthase attenuates blood‐brain barrier disruption during experimental meningitis. Brain Res 720:75–83. [DOI] [PubMed] [Google Scholar]
- 20. Braconier JH, Odeberg H (1982) Granulocyte phagocytosis and killing virulent and avirulent serotypes of Streptococcus pneumoniae. J Lab Clin Med 100:279–287. [PubMed] [Google Scholar]
- 21. Brandi G, Cattabeni F, Albano A, Cantoni O (1989) Role of hydroxyl radicals in Escherichia coli killing induced by hydrogen peroxide. Free Radic Res Commun 6:47–55. [DOI] [PubMed] [Google Scholar]
- 22. Brian JE, Jr. , Heistad DD, Faraci FM (1995) Mechanisms of endotoxin‐induced dilatation of cerebral arterioles. Am J Physiol 269: H783–H788. [DOI] [PubMed] [Google Scholar]
- 23. Brown EJ (1995) Phagocytosis. Bioessays 17:109–117. [DOI] [PubMed] [Google Scholar]
- 24. Buster BL, Weintrob AC, Townsend GC, Scheld WM (1995) Potential role of nitric oxide in the pathophysiology of experimental bacterial meningitis in rats. Infect Immun 63:3835–3839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Carter WO, Narayanan PK, Robinson JP (1994) Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J Leukocyte Biol 55:253–258. [DOI] [PubMed] [Google Scholar]
- 26. Chao CC, Hu S, Peterson PK (1995) Modulation of human microglial cell superoxide production by cytokines. J Leukocyte Biol 58:65–70. [DOI] [PubMed] [Google Scholar]
- 27. Cochrane CG (1991) Mechanisms of oxidant injury of cells. Mol Aspects Med 12:137–147. [DOI] [PubMed] [Google Scholar]
- 28. Colton CA, Snell J, Chernyshev O, Gilbert DL (1994) Induction of superoxide anion and nitric oxide production in cultured microglia. Ann NY Acad Sci 738:54–63. [DOI] [PubMed] [Google Scholar]
- 29. D'Antonio D, Di‐Bartolomeo P, Lacone A, Olioso P, DiGirolamo G, Angrilli F, Papalinetti G, Fioritoni G, Betti S, Torlontano G (1992) Meningitis due to penicillin‐resistant Streptococcus pneumoniae in patients with chronic graftversus‐host disease. Bone Marrow Transplant 9:299–300. [PubMed] [Google Scholar]
- 30. Darley‐Usmar V, Halliwell B (1996) Blood radicals Reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system. Pharm Res 13:649–662. [DOI] [PubMed] [Google Scholar]
- 31. Darley‐Usmar V, Wiseman H, Halliwell B (1995) Nitric oxide and oxygen radicals: A question of balance. FEBS Lett 369:131–135. [DOI] [PubMed] [Google Scholar]
- 32. Dawson VL (1995) Nitric oxide: Role in neurotoxicity. Clin Exp Pharmacol Physiol 22:305–308. [DOI] [PubMed] [Google Scholar]
- 33. Dawson VL, Brahmbhatt HP, Mong JA, Dawson TM (1994) Expression of inducible nitric oxide synthase causes delayed neurotoxicity in primary mixed neuronal‐glial cortical cultures. Neuropharmacol 33:1425–1430. [DOI] [PubMed] [Google Scholar]
- 34. De Groote MA, Fang FC (1995) NO inhibitions: Antimicrobial properties of nitric oxide. Clin Infect Dis 21 Suppl2:S162–S165. [DOI] [PubMed] [Google Scholar]
- 35. Dodge PR (1986) Sequelae of bacterial meningitis. Pediatr Infect Dis J 5:618–620. [DOI] [PubMed] [Google Scholar]
- 36. Dodge PR, Swartz MN (1965) Bacterial meningitis‐ a review of selected aspects II.Special neurologic problems, postmeningitic complications and clinicopathological correlations. N Engl J Med 272:954–960. [DOI] [PubMed] [Google Scholar]
- 37. Duane PG, Rubins JB, Weisel HR, Janoff EN (1993) Identification of hydrogen peroxide as a Streptococcus pneumoniae toxin for rat alveolar epithelial cells. Infect Immun 61:4392–4397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Durand ML, Calderwood SB, Weber DJ, Miller SI, Southwick FS, Caviness VS, Swartz MN (1993) Acute bacterial meningitis in adults: a review of 493 episodes. N Engl J Med 328:21–28. [DOI] [PubMed] [Google Scholar]
- 39. Esposito AL, Clark CA (1990) The effects of capsular polysaccharide on the capacity of serum to support the killing of type 3 Streptococcus pneumoniae by human neutrophils. APMIS 98:812–822. [DOI] [PubMed] [Google Scholar]
- 40. Frei K, Nadal D, Pfister H‐W, Fontana A (1993) Listeria meningitis: Identification of a cerebrospinal fluid inhibitor of macrophage listericidal function as interleukin 10. J Exp Med 178:1255–1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41. Freyer D, Weih M, Weber JR, Burger W, Scholz P, Manz R, Ziegenhorn A, Angstwurm K, Dirnagl U (1996) Pneumococcal cell wall components induce nitric oxide synthase and TNF‐α. In astroglial‐enriched cultures. GLIA 16:1–6. [DOI] [PubMed] [Google Scholar]
- 42. Gonzalez FB, Demple B (1995) Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. J Biol Chem 270:13681–13687. [DOI] [PubMed] [Google Scholar]
- 43. Gorog P, Pearson JD, Kakkar VV (1988) Generation of reactive oxygen metabolites by phagocytosing endothelial cells. Atherosclerosis 72:19–27. [DOI] [PubMed] [Google Scholar]
- 44. Grammas P, Liu G‐J, Wood K, Floyd RA (1993) Anoxia/reoxygenation induces hydroxyl free radical formation in brain microvessels. Free Radic Biol Med 14:553–557. [DOI] [PubMed] [Google Scholar]
- 45. Gutteridge JMC (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41 Suppl.:1819–1828. [PubMed] [Google Scholar]
- 46. Haberl RL, Anneser F, Koedel U, Pfister H‐W (1994) Is nitric oxide involved as a mediator of cerebrovascular changes in the early phase of experimental pneumococcal meningitis. Neurol Res 16:108–112. [DOI] [PubMed] [Google Scholar]
- 47. Halliwell B (1992) Oxygen radicals as key mediators in neurological disease: Fact or fiction. Ann Neurol 32:S10–S15. [DOI] [PubMed] [Google Scholar]
- 48. Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence Lancet 344:721–724. [DOI] [PubMed] [Google Scholar]
- 49. Hassett DJ, Charniga L, Cohen MS (1990) recA and catalase in H2O2‐mediated toxicity in Neisseria gonorrhoeae. J Bacteriol 172:7293–7296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50. Hassett DJ, Cohen MS (1989) Bacterial adaptation to oxidative stress: implications for pathogenesis and interaction with phagocytic cells. FASEB J 3:2574–2582. [DOI] [PubMed] [Google Scholar]
- 51. Heller B, Wang Z‐Q, Wagner EF, Radons J, Bürkle A, Fehsel K, Burkart V, Kolb H (1995) Inactivation of the poly(ADP.ribose) polymerase gene affects oxygen radical and nitric oxide toxicity in islet cells. J Biol Chem 270:11176–11180. [DOI] [PubMed] [Google Scholar]
- 52. Hu SX, Chao CC, Khanna KV, Gekker G, Peterson PK, Molitor TW (1996) Cytokine and free radical production by porcine microglia. Clin Immunol Immunopathol 78:93–96. [DOI] [PubMed] [Google Scholar]
- 53. Hyslop PA, Hinshaw DB, Scraufstatter IU, Cochrane CG, Kunz S, Vosbeck K (1995) Hydrogen peroxide as a potent bacteriostatic antibiotic: implications for host defense. Free Radic Biol Med 19:31–37. [DOI] [PubMed] [Google Scholar]
- 54. Ikeda Y, Long DM (1990) The molecular basis of brain injury and brain edema: the role of oxygen free radicals. Neurosurgery 27:1–11. [DOI] [PubMed] [Google Scholar]
- 55. Ismail G, Sawyer WD, Wegener WS (1977) Effect of hydrogen peroxidase and superoxide radical on viability of Neisseria gonorrhoeae and related bacteria. Proc Soc Exp Biol Med 155:264–269. [DOI] [PubMed] [Google Scholar]
- 56. Kim YS, Kennedy S, Täuber MG (1995) Toxicity of Streptococcus pneumoniae in neurons, astrocytes, and microglia in vitro. J Infect Dis 171:1363–1368. [DOI] [PubMed] [Google Scholar]
- 57. Kim YS, Täuber MG (1996) Neurotoxicity of glia activated by gram‐positive bacterial products depends on nitric oxide production. Infect Immun 64:3148–3153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58. Koedel U, Bernatowicz A, Paul R, Frei K, Fontana A, Pfister H‐W (1995) Experimental pneumococcal meningitis: Cerebrovascular alterations, brain edema, and meningeal inflammation are linked to the production of nitric oxide. Ann Neurol 37:313–323. [DOI] [PubMed] [Google Scholar]
- 59. Koedel U, Paul R, Sporer B, Pfister H‐W (1998) Beneficial effects of 3‐aminobenzamide (3‐AB), an inhibitor of the DNA repair enzyme poly (ADP)ribose polymerase (PARP), in experimental pneumococcal meningitis. Akt Neurologie 25:S99 abstract. [Google Scholar]
- 60. Koedel U, Pfister H‐W (1997) Protective effect of the antioxidant N‐acetyl‐L‐cysteine in pneumococcal meningitis in the rat. Neurosci Lett 225:33–36. [DOI] [PubMed] [Google Scholar]
- 61. Kornelisse RF, Hoekman K, Visser JJ, Hop WCJ, Huijmans JGM, Van der Straaten PJC, Van der Heijden AJ, Sukhai RN, Neijens HJ, De Groot R (1996) The role of nitric oxide in bacterial meningitis in children. J Infect Dis 174:120–126. [DOI] [PubMed] [Google Scholar]
- 62. Korytko PJ, Boje KMK (1996) Pharmacological characterization of nitric oxide production in a rat model of meningitis. Neuropharmacol 35:231–237. [DOI] [PubMed] [Google Scholar]
- 63. Kroll JS, Langford PR, Loynds BM (1991) Copperzinc superoxide dismutase of Haemophilus influenzae and H. parainfluenzae. J Bacteriol 173:7449–7457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64. Leib SL, Kim YS, Black SM, Tureen JH, Täuber MG (1998) Inducible nitric oxide synthase and the effect of aminoguanidine in experimental neonatal meningitis. J Infect Dis 177:692–700. [DOI] [PubMed] [Google Scholar]
- 65. Leib SL, Kim YS, Chow LL, Sheldon RA, Täuber MG (1996a) Reactive oxygen intermediates contribute to necrotic and apoptotic neuronal injury in an infant rat model of bacterial meningitis due to group B streptococci. J Clin Invest 98:2632–2639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66. Leib SL, Kim YS, Ferriero DM, Täuber MG (1996b) Neuroprotective effect of excitatory amino acid antagonist kynurenic acid in experimental bacterial meningitis. J Infect Dis 173:166–171. [DOI] [PubMed] [Google Scholar]
- 67. Lindahl T, Satoh MS, Poirier GG, Klungland A (1995) Post‐translational modification of poly(ADP‐ribose) polymerase induced by DNA strand breaks. Trends Biochem Sci 20:405–411. [DOI] [PubMed] [Google Scholar]
- 68. Lorenzl S, Koedel U, Frei K, Bernatowicz A, Fontana A, Pfister H‐W (1995) Protective effect of a 21‐aminosteroid during experimental pneumococcal meningitis. J Infect Dis 172:113–118. [DOI] [PubMed] [Google Scholar]
- 69. Lorenzl S, Koedel U, Pfister HW (1996) Mannitol, but not allopurinol, modulates changes in cerebral blood flow, intracranial pressure, and brain water content during pneumococcal meningitis in the rat. Crit Care Med 24:1874–1880. [DOI] [PubMed] [Google Scholar]
- 70. MacMicking JD, Nathan C, Horn G, Chartrain N, Fletcher DS, Trumbauer M, Stevens K, Xie Q, Sokol K, Hutchinson N, Chen H, Mudgett JS (1995) Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81:641–650. [DOI] [PubMed] [Google Scholar]
- 71. MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF (1997) Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A 94:5243–5248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72. Matsubara T, Ziff M (1986) Increased superoxide anion release from human endothelial cells in response to cytokines. J Immunol 137:3295–3298. [PubMed] [Google Scholar]
- 73. McCord JM (1995) Superoxide radical: Controversies, contradictions, and paradoxes. Proc Soc Exp Biol Med 209:112–117. [DOI] [PubMed] [Google Scholar]
- 74. McKnight AA, Keyes WG, Hudak ML, Jones MD (1992) Oxygen free radicals and the cerebral arteriolar response to group B streptococci. Pediatr Res 31:640–644. [DOI] [PubMed] [Google Scholar]
- 75. Murphy S, Simmons ML, Agullo L, Garcia A, Feinstein DL, Galea E, Reis DJ, Minc‐Golomb D, Schwartz JP (1993) Synthesis of nitric oxide in CNS glial cells. TINS 16:323–328. [DOI] [PubMed] [Google Scholar]
- 76. Nathan C, Xie Q‐W (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78:915–918. [DOI] [PubMed] [Google Scholar]
- 77. Pacelli R, Wink DA, Cook JA, Krishna MC, DeGraff W, Friedman N, Tsokos M, Samuni A, Mitchell JB (1995) Nitric oxide potentiates hydrogen peroxide‐induced killing of Escherichia coli. J Exp Med 182:1469–1479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78. Paul R, Koedel U, Pfister HW (1997) 7‐Nitroindazole inhibits pial arteriolar vasodilation in a rat model of pneumococcal meningitis. J Cereb Blood Flow Metab 17:985–991. [DOI] [PubMed] [Google Scholar]
- 79. Pfister HW, Borasio GD, Dirnagl U, Bauer M, Einhäupl KM (1992) Cerebrovascular complications of bacterial meningitis in adults. Neurology 42:1497–1504. [DOI] [PubMed] [Google Scholar]
- 80. Pfister HW, Feiden W, Einhäupl KM (1993) Spectrum of complications during bacterial meningitis in adults. Arch Neurol 505:575–581. [DOI] [PubMed] [Google Scholar]
- 81. Pfister HW, Koedel U, Dirnagl U, Haberl RL, Ruckdeschel G, Einhäupl KM (1992) Effect of catalase on regional cerebral blood flow and brain edema during the early phase of experimental pneumococcal meningitis. J Infect Dis 166:1442–1445. [DOI] [PubMed] [Google Scholar]
- 82. Pfister HW, Koedel U, Haberl RL, Dirnagl U, Feiden W, Ruckdeschel G, Einhaupl KM (1990) Microvascular changes during the early phase of experimental bacterial meningitis. J Cereb Blood Flow Metab 10:914–922. [DOI] [PubMed] [Google Scholar]
- 83. Pfister HW, Koedel U, Lorenzl S, Tomasz A (1992) Antioxidants attenuate microvascular changes in the early phase of experimental pneumococcal meningitis in rats. Stroke 23:1798–1804. [DOI] [PubMed] [Google Scholar]
- 84. Pomeroy SL, Holmes SJ, Dodge PR, Feigin RD (1990) Seizures and other neurologic sequelae of bacterial meningitis in children. N Engl J Med 323:1651–1657. [DOI] [PubMed] [Google Scholar]
- 85. Poyart C, Berche P, Trieu CP (1995) Characterization of superoxide dismutase genes from gram‐positive bacteria by polymerase chain reaction using degenerate primers. FEMS Microbiol Lett 131:41–45. [DOI] [PubMed] [Google Scholar]
- 86. Quagliarello VJ, Scheld WM (1992) Bacterial meningitis: pathogenesis, pathophysiology, and progress. N Engl J Med 327:864–872. [DOI] [PubMed] [Google Scholar]
- 87. Quagliarello VJ, Scheld WM (1997) Treatment of bacterial meningitis. N Engl J Med 336:708–716. [DOI] [PubMed] [Google Scholar]
- 88. Rodenas J, Mitjavila MT, Carbonell T (1995) Simultaneous generation of nitric oxide and superoxide by inflammatory cells in rats. Free Radic Biol Med 18:869–875. [DOI] [PubMed] [Google Scholar]
- 89. Rupalla K, Cao WH, Krieglstein J (1995) Flupirtine protects neurons against excitotoxic or ischmic damage and inhibits the increase in cytosolic Ca2+ concentration. Eur J Pharmacol 294:469–473. [DOI] [PubMed] [Google Scholar]
- 90. Sanchez RD, Cabrera JE (1991) Lethal and mutagenic action of hydrogen peroxide on Haemophilus influenzae. J Bacteriol 173:6632–6634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91. Schuchat A, Robinson K, Wenger JD, Harrison LH, Farley M, Reingold AL, Lefkowitz L, Perkins BA (1997) Bacterial meningitis in the United States in 1995. Active Surveillance Team. N Engl.J Med 337:970–976. [DOI] [PubMed] [Google Scholar]
- 92. Schwartz CE, Krall J, Norton L, McKay K, Kay D, Lynch RE (1983) Catalase and superoxide dismutase in Escherichia coli. J Biol Chem 258:6277–6281. [PubMed] [Google Scholar]
- 93. Shall S (1994) The function of poly (ADP‐ribosylation) in DNA breakage and rejoining. Mol Cell Biochem. 138:71–75. [DOI] [PubMed] [Google Scholar]
- 94. Sigurdardóttir B, Björnsson OM, Jónsdottir KE, Erlendsdóttir H, Gudmundsson S (1997) Acute bacterial meningitis in adults‐ A 20‐year overview. Arch Intern Med 157:425–430. [DOI] [PubMed] [Google Scholar]
- 95. Simberkoff MS, Moldover NH, Rahal JJ (1980) Absence of detectable bactericidal and opsonic activities in normal and infected human cerebrospinal fluids. J Lab Clin Med 95:362–372. [PubMed] [Google Scholar]
- 96. Skaper SD, Facci L, Leon A (1995) Inflammatory mediator stimulation of astrocytes and meningeal fibroblasts induces neuronal degeneration via the nitridergic pathway. J.Neurochem 64:266–276. [DOI] [PubMed] [Google Scholar]
- 97. Smith AL (1988) Neurologic sequelae of meningitis. N Engl J Med 319: 1012–1013. [DOI] [PubMed] [Google Scholar]
- 98. Smith H, Bannister B, O'Shea MJ (1977) Cerebrospinal fluid immunoglobulins in meningitis. Lancet 2:591–593. [DOI] [PubMed] [Google Scholar]
- 99. Stahel PF, Frei K, Fontana A, Eugster HP, Ault BH, Barnum SR (1997) Evidence for intrathecal synthesis of alternative pathway complement activation proteins in experimental meningitis. Am J Pathol 151:897–904. [PMC free article] [PubMed] [Google Scholar]
- 100. Synnott MB, Morse DL, Hall SM (1994) Neonatal meningitis in England and Wales: a review of routine national data. Arch Dis Child 71:F75–F80. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101. Szabo C (1998) Role of poly(ADP‐ribose)synthetase in inflammation. Eur J Pharmacol 350:1–19. [DOI] [PubMed] [Google Scholar]
- 102. Szabo C, Cuzzocrea S, Zingarelli B, O'Connor M, Salzman AL (1997) Endothelial dysfunction in a rat model of endotoxic shock. Importance of the activation of poly (ADP‐ribose) synthetase by peroxynitrite. J Clin Invest 100:723–735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103. Szabo C, Virag L, Cuzzocrea S, Scott GS, Hake P, OConnor MP, Zingarelli B, Salzman A, Kun E (1998) Protection against peroxynitrite‐induced fibroblast injury and arthritis development by inhibition of poly(ADP‐ribose) synthase. Proc Natl Acad Sci U S A 95:3867–3872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104. Tomasz A (1995) The pneumococcus at the gates. N Engl J Med 333:514–515. [DOI] [PubMed] [Google Scholar]
- 105. Tomasz A (1997) Antibiotic resistance in Streptococcus pneumoniae. Clin Infect Dis 24:S85–S88. [DOI] [PubMed] [Google Scholar]
- 106. Tureen JH, Liu Q, Chow L (1998) Mechanisms of peroxynitrite‐induced brain pathophysiology in experimental meningitis, abstract B‐7, presented at the 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, September 24–37, 1998, San Diego, USA.
- 107. Van Furth AM, Seijmonsbergen EM, Groeneveld PHP, Van Furth R, Langermans JAM (1996) Levels of nitric oxide correlate with high levels of tumor necrosis factor α in cerebrospinal fluid samples from children with bacterial meningitis. Clin Infect Dis 22:876–878. [DOI] [PubMed] [Google Scholar]
- 108. Visser JJ, Scholten RJPM, Hoekman K (1994) Nitric oxide synthesis in meningococcal meningitis. Ann Intern Med 120:345–346. [DOI] [PubMed] [Google Scholar]
- 109. Wilson CB, Weaver WM (1985) Comparative susceptibility of group B streptococci and Staphylococcus aureus to killing by oxygen metabolites. J Infect Dis 152:323–329. [DOI] [PubMed] [Google Scholar]
- 110. Zahradka P, Yau L (1994) ADP‐ribosylation and gene expression. Mol Cell Biochem. 138:91–98. [DOI] [PubMed] [Google Scholar]
- 111. Zhang J, Dawson VL, Dawson TM, Snyder SH (1994) Nitric oxide activation of poly(ADP‐ribose) synthetase in neurotoxicity. Science 263:687–689. [DOI] [PubMed] [Google Scholar]
- 112. Zhang J, Pieper A, Snyder SH (1995) Poly(ADP‐ribose) synthetase activation: an early indicator of neurotoxic DNA damage. J Neurochem 65:1411–1414. [DOI] [PubMed] [Google Scholar]
- 113. Zhu L, Gunn C, Beckman JS (1992) Bactericidal activity of peroxynitrite. Arch Biochem Biophys 298:452–457. [DOI] [PubMed] [Google Scholar]
- 114. Zingarelli B, Salzman AL, Szabo C (1998) Genetic disruption of poly (ADP‐ribose) synthetase inhibits the expression of P‐selectin and intercellular adhesion molecule‐1 in myocardial ischemia/reperfusion injury. Circ Res 83:85–94. [DOI] [PubMed] [Google Scholar]
- 115. Zwahlen A, Nydegger UE, Vaudaux P, Lambert P‐H, Waldvogel FA (1982) Complement‐ mediated opsonic activity in normal and infected human cerebrospinal fluid: early response during bacterial meningitis. J Infect Dis 145:635–646. [DOI] [PubMed] [Google Scholar]
- 116. Zweier JL, Broderick R, Kuppusamy P, ThompsonGorman S, Lutty GA (1994) Determination of the mechanism of free radical generation in human aortic endothelial cells exposed to anoxia and reoxygenation. J Biol Chem 269:24156–24162. [PubMed] [Google Scholar]
