Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2008 Jan 28;7(3):965–977. doi: 10.1111/j.1750-3639.1997.tb00896.x

Mouse Models of Human CAG Repeat Disorders

Eric N Burright 1,3,, Harry T Orr 1,2,3, H Brent Clark 1
PMCID: PMC8098257  PMID: 9217978

Abstract

Expansions of CAG trinucleotide repeats encoding glutamine have been found to be the causative mutations of seven human neurodegenerative diseases. Similarities in the clinical, genetic, and molecular features of these disorders suggest they share a common mechanism of pathogenesis. Recent progress in the generation and characterization of transgenic mice expressing the genes containing expanded repeats associated with spinal and bulbar muscular atrophy (SBMA), spinocerebellar ataxia type 1 (SCA1), Machado‐Joseph disease (MJD/ SCA3), and Huntington's disease (HD) is beginning to provide insight into the underlying mechanisms of these neurodegenerative disorders.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

References

  • 1. Arbizu T (1983) A family with adult spinal and bulbar muscular atrophy, X‐linked inheritance and associated testicular failure. J Neurol Sci 59:371–382. [DOI] [PubMed] [Google Scholar]
  • 2. Arnheiter H, Skuntz S, Notebom M, Chang S, and Meier ES (1990) Transgenic mice with intracellular immunity to influenza virus. Cell 62:51–61. [DOI] [PubMed] [Google Scholar]
  • 3. Aronin N, Chase K, Young C, Sapp E, Schwarz C, Matta N, Kornreich R, Landwehrmeyer B, Bird E, Beal MF, Vonsattel J‐P, Smith T, Carraway R, Boyce FM, Young AB, Penney JB, and DiFiglia M (1995) CAG expansion affects the expression of mutant huntingtin in the Huntington's disease brain. Neuron 15:1193–1201. [DOI] [PubMed] [Google Scholar]
  • 4. Banfi S, Servadio A, Chung M‐y, Capozzoli F, Duvick LA, Elde R, Zoghbi HY, and Orr HT (1996) Cloning and developmental expression analysis of the murine homolog of the spinocerebellar ataxia type 1 gene (Seal). Hum Mol Genet 5:33–40. [DOI] [PubMed] [Google Scholar]
  • 5. Banfi S, Servadio A, Chung MY, Kwiatkowski TJ, Jr. , McCall AE, Duvick LA, Shen Y, Roth EJ, Orr HT, and Zoghbi HY (1994) Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nature Genetics 7:513–20. [DOI] [PubMed] [Google Scholar]
  • 6. Bessert DA, Gutridge KL, Dunbar JC, and Carlock LR (1995) The identification of a functional nuclear localization signal in the Huntington disease protein. Mol Brain Res 33:165–173. [DOI] [PubMed] [Google Scholar]
  • 7. Bingham PM, Scott MO, Wang S, McPhaul MJ, Wilson EM, Garbern JY, Merry DE, and Fischbeck KH (1995) Stability of an expanded trinucleotide repeat in the androgen receptor gene in transgenic mice. Nature Genetics 9:191–196. [DOI] [PubMed] [Google Scholar]
  • 8. Burke JR, Wingfield MS, Lewis KE, Roses AD, Lee JE, Hulette C, Pericak‐Vance MA, and Vance JM (1994) The Haw River syndrome: dentatorubropallidoluysian atrophy (DRPLA) in an African‐American family. Nature Genetics 7:521–4. [DOI] [PubMed] [Google Scholar]
  • 9. Burright EN, Clark HB, Servadio A, Matilla T, Feddersen RM, Yunis WS, Duvick LA, Zoghbi HY, and Orr HT (1995) SCA1 transgenic mice: A model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 82:937–948. [DOI] [PubMed] [Google Scholar]
  • 10. Cancel G. N. A, Stevanin G, Durr A, Chneiweiss H, Neri C, Duyckaerts C, Penet C, Cann HM, Agid Y, and Brice A (1995) Marked phenotypic heterogeneity associated with expansion of a CAG repeat sequence at the spinocerebellar ataxia 3/Machado‐Joseph disease locus. Am J Hum Genet 57:809–816. [PMC free article] [PubMed] [Google Scholar]
  • 11. Capecchi MR (1989) Altering the genome by homologous recombination. Science 244:1288–92. [DOI] [PubMed] [Google Scholar]
  • 12. Chung MY, Ranum LP, Duvick LA, Servadio A, Zoghbi HY, and Orr HT (1993) Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nature Genetics 5:254–8. [DOI] [PubMed] [Google Scholar]
  • 13. Clancy AN, Bonsall RW, and Michael RP (1992) Immunohistochemical labeling of androgen receptors in the brain of rat and monkey. Life Sciences 50:409–17. [DOI] [PubMed] [Google Scholar]
  • 14. Clark HB, Burright EN, Yunis WS, Larson S, Wilcox C, Hartman B, Zoghbi HY, and Orr HT (1997) Purkinje cell expression of a mutant allele of SCA1 in transgenic mice leads to disparate effects on motor behaviors followed by a progressive cerebellar dysfunction and histological alterations. [DOI] [PMC free article] [PubMed]
  • 15. Coutinho P, Guimares A, and Scaravilli F (1982) The pathology of Machado‐Joseph disease: report of a possible homozygous case. Acta Neuropath 58:48–54. [DOI] [PubMed] [Google Scholar]
  • 16. De Rooij KE, Dorsman JC, Smoor MA, Den Dunnen JT, and Van Ommen G‐JB (1996) Subcellular localization of the Huntington's disease gene product in cell lines by immunofluorescence and biochemical subcellular fractionation. Hum Mol Genet 5:1093–1099. [DOI] [PubMed] [Google Scholar]
  • 17. DiFiglia M, Sapp E, Chase K, Schwarz C, Meloni A, Young C, Martin E, Vonsattel JP, Carraway R, Reeves SA, and et al. (1995) Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14:1075–81. [DOI] [PubMed] [Google Scholar]
  • 18. Doyu M (1992) Seventy of X‐linked recessive bulbospinal neuronopathy correlates with size of the tandem CAG repeat in androgen receptor gene. Ann Neurol 32:707–710. [DOI] [PubMed] [Google Scholar]
  • 19. Duyao M, Ambrose C, Myers R, Novelletto A, Persichetti F, Frontali M, Folstein S, Ross C, Franz M, Abbott M, and et al. (1993) Trinucleotide repeat length instability and age of onset in Huntington's disease. Nature Genetics 4:387–92. [DOI] [PubMed] [Google Scholar]
  • 20. Duyao MP, Auerbach AB, Ryan A, Persichetti F, Barnes GT, McNeil SM, Ge P, Vonsattel JP, Gusella JF, Joyner AL, and et al. (1995) Inactivation of the mouse Huntington's disease gene homolog Hdh. Science 269:407–10. [DOI] [PubMed] [Google Scholar]
  • 21. Ferrer I, Genis D, Davalus A, Bernado L, Sant F, and Serano T (1994) The Purkinje cell in olivopontocerebellar atrophy. A golgi and immunohistochemical study. Neuropath and Applied Neurobiol 20:38–46. [DOI] [PubMed] [Google Scholar]
  • 22. Forsss‐Petter S, Danielson PE, Catsicas S, Battenberg E, Price J, Nerenberg M, and Sutcliffe JG (1990) Transgenic mice expressing B‐Galactosidase in mature neurons under neuron‐specific enolase promoter control. Neuron 5:187–197. [DOI] [PubMed] [Google Scholar]
  • 23. Goldberg YP, Kalchman MA, Metzler M, Nasir J, Zeisler J, Graham R, Koide HB, O'Kusky J, Sharp AH, Ross CA, Jirik F, and Hayden MR (1996) Absence of disease phe‐notype and intergenerational stability of the CAG repeat in transgenic mice expressing the human Huntington disease transcript. Hum Mol Genet 5:177–185. [DOI] [PubMed] [Google Scholar]
  • 24. Green H (1993) Human genetic diseases due to codon reiteration: relationship to an evolutionary mechanism. Cell 74:955–6. [DOI] [PubMed] [Google Scholar]
  • 25. Gusella JF, Wexler HS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, Watkins PC, Ottina K, Wallace MR, Sakaguchi AY, Young AB, Shoulson I, Bonilla E, and Martin JB (1983) A polymorphic DNA marker genetically linked to Huntington's disease. Nature 306:234–8. [DOI] [PubMed] [Google Scholar]
  • 26. Haines JL, Schut LJ, Weitkamp LR, Thayer M, and Anderson VE (1984) Spinocerebellar ataxia in a large kindred: age at onset, reproduction, and genetic linkage studies. Neurology 34:1542–48. [DOI] [PubMed] [Google Scholar]
  • 27. Harper PS (1991) Huntington's Disease, W. B. Saunders, London . [Google Scholar]
  • 28. Hayden MR (1981) Huntington's Chorea, Springer‐Verlag, London . [Google Scholar]
  • 29. HDCRG Huntington's Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72:971–83. [DOI] [PubMed] [Google Scholar]
  • 30. Hodgson JG, Smith DJ, McCutcheon K, Koide HB, Nishiyama K, Dinulos MB, Stevens ME, Bissada N, Nasir J, Kanazawa I, Disteche CM, Rubin EM, and Hayden MR (1996) Human huntington derived from YAC transgenes compensates for loss of murine huntington by rescue of the embryonic lethal phenotype. Hum Mol Genet 5:1875–1885. [DOI] [PubMed] [Google Scholar]
  • 31. Hoogeveen AT, Willemsen R, Meyer N, de Rooij KE, Roos RA, van Ommen GJ, and Galjaard H (1993) Characterization and localization of the Huntington disease gene product. Hum Mol Genet 2:2069–73. [DOI] [PubMed] [Google Scholar]
  • 32. Igarashi S, Tanno Y, Onodera O, Yamazaki M, Sato S, Ishikawa A, Miyatani N, Nagashima M, Ishikawa Y, and Sahashi Kea (1992) Strong correlation between the number of CAG repeats in androgen receptor genes and the clinical onset of features of spinal and bulbar muscular atropphy. Neurology 42:2300–02. [DOI] [PubMed] [Google Scholar]
  • 33. Ikeda H, Yamaguchi M, Sugai S, Aze Y, Narumiya S, and Kakizuka A (1996) Expanded polyglutamine in the Machado‐Joseph disease protein induces cell death in vitro and in vivo. Nature Genetics 13:196–202. [DOI] [PubMed] [Google Scholar]
  • 34. Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Gamier J‐M, Weber C, Mandel J‐LG, Cancel G, Abbas N, Durr A, Didierjean O, Stevanin G, Agid Y, and Brice AG (1996) Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nature Genetics 14:285–291. [DOI] [PubMed] [Google Scholar]
  • 35. Jodice C, Malasppina P, Persichetti F, Novelette A, Spadaro M, Guinti P, Morocutti C, Terrenato L, Harding AE, and Frontali M (1994) Effect of trinucleotide repeat length and parental sex on phenotypic variation in spinocerebellar ataxia 1. Am J Hum Genet 54:959–65. [PMC free article] [PubMed] [Google Scholar]
  • 36. Kanda T, Isozaki E, Kato S, Tanabe H, and Oda M (1989) Type III Macnado‐Joseph disease in a Japanese family: a clinicopathological study with special reference to the peripheral nervous sytem. Clin Neuropath 8:134–41. [PubMed] [Google Scholar]
  • 37. Kawaguchi Y, Okamoto T, Yaniwaki M, Aizawa M, Inoue M, Katayams S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, Kimura J, Narumiya S, and Kakizuka A (1994) CAG expansion in a novel gene from Machado‐Joseph disease at chromosome 14q32.1. Nature Genetics 8:221–227. [DOI] [PubMed] [Google Scholar]
  • 38. Kennedy WR, Alter M, and Sung JH (1968) Progressive proximal spiral and bulbar muscular atrophy of late onset: A sex‐linked recessive trait. Neurology 18:671–680. [DOI] [PubMed] [Google Scholar]
  • 39. Koeppen AH (1991) The Purkinje cell and its afferents in human heretary ataxia. J Neuropath Exp Neurol 50:505–14. [DOI] [PubMed] [Google Scholar]
  • 40. Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, Takahasi H, Kondo R, Ishikawa A, Hayashi T, Saito M, Tomoda A, Miike T, Naito H, Ikuta F, and Tsuji S (1994) Unstable expansion of CAG repeat in hereditary dentatorubral‐pallidoluysian atrophy (DRPLA). Nature Genetics 6:9–13. [DOI] [PubMed] [Google Scholar]
  • 41. Kremer B, Goldberg P, Andrew SE, Theilmann J, Telenius H, Zeisler J, Squitieri F, Lin B, Bassett A, Almqvist E, and et al. (1994) A worldwide study of the Huntington's disease mutaticn. The sensitivity and specificity of measuring CAG repeats. New Eng J Med 330:1401–6. [DOI] [PubMed] [Google Scholar]
  • 42. La Spada AR, Roling DB, Harding AE, Warner CL, Spiegel R, Hausmanowa‐Petrusewicz I, Yee W‐C, and Fischbeck KH (1992) Meiotic stability and genotype‐phe‐notype correlation of the trinucleotide repeat in X‐linked spinal and bulbar muscular atrophy. Nature Genetics 2:301–304. [DOI] [PubMed] [Google Scholar]
  • 43. La Spada AR, Wilson EM, Lubahn DB, Harding AE, and Fischbeck KH (1991) Androgen receptor gene mutations in X‐linked spinal and bulbar muscular atrophy. Nature 352:77–79. [DOI] [PubMed] [Google Scholar]
  • 44. Landwehrmeyer GB, McNeil SM, Dure LSt, Ge P, Aizawa H, Huang Q, Ambrose CM, Duyao MP, Bird ED, Bonilla E, and et al. (1995) Huntington's disease gene: regional and cellular expression in brain of normal and affected individuals. Ann Neurol 37:218–30. [DOI] [PubMed] [Google Scholar]
  • 45. Lange H, Thorner G, Hopf AV, and Schroder KF (1976) Morphometri; studies of the neuropathological process in choreatic diseases. J Neurol Sci 28:401–25. [DOI] [PubMed] [Google Scholar]
  • 46. Lerer I, Merims D, Abeliovich D, Zlotogora J, and Gadoth N (1996) Mashado‐Joseph disease: correlation between the clinical features, the CAG repeat length and homozygosity for the mutation. European J Hum Genet 4:3–7. [DOI] [PubMed] [Google Scholar]
  • 47. Lindblad K, Savontaus ML, Stevanin G, Holmberg M, Digre K, Zarder C, Ehrsson H, David G, Benomar A. E. N, Trottier Y, Holmgren G, Ptacek LJ, Anttinen A, Brice A, and Schalling M (1996) An expanded CAG repeat sequence in spinocerebellar ataxia type 7. Genome Res 6:965–71. [DOI] [PubMed] [Google Scholar]
  • 48. Maciel P, Gaspar C, DeStefano AL, Silveira I, Coutinho P, Radvany J, Dawson DM, Sudarsky L, Guimaraes J, Loureiro JEL, Nezarati MM, Corwin LI, Lopes‐Cendes I, Rooke K, Rosenberg R, MacLeod P, Farrer LA, Sequeiros J, and Rouleau GA (1995) Correlation between CAG repeat length and clinical features in Machado‐Joseph disease. Am J Hum Genet 57:54–61. [PMC free article] [PubMed] [Google Scholar]
  • 49. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherinton C, Lawton M, Trottier Y, Lehrach H, Davies SW, and Bates GP (1996) Exon 1 of the HD gene with expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506. [DOI] [PubMed] [Google Scholar]
  • 50. Margolis RL, Li S‐H, Young WS, Wagster MV, Stine OC, Kidwai AS, Ashworth RG, and Ross CA (1996) DRPLA gene (Arrophin‐1) sequence and mRNA expression in human brain. Mol Brain Res 36:219–26. [DOI] [PubMed] [Google Scholar]
  • 51. Maruyama H, Nakamura S, Matsuyama Z, Sakai T, Doyu M, Sobue G, Seto M, Tsujihata M, Oh‐i T, Nishio T, and Al. E (1995) Molecular features of the CAG repeats and clinical manifestation of Machado‐Joseph disease. Hum Mol Genet 4:807–812. [DOI] [PubMed] [Google Scholar]
  • 52. Nagafuchi S, Yanagisawa H, Sato K, Shirayama T, Ohaski E, Bundo M, Takedo T, Tadokoro K, Kondo I, Muruyama N, Tanaka Y, Kikushima H, Umino K, Kurosawa H, Furukawa T, Nihei K, Inoue T, Sano A, Komure O, Takahashi M, Yoshizawa T, Kanazawa I, and Yamada M (1994) Dentatorubral and pallidoluysian atrophy: expansion of an unstable CAG trinucleotide on chromosome 12p. Nature Genetics 6:14–18. [DOI] [PubMed] [Google Scholar]
  • 53. Nasir J, Floresco SB, O'Kusky JR, Diewert VM, Richman JM, Zeisler J, Borowski A, Marth JD, Phillips AG, and Hayden MR (1995) Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozy‐gotes. Cell 81:811–23. [DOI] [PubMed] [Google Scholar]
  • 54. Nishiyama K, Murayama S, Goto J, Watanabe M, Hashida H, Katayama S, Nomura Y, Nakamura S, and Kanazawa I (1996) Regional and cellular expression of the Machado‐Joseph disease gene in brains of normal and affected individuals. Ann Neurol 40:776–81. [DOI] [PubMed] [Google Scholar]
  • 55. Oberdick J, Smeyne RJ, Mann JR, Jackson S, and Morgan JI (1990) A promoter that drives transgene expression in cerebellar Purkinje and retinal bipolar cells. Science 248:223–26. [DOI] [PubMed] [Google Scholar]
  • 56. Orr HT, Chung MY, Banfi S, Kwiatkowski TJ, Jr. , Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, and Zoghbi HY (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genetics 4:221–6. [DOI] [PubMed] [Google Scholar]
  • 57. Palmiter RD, and Brinster RL (1986) Germ‐line transformation of mice. Ann Rev Geneti 20:465–99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Paulson HL, and Fischbeck KH (1996) Trinucleotide repeats in neurogenetic disorders. Ann Rev Neurosci 19:79–107. [DOI] [PubMed] [Google Scholar]
  • 59. Pulst S‐M, Nechiporuk A, Nechiporuk T, Gispert S, Chen X‐N, Lopes‐Cendes I, Pearlman S, Starkman S, Orozco‐Diaz G, Lunkes A, DeJong P, Rouleau GA, Auburger G, Korenberg JR, Figueroa C, and Sahba S (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genetics 14:269–276. [DOI] [PubMed] [Google Scholar]
  • 60. Quigley CA, Friedman KJ, Johnson A, Lafreniere RG, Silverman LM, Lubahn DB, Brown TR, Wilson EM, Willard HF, and French FS (1992) Complete deletion of the androgen receptor: Definition of the null phenotype of the androgen sensitivity syndrome and determination of carrier status. J Clin Endocrin Metabol 74:927–33. [DOI] [PubMed] [Google Scholar]
  • 61. Ranum LPW, Chung M‐y, Banfi S, Bryer A, Schut LJ, Ramesar R, Duvick LA, McCall A, Subramony SH, Goldfarb L, Gomez C, Sandkuiji L, Orr HT, and Zoghbi HY (1994) Molecular and clinical correlations in spinocerebellar ataxia type 1: evidence for familial effects on the age at onset. Am J Hum Genet 55:244–252. [PMC free article] [PubMed] [Google Scholar]
  • 62. Rosenberg RN (1992) Machado‐Joseph disease: an autosomal dominant motor system degeneration [Review]. Movement Disorders 7:193–203. [DOI] [PubMed] [Google Scholar]
  • 63. Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, Wakisaka A, Tashiro T, Ishida Y, Ikeuchi T, Koide R, Saito M, Sato A, Tanaka T, Hanyu S, Takiyama Y, Nishizawa M, Shimizu N, Nomura Y, Segawa M, Iwabuchi K, Eguchi I, Tanaka H, Takahashi H, and Tsuji S (1996) Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nature Genetics 14:277–284. [DOI] [PubMed] [Google Scholar]
  • 64. Schilling G, Sharp AH, Loev SJ, Wagster MV, Li S‐H, Stine OC, and Ross CA (1995) Expression of the Huntington's disease (IT15) protein in HD patients. Hum MolGenet 4:1365–71. [DOI] [PubMed] [Google Scholar]
  • 65. Sequeiros J, Silveira I, Maciel P, Coutinho P, Manaia A, Gaspar C, and Burlet P (1994) Genetic linkage studies of Machado‐Joseph disease with chromosome 14q STRPs in 16 Portuguese‐azorean kindreds. Genomics 21:645–648. [DOI] [PubMed] [Google Scholar]
  • 66. Servadio A, Koshy B, Armstrong D, Antalffy B, Orr HT, and Zoghbi HY (1995) Expression analysis of the ataxin‐1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals. Nature Genetics 10:94–8. [DOI] [PubMed] [Google Scholar]
  • 67. Snell RG, MacMillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies P, MacDonald ME, Gusella JF, Harper PS, and Shaw DJ (1993) Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease [see comments]. Nature Genetics 4:393–7. [DOI] [PubMed] [Google Scholar]
  • 68. Sobue G (1989) X‐linked recessive bulbospinal neu‐ronopathy. A clinicopathological study. Brain 112:209–232. [DOI] [PubMed] [Google Scholar]
  • 69. Sobue G, Doyu M, Nakao N, Shimada N, Mitsuma T, Maruyama H, Kawakami S, and Nakamura S (1996) Homozygosity for Machado‐Joseph disease gene enhances phenotypic severity. J Neurol Neurosurg S Psych 60:354–356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Strong TV, Tagle DA, Valdes JM, Elmer LW, Boehm K. M. S, Kaatz KW, Collins FS, and Albin RL (1993) Widespread expression of the human and rat Huntington's disease gene in brain and nonnueral tissues. Nature Genetics 5:259–265. [DOI] [PubMed] [Google Scholar]
  • 71. Takiyama Y, Nishizawa M, Tanaka H, Kawashima S, Sakamoto H, Karube Y, and Shimazaki H (1993) The gene for Machado‐Joseph disease is mapped to chromosome 14q. Nature Genetics 4:300–304. [DOI] [PubMed] [Google Scholar]
  • 72. Trottier Y, Devys D, Imbert G, Saudou F, An I, Lutz Y, Weber C, Agid Y, Hirsch EC, and Mandel J‐L (1995) Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form. Nature Genetics 10:104–10. [DOI] [PubMed] [Google Scholar]
  • 73. Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G, Saudou F, Weber C, David G, Tora L, Agid Y, Brice A, and Mandel J‐L (1995) Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature 378:403–406. [DOI] [PubMed] [Google Scholar]
  • 74. Vandaele S, Nordquist DT, Feddersen RM, Tretjakoff I, Peterson AC, and Orr HT (1991) Purkinje cell protein‐2 regulatory regions and transgene expression in cerebellar compartments. Gen Dev 5:1136–48. [DOI] [PubMed] [Google Scholar]
  • 75. Wexler NS, Young AB, Tanzi RE, Starosta‐Rubenstein S, Penny JB, Snodgrass SR, Shoulson I, Gomez F, Ramos‐Arryo MA, Penchaszadeh G, Moreno R, Gibbons K, Faryniarz A, Hobbs W, Anderson MA, Bonilla E, Conneally PM, and Gusella JF (1987) Homozygotes for Huntington disease. Nature 326:194–197. [DOI] [PubMed] [Google Scholar]
  • 76. Zeitlin S, Liu J‐P, Chapman DL, Papaioannou VE, and Efstratiadis A (1995) Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nature Genetics 11:155–163. [DOI] [PubMed] [Google Scholar]
  • 77. Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, and Lee CC (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α‐1A‐voltage‐dependent calcium channel. Nature Genetics 15:62–69. [DOI] [PubMed] [Google Scholar]
  • 78. Zoghbi HY, and Orr HT (1995) Spinocerebellar ataxia type 1. Sem Cell Biol 6:29–35. [DOI] [PubMed] [Google Scholar]
  • 79. Zoghbi HY, Pollack MS, Lyons LA, Ferrell RE, Daiger SP, and Beaudet AL (1988) Spinocerebellar ataxia: variable age of onset and linkage to human leukocyte antigen in a large kindred. Ann Neurol 23:580–4. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES