Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;9(1):147–163. doi: 10.1111/j.1750-3639.1999.tb00216.x

Oxidative Stress in Huntington's Disease

Susan E Browne 1,, Robert J Ferrante 2, M Flint Beal 1,3
PMCID: PMC8098260  PMID: 9989457

Abstract

It has been five years since the elucidation of the genetic mutation underlying the pathogenesis of Huntington's disease (HD) (97), however the precise mechanism of the selective neuronal death it propagates still remains an enigma. Several different etiological processes may play roles, and strong evidence from studies in both humans and animal models suggests the involvement of energy metabolism dysfunction, excitotoxic processes, and oxidative stress. Importantly, the recent development of transgenic mouse models of HD led to the identification of neuronal intranuclear inclusion bodies in affected brain regions in both mouse models and in HD brain, consisting of protein aggregates containing fragments of mutant huntingtin protein. These observations opened new avenues of investigation into possible huntingtin protein interactions and their putative pathogenetic sequelae. Amongst these studies, findings of elevated levels of oxdative damage products such as malondialdehyde, 8‐hydroxy‐deoxyguanosine, 3‐nitrotyrosine and heme oxygenase in areas of degeneration in HD brain, and of increased free radical production in animal models, indicate the involvement of oxidative stress either as a causative event, or as a secondary constituent of the cell death cascade in the disease. Here we review the evidence for oxidative damage and potential mechanisms of neuronal death in HD.

Full Text

The Full Text of this article is available as a PDF (297.2 KB).

References

  • 1. Albin RL, Reiner A, Anderson KD, Penney JB, Young AB (1990) Striatal and nigral neuron subpopulations in rigid Huntington's disease: Implications for the functional anatomy of chorea and rigidity‐akinesia. Ann Neurol 27: 357–365. [DOI] [PubMed] [Google Scholar]
  • 2. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12: 366–375. [DOI] [PubMed] [Google Scholar]
  • 3. Albin RL, Greenamyre JT (1992) Alternative excitotoxic hypotheses. Neurology 42: 733–738. [DOI] [PubMed] [Google Scholar]
  • 4. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13: 266–271. [DOI] [PubMed] [Google Scholar]
  • 5. Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA et al. (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nat Genet 4: 398–403. [DOI] [PubMed] [Google Scholar]
  • 6. Beal MF. (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illness Ann Neurol 31: 119–130. [DOI] [PubMed] [Google Scholar]
  • 7. Beal MF (1994) Neurochemistry and toxin models in Huntington's disease. Curr Op Neurol 7: 542–547. [DOI] [PubMed] [Google Scholar]
  • 8. Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB (1986) Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature 321: 168–171. [DOI] [PubMed] [Google Scholar]
  • 9. Beal MF, Ellison DW, Mazurek MF, Swartz KJ, Malloy JR, Bird ED, Martin JB (1988) A detailed examination of substance P in pathologically graded cases of Huntington's disease. J Neurol Sci 84: 51–61. [DOI] [PubMed] [Google Scholar]
  • 10. Beal MF, Swartz KJ, Hyman BT, Storey E. Finn SF and Koroshetz W. (1991b) Aminooxyacetic acid results in excitotoxin lesions by a novel indirect mechanism. J Neurochem 57: 1068–1073. [DOI] [PubMed] [Google Scholar]
  • 11. Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen BR, Hymen BT (1993a) Neurochemical and histologic characterization of excitotoxic lesions produced by mitochondrial toxin 3‐nitropropionic acid. J Neurosci 13: 4181–4192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Beal MF, Hyman BT and Koroshetz W. (1993b) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases Trends Neurosci 16: 125–131. [DOI] [PubMed] [Google Scholar]
  • 13. Beal MF, Henshaw DR, Jenkins BG, Rosen BR, Schulz JB. (1994) Coenzyme Q10 and nicotinamide block striatal lesions produced by the mitochondrial toxin malonate. Ann Neurol 36: 882–888. [DOI] [PubMed] [Google Scholar]
  • 14. Beal MF, Ferrante RJ, Henshaw R, Matthews RT, Chan PH, Kowall NW, Epstein CJ, Schulz JB (1995) 3‐Nitropropionic acid neurotoxicity is attenuated in copper/zinc superoxide dismutase transgenic mice. J Neurochem 65: 919–922. [DOI] [PubMed] [Google Scholar]
  • 15. Blaustein MP (1988) Calcium transport and buffering in neurons. Trends Neurosci 11: 438–443. [DOI] [PubMed] [Google Scholar]
  • 16. Bolanos JP, Heales SJR, Land JM, Clark, JB (1995) Effect of peroxynitrite on the mitochondrial respiratory chain: Differential susceptibility of neurones and astrocytes in primary culture. J Neurochem 64: 1965–1972. [DOI] [PubMed] [Google Scholar]
  • 17. Braak H, Braak E (1992) Allocortical involvement in Huntington's disease. Neuropathol App Neurobiol 18: 539–547. [DOI] [PubMed] [Google Scholar]
  • 18. Brennan WA, Bird ED, Aprille JR. (1985) Regional mitochondrial respiratory activity in Huntington's disease brain. J Neurochem 44: 1948–1950. [DOI] [PubMed] [Google Scholar]
  • 19. Bresolin N, Bet L, Binda A, Moggio M, Comi G, Nador F, Ferrante C, Carenzi A, Scarlato G (1988) Clinical and biochemical correlations in mitochondrial myopathies treated with coenzyme Q10. Neurology 38: 892–899. [DOI] [PubMed] [Google Scholar]
  • 20. Brouillet EP, Jekins BG, Hyman BT, Ferrante, RJ , Kowall NW, Srivastava R, Samanta‐Roy D, Rosen BR, Beal MF (1993) Age‐dependent vulnerability of the striatum to the mitochondrial toxin 3‐nitropropionic acid. J Neurochem 60: 356–359. [DOI] [PubMed] [Google Scholar]
  • 21. Brouillet E, Hantraye P, Ferrante RJ, Dolan R, Leroy‐Willig A, Kowall NW, Beal MF (1995) Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc Natl Acad Sci USA 92: 7105–7109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MMK, Bird ED, Beal MF (1997) Oxidative damage and metabolic dysfunction in Huntington's Disease: Selective vulnerability of the basal ganglia. Annals Neurol 41: 646–653. [DOI] [PubMed] [Google Scholar]
  • 23. Browne SE, Beal MF (1994) Oxidative damage and mitochondrial dysfunction in neuro‐degenerative diseases. Biochem Soc Trans 22: 1002–1006. [DOI] [PubMed] [Google Scholar]
  • 24. Burke JR, Enghild JJ, Martin ME, Jou Y‐S, Myers RM, Roses AD, Vance VM, Strittmatter WJ (1996) Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nature Med 2: 347–350. [DOI] [PubMed] [Google Scholar]
  • 25. Butterworth J, Yates CM, Reynolds GP (1985) Distribution of phosphate‐activated glutaminase, succinic dehydrogenase, pyruvate dehydrogenase, and α‐glutamyl transpeptidase in post‐mortem brain from Huntington's disease and agonal cases. J Neurol Sci 67: 161–171. [DOI] [PubMed] [Google Scholar]
  • 26. Butterworth NJ, Williams L, Bullock JY, Love DR, Faull RLM, Dragunow M. (1998) Trinucleotide (CAG) repeat length is positively correlated with the degree of DNA fragmentation in Huntington's disease striatum. Neurosci 87: 49–53. [DOI] [PubMed] [Google Scholar]
  • 27. Calabresi P, Centonze D, Pisani A, Sancesario G, Gubellini P, Marfia GA, Bernardi G (1998) Striatal spiny neurons and cholinergic interneurons express differential ionotropic glutamatergic responses and vulnerability: implications for ischemia and Huntington's disease. Ann Neurol 43: 586–597. [DOI] [PubMed] [Google Scholar]
  • 28. Choi DW (1988) Calcium‐mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11: 465–469. [DOI] [PubMed] [Google Scholar]
  • 29. Cooper AJL, Sheu K‐FR, Burke JR, Onodera O, Strittmatter WJ, Roses AD, Blass JP. (1997) Transglutaminase‐catalyzed inactivation of glyceraldehyde 3‐phosphate dehydrogenase and a‐ketoglutarate dehydrogenase complex by polyglutamine domains of pathological length. Proc Natl Acad Sci USA. 94: 12604–12609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Davies SW, Turmaine M, Cozens B, DiFiglia M, Sharp A, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates G. (1997) Formation of neuronal intranuclear inclusions (NII) underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90: 537–548. [DOI] [PubMed] [Google Scholar]
  • 31. de la Monte SM, Vonsattel JP, Richardson EP Jr (1988) Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington's disease. J Neuropath Exp Neurol 47: 516–525. [DOI] [PubMed] [Google Scholar]
  • 32. DiFiglia M, Sapp E, Chase K, Schwarz C, Meloni A, Young C, Martin E, Vonsattel J‐P, Carraway R, Reeves SA, Boyce FM, Aronin N (1995) Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14: 1075–1081. [DOI] [PubMed] [Google Scholar]
  • 33. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel J‐P, Aronin N. (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277: 1990–1993. [DOI] [PubMed] [Google Scholar]
  • 34. Driggers WJ, Holmquist GP, LeDoux SP, Wilson GL (1997) Mapping frequencies of endogenous oxidative damage and the kinetic response to oxidative stress in a region of rat mtDNA. Nucleic Acids Res 25: 4362–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Dugan LL, Sensi SL, Canzoniero LM, Handran SD, Rothman SM, Lin TS, Goldberg MR Choi DW (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N‐methyl‐D‐aspartate. J Neurosci 15: 6377–6388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Duyao M, Ambrose C, Myers R, Novelletto A, Persichetti F, Frontali M, Folstein S, Ross C, Franz M, Abbott M, et al (1993) Trinucleotide repeat length instability and age of onset in Huntington's disease. Nat Genet 4: 387–92. [DOI] [PubMed] [Google Scholar]
  • 37. Duyao MR Auerbach AB, Persichetti F, Barnes GT, McNeil SM, Ge P, Vonsattel J‐R Gusella JF, Joyner AL, MacDonald ME (1995) Inactivation of the mouse Huntington's disease gene homolog (Hdh). Science 269: 407–410. [DOI] [PubMed] [Google Scholar]
  • 38. Dykens JA (1994) Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: implications for neurodegeneration. J Neurochem 63: 584–91. [DOI] [PubMed] [Google Scholar]
  • 39. Ferrante RJ, Gutekunst C‐A, Persichetti F, McNeil SM, Kowall NW, Gusella JF, MacDonald ME, Beal MF, Hersch SM (1997) Heterogeneous topographic and cellular distribution of huntingtin expression in the normal human neostriatum. J Neurosci 17: 3052–3063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Ferrante RJ, Kowall NW, Beal MF, Martin JB, Bird ED, Richardson EP (1987) Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington's disease. J Neuropath Exp Neurol 46: 12–27. [DOI] [PubMed] [Google Scholar]
  • 41. Ferrante RJ, Kowall NW, Hersch SM, Brown Rh, Beal MF (1996) Immunohistochemical localization of markers of oxidative injury in Huntington's disease. Soc Neurosci 22: 92.5. [Google Scholar]
  • 42. Fraga CG, Shigenaga MK, Park J‐W, Degan P, Ames BN (1990) Oxidative damage to DNA during aging: 8‐hydroxy‐2′‐deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci USA 87: 4533–4537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Furtado S, Suchowersky O, Rewcastle B, Graham L, Klimek ML, Garber A. (1996) Relationship between trinucleotide repeats and neuropathological changes in Huntington's disease. Ann Neurol 39: 132–136. [DOI] [PubMed] [Google Scholar]
  • 44. Goebel HH, Heipertz R, Scholz W, Iqbal K, Tellez‐Nagel I. (1978) Juvenile Huntington chorea: clinical, ultrastructural, and biochemical studies. Neurology 28: 23–31. [DOI] [PubMed] [Google Scholar]
  • 45. Gonzalez‐Zulueta M, Ensz LM, Mukhina G, Lebovitz RM, Zwacka RM, Engelhardt JF, Oberley LW, Dawson VL, Dawson TM. (1998) Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide‐mediated neurotoxicity. J Neurosci 18: 2040–2055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Graveland GA, Williams RS, DiFiglia M (1985) Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington's disease. Science 227: 770–773 n. [DOI] [PubMed] [Google Scholar]
  • 47. Graybiel AM, Aosaki T, Flaherty AW, Kimura M (1994) The basal ganglia and adaptive motor control. Science 265: 1826–1831. [DOI] [PubMed] [Google Scholar]
  • 48. Greene JG, Porter RH, Eller RV, Greenamyre JT (1993) Inhibition of succinate dehydrogenase by malonic acid produces an “excitotoxic” lesion in rat striatum. J Neurochem 61: 1151–1154. [DOI] [PubMed] [Google Scholar]
  • 49. Gu M, Gash MT, Mann VM, Javoy‐Agid F, Cooper JM, Schapira AHV (1996) Mitochondrial defect in Huntington's disease caudate nucleus. Ann Neurol 39: 385–389. [DOI] [PubMed] [Google Scholar]
  • 50. Gutekunst C‐A, Levey AI, Heilman CJ, Whaley WL, Yi H, Nash NR, Rees HD, Madden JJ, Hersch SM (1995) Identification and localization of huntingtin in brain and human lympho‐blastoid cell lines with anti‐fusion protein antibodies. Proc Natl Acad Sci USA 92: 8710–8714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Hemmer W, Wallimann T. (1993) Functional aspects of creatine kinase in brain. Dev Neurosci 15: 249–260. [DOI] [PubMed] [Google Scholar]
  • 52. Ihara Y, Namba R, Kuroda S, Sato T, Shirabe T (1989) Mitochondrial encephalomyopathy (MELAS): pathological study and successful therapy withcoenzyme Q10 and idebenone. J Neurol Sci 90: 263–271. [DOI] [PubMed] [Google Scholar]
  • 53. Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, Beckman JS (1992) Peroxynitrite‐mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 298: 431–7. [DOI] [PubMed] [Google Scholar]
  • 54. Jackson GR, Salecker I, Schulze KL, Dong X, Yao X, Arnheim N, Faber P, MacDonald ME, Zipursky SL (1998) Age‐ and polyglutamine length‐dependent degeneration of drosophila photoreceptor neurons induced by human huntingtin transgenes. Soc Neurosci 24: 205.2. [DOI] [PubMed] [Google Scholar]
  • 55. Jenkins BG, Koroshetz W, Beal MF, Rosen B (1993) Evidence for an energy metabolism defect in Huntington's disease using localized proton spectroscopy. Neurology 43: 2689–2695. [DOI] [PubMed] [Google Scholar]
  • 56. Jenkins BG, Rosas HD, Chen Y‐CI, Makabe T, Myers R, MacDonald M, Rosen BR, Beal MF, Koroshetz WJ (1998) 1H‐NMR spectroscopy studies of Huntington's disease. Neurology 50: 1357–1365. [DOI] [PubMed] [Google Scholar]
  • 57. Koh J‐Y, Peters S, Choi DW (1986) Neurons containing NADPH‐diaphorase are selectively resistant to quinolinate toxicity. Science 234: 73–76. [DOI] [PubMed] [Google Scholar]
  • 58. Koroshetz WJ, Jenkins BG, Rosen BR, Beal MF (1997) Energy metabolism defects in Huntington's disease and possible therapy with coenzyme Q10 . Ann Neurol 41: 160–165. [DOI] [PubMed] [Google Scholar]
  • 59. Kuemmerle S, Klein AM, Gutekunst C‐A, Li X‐J, Li S‐H, Hersch SM, Ferrante R (1998) Distribution of huntingtin aggregation in spared and vulnerable neurons in Huntington's disease. Soc Neurosci 24: 380.14. [Google Scholar]
  • 60. Kuhl DE, Markham CH, Metter EJ, Riege WH, Phelps ME, Mazziotta JC (1985) Local cerebral glucose utilization in symptomatic and presymptomatic Huntington's disease. Research Publications - Association for Research in Nervous and Mental Disease 63: 199–209. [PubMed] [Google Scholar]
  • 61. Kuwert T, Lange HW, Langer K‐J, Herzog H, Aulich A, Feinendegen LE (1990) Cortical and subcortical glucose consumption measured by PET in patients with Huntington's disease. Brain 113: 1405–1423. [DOI] [PubMed] [Google Scholar]
  • 62. Landwehrmeyer GB, McNeil SM, Dure LS, Ge P, Aizawa H, Huang Q, Ambrose CM, Duyao MR Bird ED, Bonilla E, De Young M, Avila‐Gonzales AJ, Wexler NS, DiFiglia M, Gusella JF, MacDonald ME, Penney JB, Young AB and Vonsattel J‐P (1995) Huntington's disease gene: Regional and cellular expression in brain of normal and affected individuals. Ann Neurol 37: 218–230. [DOI] [PubMed] [Google Scholar]
  • 63. Li X‐J, Li S‐H, Sharp AH, Nucifora FC Jr., Schilling G, Lanahan A, Worley P, Snyder SH, Ross CA (1995) Huntingtin‐associated protein enriched in brain with implicatins for pathology. Nature 378: 398–402. [DOI] [PubMed] [Google Scholar]
  • 64. Linnane AW, Marzuki S, Ozawa T, Tanaka M (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1(8639): 642–645. [DOI] [PubMed] [Google Scholar]
  • 65. Ludolph AC, He F, Spencer PS, Hammerstad J, Sabri M. (1990) 3‐nitropropionic acid: exogenous animal neurotoxin and possible human striatal toxin. Can. J. Neurol. Sci. 18: 492–498. [DOI] [PubMed] [Google Scholar]
  • 66. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates G (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87: 493–506. [DOI] [PubMed] [Google Scholar]
  • 67. Marnett LJ, Buck J, Tuttle MA, Basu AK, Bull AW (1985) Distribution and oxidation of malondialdehyde in mice. Prostaglandins 30: 241–254. [DOI] [PubMed] [Google Scholar]
  • 68. Matsumara M, Tremblay L, Richard H, Filion M (1995) Activity of pallidal neurons in the monkey during dyskinesia induced by injection of bicuculline in the external pallidum. Neurosci 65: 59–70. [DOI] [PubMed] [Google Scholar]
  • 69. Matthews RT, Yang L, Jenkins BJ, Ferrante RJ, Rosen BR, Kaddurah‐Daouk R, Beal MF (1998) Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington's disease. J Neurosci 18: 156–163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Mazziotta JC, Phelps ME, Pahl JJ, Huang SC, Baxter LR, Riege WH, Hoffman JM, Kuhl DE, Lanto AB, Wapenski JA, Markham CH (1987) Reduced cerebral glucose metabolism in asymptomatic patients at risk for Huntington's disease. New Eng J Med 316: 357–362. [DOI] [PubMed] [Google Scholar]
  • 71. May PC, Gray PN (1985) The mechanism of glutamate‐induced degeneration of cultured Huntington's disease and control fibroblasts. J Neurol Sci 70: 101–112. [DOI] [PubMed] [Google Scholar]
  • 72. Moulder KL, Onodera O, Burke J, Strittmatter WJ, Johnson EM Jr (1998) Polyglutamine containing proteins produce length‐dependent aggregation and death in cultured cerebellar granule cells. Soc Neurosci 24: 379.5. [Google Scholar]
  • 73. Myers RH, Vonsattel JP, Paskevich PA, Kiely DK, Stevens TJ, Cupples LA, Richardson EP Jr, Bird ED (1991) Decreased neuronal and increased oligodendroglial densities in Huntington's disease caudate nucleus. J Neuropathol Exp Neurol. 50: 729–742. [DOI] [PubMed] [Google Scholar]
  • 74. Nakano M, Gotoh S (1992) Accumulation of cardiac lipofuscin depends on metabolic rate of mammals. J Gerontol 47: B126–129. [DOI] [PubMed] [Google Scholar]
  • 75. Nicoletti F, Bruno V, Copani A, Casabona G, Knopfel T (1996) Metabotropic glutamate receptors: A new target for the therapy of neurodegenerative disorders Trends Neurosci 19: 267–271. [DOI] [PubMed] [Google Scholar]
  • 76. Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N‐methyl‐D‐aspartate receptor when intracellular energy levels are reduced. Brain Res 451: 205–212. [DOI] [PubMed] [Google Scholar]
  • 77. O'Brien CF, Miller C, Goldblatt D, Welle S, Forbes G, Lipinski B, Panzik J, Peck R, Plumb S, Oakes D, Kurlan R, Shoulson I (1990) Extraneural metabolism in early Huntington's disease. Ann Neurol 28: 300–301. [Google Scholar]
  • 78. Paulson HL, Perez MK, Trottier Y, Trojanowski JQ, Subramony SH, Das SS, Vig P, Mandel JL, Fischbeck KH, Pittman RN (1997) Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19: 333–344. [DOI] [PubMed] [Google Scholar]
  • 79. Perutz M, Johnson T, Suzuki M, Finch JT (1994) Glutamine repeats as polar zippers: Their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci USA 91: 5355–5358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Portera‐Cailliau C, Hedreen JC, Price DL, Koliatsos VE (1995) Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J Neurosci 15: 3775–3787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81. Reiner A, Albin RL, Anderson KD, D'Amato CJ, Penney JB, Young AB (1988) Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci USA 85: 5733–5737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. Richfield EK, Maguire‐Zeiss KA, Cox C, Gilmore J, Voorn P (1995) Reduced expression of preproenkephalin in striatal neurons from Huntington's disease patients. Ann Neurol 37: 335–343. [DOI] [PubMed] [Google Scholar]
  • 83. Ross CA (1995) When more is less: pathogenesis of glutamine repeat neurodegenerative diseases. Neuron 15: 493–6. [DOI] [PubMed] [Google Scholar]
  • 84. Sapp E, Ge P, Aizawa H, Bird E, Penney J, Young AB, Vonsattel JP, DiFiglia M (1995) Evidence for a preferential loss of enkephalin immunoreactivity in the external globus pallidus in low grade Huntington's disease using high resolution image analysis. Neurosci 64: 397–404. [DOI] [PubMed] [Google Scholar]
  • 85. Saudou F, Finkbeiner S, Devys D, Greenberg ME (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95: 55–66. [DOI] [PubMed] [Google Scholar]
  • 86. Scherzinger E, Kurz R, Turmaine M, Mangiarini L, Hollenbach B, Hasenbank R, Bates GP, Davies SW, Lehrach H, Wanker EE (1997) Huntingtin‐encoded polyglutamine expansions form amyloid‐like aggregates in vitro and in vivo. Cell 90: 549–558. [DOI] [PubMed] [Google Scholar]
  • 87. Schulz JB, Henshaw DR, Jenkins BG, Ferrante RJ, Kowall NW, Rosen BR and Beal MF (1994) 3‐Acetylpyridine produces age‐dependent excitotoxic lesions in rat striatum. J Cereb Blood Flow Metab 14: 1024–1029. [DOI] [PubMed] [Google Scholar]
  • 88. Schulz JB, Henshaw DR, MacGarvey U and Beal MF. (1996a) Involvement of oxidative stress in 3‐nitropropionic acid neurotoxicity. Neurochem Intl 29: 167–171. [DOI] [PubMed] [Google Scholar]
  • 89. Schulz JB, Matthews RT, Henshaw DR, Beal MF (1996b) Neuroprotective strategies for treatment of lesions produced by mitochondrial toxins: implications for neurodegenerative diseases. Neurosci 71: 1043–1048. [DOI] [PubMed] [Google Scholar]
  • 90. Sharp NH, Loev SJ, Schilling G, Li S‐H, Li X‐J, Bao J, Wagster MV, Kotzuk JA, Steiner JP, Lo A, Hedreen J, Sisodia S, Snyder SH, Dawson TM, Ryugo DK, Ross CA (1995) Widespread expression of the Huntington's disease gene (IT‐15) protein product. Neuron 14: 1065–1074. [DOI] [PubMed] [Google Scholar]
  • 91. Sohal RS, Marzabadi MR, Galaris D, Brunk UT (1989) Effect of ambient oxygen concentration on lipofuscin accumulation in cultured rat heart myocytes—a novel in vitro model of lipofuscinogenesis. Free Radic Biol Med 6: 23–30. [DOI] [PubMed] [Google Scholar]
  • 92. Sotrel A, Paskevich PA, Kiely DK, Bird ED, Willimas RS, Myers RH (1991) Morphometric analysis of the prefrontal cortex in Huntington's disease. Neurology 41: 1117–1123. [DOI] [PubMed] [Google Scholar]
  • 93. Stadtman ER (1992) Protein oxidation and aging. Science 257: 1220–1224. [DOI] [PubMed] [Google Scholar]
  • 94. Tellez‐Nagel I, Johnson AB, Terry RD (1995) Studies on brain biopsies of patients with Huntington's chorea. J Neuropathol Exp Neurol 33: 308–332. [DOI] [PubMed] [Google Scholar]
  • 95. Terman A, Brunk UT (1998) Lipofuscin: mechanisms of formation and increase with age. APMIS 106: 265–276. [DOI] [PubMed] [Google Scholar]
  • 96. Trottier Y, Devys D, Imbert G, Saudou F, An I, Lutz Y, Weber C, Agid Y, Hirsch EC, Mandel JL (1995) Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form. Nat Genet 10: 104–110. [DOI] [PubMed] [Google Scholar]
  • 97. The Huntington's Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosome. Cell 72: 971–983. [DOI] [PubMed] [Google Scholar]
  • 98. Uemera Y, Kowall NW, Beal MF (1990) Relative sparing of NADPH‐diaphorase‐somatostatin‐neuropeptide Y neurons in ischemic gerbil striatum. Ann Neurol 27: 620–625. [DOI] [PubMed] [Google Scholar]
  • 99. Vonsattel J‐P, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP (1985) Neuropathological classification of Huntington's disease. J Neuropath Exp Neurol 44: 559–577. [DOI] [PubMed] [Google Scholar]
  • 100. Vonsattel JPG, DiFiglia M (1998) Huntington Disease. J Neuropathol Exp Neurol 57: 369–384. [DOI] [PubMed] [Google Scholar]
  • 101. Weeks RA, Harding AE, Brooks DJ (1996) Striatal D1 and D2 dopamine receptor loss in asymptomatic mutation carriers of Huntington's disease. Ann Neurol 40: 49–54. [DOI] [PubMed] [Google Scholar]
  • 102. White JK, Auerbach W, Duyao MR Vonsattel J‐P, Gusella JF, Joyner AL, MacDonald ME (1997) Huntingtin function is required for mouse brain development and is not impaired by the Huntington's disease CAG expansion mutation. Nat Genet 17: 404–410. [DOI] [PubMed] [Google Scholar]
  • 103. Young AB, Greenamyre JT, Hollingsworth Z, Albin R, D'Amato C, Shoulson I, Penney JB (1988) NMDA receptor losses in putamen from patients with Huntington's disease. Science 241: 981–3. [DOI] [PubMed] [Google Scholar]
  • 104. Zeevalk GD, Nicklas WJ (1991) Mechanisms underlying initiation of excitotoxicity associated with metabolic inhibition. J Pharm Exp Ther 257: 870–878. [PubMed] [Google Scholar]
  • 105. Zhang J, Dawson VL, Dawson TM, Snyder SH (1994) Nitric oxide activation of poly(ADP‐ribose) synthetase in neurotoxicity. Science 263: 687–689. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES