Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;9(1):165–186. doi: 10.1111/j.1750-3639.1999.tb00217.x

Oxidative Stress and Motor Neurone Disease

Mark R Cookson 1, Pamela J Shaw 1,
PMCID: PMC8098266  PMID: 9989458

Abstract

The effects of oxidative stress within post mitotic cells such as neurones may be cumulative, and injury by free radical species is a major potential cause of the age‐related deterioration in neuronal function seen in several neurodegenerative diseases. There is strong evidence that oxidative stress plays an important role in the pathogenesis of motor neurone disease (MND). Point mutations in the antioxidant enzyme Cu, Zn superoxide dismutase (SOD1) are found in some pedigrees with the familial form of MND. How mutations in this ubiquitous enzyme cause the relatively selective cell death of specific groups of motor neurones is not clear, although a number of hypotheses have been forwarded. These include (1) the formation of hydroxyl radicals, (2) the catalysis of reactions of the nitrogen centred oxidant species peroxynitrite, (3) toxicity of copper or zinc and (4) protein aggregation. Some experimental support for these different hypotheses has been produced by manipulating cells in culture to express the mutant SOD1 proteins and by generating transgenic mice which over‐express mutant SOD1. Observations in these model systems are, in some cases at least, supported by observations made on pathological material from patients with similar SOD1 mutations. Furthermore, there are reports of evidence of free radical mediated damage to neurones in the sporadic form of MND. Several lines of evidence suggest that alterations in the glutamatergic neurotransmitter system may also play a key role in the injury to motor neurones in sporadic MND. There are several important subcellular targets, which may be preferentially impaired within motor neurones, including neurofilament proteins and mitochondria. Future research will need to identify the aspects of the molecular and physiological phenotype of human motor neurones that makes them susceptible to degeneration in MND, and to identify those genetic and environmental factors which combine to cause this disease in individuals and in familial pedigrees.

Full Text

The Full Text of this article is available as a PDF (247.9 KB).

References

  • 1. Abe K, Pan LH, Watanabe M, Konno H, Kato T, Itoyama Y (1997) Upregulation of protein‐tyrosine nitration in the anterior horn cells of amyotrophic lateral sclerosis. Neurol Res 19: 124–128. [DOI] [PubMed] [Google Scholar]
  • 2. Abe K, Pan L‐H, Watanabe M, Kato T, Itoyama Y (1995) Induction of nitrotyrosine‐like immunoreactivity in the lower motor neuron of amyotrophic lateral sclerosis. Neurosci Lett 199: 152–154. [DOI] [PubMed] [Google Scholar]
  • 3. Aguirre T, VanDenBosch L, Goetschalckx K, Tilkin P, Mathijs G, Cassiman JJ, Robberecht W (1998) Increased sensitivity of fibroblasts from amyotrophic lateral sclerosis patients to oxidative stress. Ann Neurol 43: 452–457. [DOI] [PubMed] [Google Scholar]
  • 4. Bajaj NPS, AlSarraj ST, Anderson V, Kibble M, Leigh N, Miller CCJ (1998) Cyclin‐dependent kinase‐5 is associated with lipofuscin in motor neurones in amyotrophic lateral sclerosis. Neurosci Lett 245: 45–48. [DOI] [PubMed] [Google Scholar]
  • 5. Beal MF, Ferrante RJ, Browne SE, Matthews RT, Kowall NW, Brown RH (1997) Increased 3‐nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol 42: 644–654. [DOI] [PubMed] [Google Scholar]
  • 6. Beal MF, Hyman BT, Koroshetz W (1993) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative disease Trends Neurol Sci 16: 125–131. [DOI] [PubMed] [Google Scholar]
  • 7. Beckman JS, Carson M, Smith CD, Koppenol WH (1993) ALS, SOD and peroxynitrite. Nature 364: 584. [DOI] [PubMed] [Google Scholar]
  • 8. Bensimon G, Lacomblez V, Meininger V, ALS/Riluzole study group (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med 330: 585–591. [DOI] [PubMed] [Google Scholar]
  • 9. Bergeron C, Muntasser S, Somerville MJ, Weyer L, Percy ME (1994) Copper/Zinc superoxide dismutase messenger RNA levels are increased in sporadic amyotrophic lateral sclerosis motor neurons. Brain Res 659: 272–276. [DOI] [PubMed] [Google Scholar]
  • 10. Bergeron C, Petrunka C, Weyer L (1996) Copper/Zinc Superoxide Dismutase expression in the human central nervous system ‐ correlation with selective neuronal vulnerability. Am J Pathol 148: 273–279. [PMC free article] [PubMed] [Google Scholar]
  • 11. Bogdanov MB, Ramos LE, Xu Z, Beal MF (1998) Elevated “hydroxyl radical” generation in vivo in an animal model of amyotrophic lateral sclerosis. J Neurochem 71: 1321–1324. [DOI] [PubMed] [Google Scholar]
  • 12. Bolaños JP, Heales SJR, Land JM, Clark JB (1995) Effect of peroxynitrite on mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J Neurochem 64: 1965–1972. [DOI] [PubMed] [Google Scholar]
  • 13. Borchelt DR, Lee MK, Slunt HS, Guarnieri M, Xu ZS, Wong PC, Brown RH, Price DL, Sisodia SS, Cleveland DW (1994) Superoxide dismutase‐1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc Natl Acad Sci USA 91: 8292–8296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Borchelt DR, Wong PC, Becher MW, Pardo CA, Lee MK, Xu Z‐S, Thinakaran G, Jenkins NA, Copeland NG, Sisodia SS, Cleveland DW, Price DL, Hoffman PN (1998) Axonal transport of mutant superoxide dismutase 1 and focal axonal abnormalities in the proximal axons of transgenic mice. Neurobiol Dis 5: 27–35. [DOI] [PubMed] [Google Scholar]
  • 15. Bowling AC, Schulz JB, Brown RH, Beal MF (1993) Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem 61: 2322–2325. [DOI] [PubMed] [Google Scholar]
  • 16. Brierly EJ, Johnson MA, James OFW, Turnbull DM (1997) Mitochondrial involvement in the ageing process. Facts and controversies. Mol Cell Biochem 174: 325–328. [PubMed] [Google Scholar]
  • 17. Brown RH (1995) Amyotrophic lateral sclerosis ‐ Recent insights from genetics and transgenic mice. Cell 80: 687–692. [DOI] [PubMed] [Google Scholar]
  • 18. Bruijn LI, Beal MF, Becher MW, Schulz JB, Wong PC, Price DL, Cleveland DW (1997) Elevated free nitrotyrosine levels, but not protein‐bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)‐like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS‐linked superoxide dismutase 1 mutant. Proc Natl Acad Sci USA 94: 7606–7611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG, Sisodia SS, Rothstein JD, Borchelt DR, Price DL, Cleveland DW (1997) ALS‐linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1‐containing inclusions. Neuron 18: 327–338. [DOI] [PubMed] [Google Scholar]
  • 20. Bruijn LI, Cleveland DW (1996) Mechanisms of selective motor neuron death in ALS: Insights from transgenic mouse models of motor neuron disease. Neuropathol Appl Neurobiol 22: 373–387. [DOI] [PubMed] [Google Scholar]
  • 21. Carri MT, Ferri A, Battistoni A, Famhy L, Polizio F, Gabbianelli R, Poccia F, Rotilio G (1997) Expression of a Cu, Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondrial alteration and increase of cytosolic Ca2+ concentration in transfected neuroblastoma SH‐SY5Y eels. FEBS Letts 414: 365–368. [DOI] [PubMed] [Google Scholar]
  • 22. Carriedo SG, Yin HZ, Weiss JH (1996) Motor neurons are selectively vulnerable to AMPA/kainate receptor‐mediated injury in vitro. J Neurosci 16: 4069–4079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Chou SM, Wang HS, Komai K (1996) Colocalization of NOS and SOD1 in neurofilament accumulation within motor neurons of amyotrophic lateral sclerosis ‐ an immunohistochemical study. J Chem Neuroanat 10: 249–258. [DOI] [PubMed] [Google Scholar]
  • 24. Chou SM, Wang HS, Taniguchi A (1996) Role of SOD‐1 and nitric oxide cyclic GMP cascade on neurofilament aggregation in ALS/MND. J Neurol Sci 139: 16–26. [DOI] [PubMed] [Google Scholar]
  • 25. Cleveland DW, Bruijn LI, Wong PC, Marszalek JR, Vechio JD, Lee MK, Xu XS, Borchelt DR, Sisodia SS, Price DL (1996) Mechanisms of selective motor neuron death in transgenic mouse models of motor neuron disease. Neurology 47: S 54–S 61. [DOI] [PubMed] [Google Scholar]
  • 26. Comi GP, Bordoni A, Salani S, Franceschina L, Sciacco M, Prelle A, Fortunato F, Zeviani M, Napoli L, Bresolin N, Moggio M, Ausenda CD, Taanman J‐W, Scarlato G (1998) Cytochrome c Oxidase subunit I microdeletion in a patient with motor neuron disease. Ann Neurol 43: 110–116. [DOI] [PubMed] [Google Scholar]
  • 27. Cookson MR, Ince PG, Shaw PJ (1998) Peroxynitrite and hydrogen peroxide induced cell death in the NSC34 neuroblastoma x spinal cord cell line; Role of poly(ADP‐ribose) polymerase. J Neurochem 72: 501–508. [DOI] [PubMed] [Google Scholar]
  • 28. Cookson MR, Ince PG, Usher PA, Shaw PJ (1998) Distribution of poly(ADP‐ribose) polymerase (PARP) in the human CNS and in amyotrophic lateral sclerosis. J Neuropath Exp Neurol Submitted.
  • 29. Cookson MR, Thatcher NM, Ince PG, Shaw PJ (1996) Selective loss of neurofilament proteins after exposure of differentiated human IMR32 neuroblastoma cells to oxidative stress. Brain Res 738: 162–166. [DOI] [PubMed] [Google Scholar]
  • 30. Corral‐Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with increased age. Nat Gen 2: 324–329. [DOI] [PubMed] [Google Scholar]
  • 31. Corson LB, Strain JJ, Culotta VC, Cleveland DW (1998) Chaperone‐facilitated copper binding is a property common to several classes of familial amyotrophic lateral sclerosis‐linked superoxide dismutase mutants. Proc Natl Acad Sci USA 95: 6361–6366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Cosi C, Chopin P, Marien M (1996) Benzamide, an inhibitor of poly(ADP‐ribose) polymerase attenuates methamphetamine‐induced dopamine toxicity in the C57B1/6N mouse. Brain Res 735: 343–348. [DOI] [PubMed] [Google Scholar]
  • 33. Cosi C, Colpaert F, Koek W, Degryse A, Marien M (1996) Poly(ADP‐ribose) polymerase inhibitors protect against MPTP‐induced depletions of striatal dopamine and coritcal noradrenaline in C57B1/6 mice. Brain Res 729: 264–269. [PubMed] [Google Scholar]
  • 34. Cosi C, Suzuki H, Milani D, Facci L, Menegazzi M, Vantini G, Kanai Y, Skapper SD (1994) Poly(ADP‐Ribose) Polymerase: early involvement in glutamate‐induced neurotoxicity in cultured cerebellar granule cells. J Neurosci Res 39: 38–46. [DOI] [PubMed] [Google Scholar]
  • 35. Cote F, Collard JF, Julien JP (1993) Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene ‐ a mouse model of amyotrophic lateral sclerosis. Cell 73: 35–46. [DOI] [PubMed] [Google Scholar]
  • 36. Couillard‐Despres S, Zhu Q, Wong PC, Price DL, Cleveland DW, Julian J‐P (1998) Protective effect of neurofilament heavy gene in motor neuron disease induced by mutant superoxide dismutase. Proc Natl Acad Sci USA 95: 9626–9630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Crow JP, Sampson JB, Zhuang YX, Thompson JA, Beckman JS (1997) Decreased zinc affinity of amyotrophic lateral sclerosis‐associated superoxide dismutase mutants leads to enhanced catalysis of tyrosine nitration by peroxynitrite. J Neurochem 69: 1936–1944. [DOI] [PubMed] [Google Scholar]
  • 38. Crow JP, Ye YZ, Strong M, Kirk M, Barnes S, Beckman JS (1997) Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament‐L. J Neurochem 69: 1945–1953. [DOI] [PubMed] [Google Scholar]
  • 39. Cudkowicz ME, McKenna Yasek D, Chen C, Hedley Whyte ET, Brown RH (1998) Limited corticospinal tract involvement in amyotrophic lateral sclerosis subjects with the A4V mutation in the copper/zinc superoxide dismutase gene. Ann Neurol 43: 703–710. [DOI] [PubMed] [Google Scholar]
  • 40. Curti D, Malaspina A, Facchetti G, Camana C, Mazzini L, Tosca P, Zerbi F, Ceroni M (1996) Amyotrophic lateral sclerosis: oxidative energy metabolism and calcium homeostasis in peripheral blood lymphocytes. Neurology 47: 1061–1064. [DOI] [PubMed] [Google Scholar]
  • 41. DalCanto MC, Gurney ME (1994) Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am J Pathol 145: 1271–1279. [PMC free article] [PubMed] [Google Scholar]
  • 42. DalCanto MC, Gurney ME (1995) Neuropathological changes in 2 lines of mice carrying a transgene for mutant human Cu, Zn SOD, and in mice overexpressing wild‐type human SOD ‐ a model of familial amyotrophic lateral sclerosis (FALS). Brain Res 676: 25–40. [DOI] [PubMed] [Google Scholar]
  • 43. DalCanto MC, Gurney ME (1997) A low expressor line of transgenic mice carrying a mutant human Cu, Zn superoxide dismutase [SOD1] gene develops pathological changes that most closely resemble those in human amyotrophic lateral sclerosis. Acta Neuropath 93: 537–550. [DOI] [PubMed] [Google Scholar]
  • 44. Dawson VL, Dawson TM (1997) Therapeutic approaches with nitric oxide synthase inhibitors. In Mitochondria and free radicals in neurodegenerative diseases Beal MF, Howell N, Bodis‐Wollner I, (Eds.), pp. 513–535, Wiley‐Liss, New York . [Google Scholar]
  • 45. Deng H‐X, Hentati A, Tainer JA, Iqbal Z, Cayabyab A, Hung W‐Y, Getzoff ED, Hu P, Herzfeldt B, Roos RP, Warner C, Deng G, Soriano E, Smyth C, Parge HE, Ahmed A, Roses AD, Hallewell RA, Pericak‐Vance MA, Siddique T (1993) Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science 261: 1047–1051. [DOI] [PubMed] [Google Scholar]
  • 46. Durham HD, Roy J, Dong L, Figlewicz DA (1997) Aggregation of mutant Cu/Zn superoxide dismutase proteins in a culture model of ALS. J Neuropath Exp Neurol 56: 523–530. [DOI] [PubMed] [Google Scholar]
  • 47. Eliasson MJL, Sampei K, Mandir AS, Hum PD, Traystman RJ, Bao J, Pieper A, Wang Z‐Q, Dawson TM, Snyder SH, Dawson VL (1997) Poly(ADP‐ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3: 1089–1095. [DOI] [PubMed] [Google Scholar]
  • 48. Eyer J, Cleveland DW, Wong PC, Peterson AC (1998) Pathogenesis of two axonopathies does not require axonal neurofilaments. Nature 391: 584–587. [DOI] [PubMed] [Google Scholar]
  • 49. Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, Kowall NW, Brown RH, Beal MF (1997) Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 69: 2064–2074. [DOI] [PubMed] [Google Scholar]
  • 50. Ferrante RJ, Shinobu LA, Schulz JB, Matthews RT, Thomas CE, Kowall NW, Gurney ME, Beal MF (1997) Increased 3‐nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation. Ann Neurol 42: 326–334. [DOI] [PubMed] [Google Scholar]
  • 51. Figlewicz DA, Krizus A, Martinoli MG, Meininger V, Dib M, Rouleau GA, Julien JP (1994) Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum Mol Gen 3: 1757–1761. [DOI] [PubMed] [Google Scholar]
  • 52. Fitzmaurice PS, Shaw IC, Kleiner HE, Miller RT, Monks TJ, Lau SS, Mitchell JD, Lynch PG (1996) Evidence for DNA damage in amyotrophic lateral sclerosis. Muscle and Nerve 19: 797–798. [PubMed] [Google Scholar]
  • 53. Fray AE, Ince PG, Banner SJ, Milton ID, Usher PA, Cookson MR, Shaw PJ (1998) The expression of the glial glutamate transporter protein EAAT2 in motor neuron disease: an immunohistochemical study. Eur J Neurosci 10: 2481–2489. [DOI] [PubMed] [Google Scholar]
  • 54. Friedlander RM, Brown RH, Gagliardini V, Wang J, Yuan JY (1997) Inhibition of ICE slows ALS in mice. Nature 388: 31. [DOI] [PubMed] [Google Scholar]
  • 55. Fujita K, Yamauchi M, Shibayama K, Ando M, Honda M, Nagata Y (1996) Decreased cytochrome c oxidase activity but unchanged superoxide dismutase and glutathione peroxidase activities in the spinal cords of patients with amyotrophic lateral sclerosis. Neurosci Res 45: 276–281. [DOI] [PubMed] [Google Scholar]
  • 56. Ghadge GD, Lee JP, Bindokas VP, Jordan J, Ma L, Miller RJ, Roos RP (1997) Mutant superoxide dismutase‐1‐linked familial amyotrophic lateral sclerosis: Molecular mechanisms of neuronal death and protection. J Neurosci 17: 8756–8766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Giasson BI, Mushynski WE (1996) Aberrant stress‐induced phosphorylation of perikaryal neurofilaments. J Biol Chem 48: 30404–30409. [DOI] [PubMed] [Google Scholar]
  • 58. Greene JG, Sheu S‐S, Gross RA, Greenamyre JT (1998) 3‐nitroproprionic acid exacerbates N‐methyl‐D‐aspartate toxicity in striatal culture by mutliple mechanisms. Neuroscience 84: 503–510. [DOI] [PubMed] [Google Scholar]
  • 59. Guidato S, Bajaj NPS, Miller CCJ (1996) Cellular phosphorylation of neurofilament heavy‐chain by cyclin‐dependent kinase‐5 masks the epitope for monoclonal‐antibody N52. Neurosci Lett 217: 157–160. [PubMed] [Google Scholar]
  • 60. Guidato S, Tsai LH, Woodgett J, Miller CCJ (1996) Differential cellular phosphorylation of neurofilament heavy side‐ arms by glycogen‐synthase kinase‐3 and cyclin‐dependent kinase‐5. J Neurochem 66: 1698–1706. [DOI] [PubMed] [Google Scholar]
  • 61. Gurney ME, Cutting FB, Zhai P, Doble A, Taylor CP, Andrus PK, Hall ED (1996) Benefit of Vitamin E, riluzole and gabapentin in a transgenic mouse model of familial amyotrophic lateral sclerosis. Ann Neurol 39: 147–157. [DOI] [PubMed] [Google Scholar]
  • 62. Gurney ME, Pu HF, Chiu AY, Dalcanto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX, Chen WJ, Zhai P, Sufit RL, Siddique T (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264: 1772–1775. [DOI] [PubMed] [Google Scholar]
  • 63. Hoffman EK, Wilcox HM, Scott RW, Siman R (1996) Proteasome inhibition enhances the stability of mouse Cu/Zn superoxide dismutase with mutations linked to familial amyotrophic lateral sclerosis. J Neurol Sci 139: 15–20. [PubMed] [Google Scholar]
  • 64. Hottinger AF, Fine EG, Gurney ME, Zurn AD, Aebischer P (1997) The copper chelator d‐penicillamine delays onset of disease and extends survival in a transgenic mouse model of familial amyotrophic lateral sclerosis. Eur J Neurosci 9: 1548–1551. [DOI] [PubMed] [Google Scholar]
  • 65. Ince PG, Shaw PJ, Candy JM, Mantle D, Tandon L, Ehmann WD, Markesbery WR (1994) Iron, selenium and glutathione peroxidase activity are elevated in sporadic motor neuron disease. Neurosci Lett 182: 87–90. [DOI] [PubMed] [Google Scholar]
  • 66. Ince PG, Stout N, Shaw PJ, Slade J, Hunziker W, Heizmann CW, Baimbridge KG (1991) Parvalbumin and calbindin D‐28k in the human motor system and in motor neuron disease. Neuropathol Appl Neurobiol 19: 291–299. [DOI] [PubMed] [Google Scholar]
  • 67. Ince PG, Tomkins J, Slade JY, Thatcher NM, Shaw PJ (1998) Amyotrophic lateral sclerosis associated with genetic abnormalities in the gene encoding Cu/Zn superoxide dismutase: molecular pathology of five new cases, and comparison with previous reports and 73 cases of sporadic ALS. J Neuropath Exp Neurol In Press. [DOI] [PubMed] [Google Scholar]
  • 68. Ishiropolous H, Al‐Mehdi AB (1995) Peroxynitrite‐mediated oxidative protein modifications. FEBS Letts 364: 279–282. [DOI] [PubMed] [Google Scholar]
  • 69. Jordan J, Gallindo MF, Prehn JHM, Weichselbaum RR, Beckett M, Ghadge GD, Roos RP, Leiden JM, Miller RJ (1997) p53 expression induces apoptosis in hippocampal pyramidal neuron cultures. J Neurosci 17: 1397–1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Kato S, Hayashi H, Nakashima K, Nanba E, Kato M, Hirano A, Nakano I, Asayama K, Ohama E (1997) Pathological characterization of astrocytic hyaline inclusions in familial amyotrophic lateral sclerosis. Am J Pathol 151: 611–620. [PMC free article] [PubMed] [Google Scholar]
  • 71. Kato S, Shimoda M, Watanabe Y, Nakasmia K, Takahashi K, Omaha E (1996) Familial amyotrophic lateral sclerosis with a two base pair deletion in superoxide dismutase 1 gene: multisystem degeneration with intracytoplasmic hyaline inclusions in astrocytes. J Neuropath Exp Neurol 55: 1089–1101. [PubMed] [Google Scholar]
  • 72. Kisby GE, Milne J, Sweatt C (1997) Evidence of reduced DNA repair in amyotrophic lateral sclerosis brain tissue. Neuroreport 8: 1337–1340. [DOI] [PubMed] [Google Scholar]
  • 73. Kong J, Xu Z (1998) Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice carrying a mutant SOD1. J Neurosci 18: 3241–3250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Kostic V, Jackson‐Lewis V, de Bilbao F, Dubois‐Dauphin M, Przedborski S (1997) Bcl‐2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 277: 559–562. [DOI] [PubMed] [Google Scholar]
  • 75. Kyriakis JM, Avruch J (1996) Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem 271: 24313–24316. [DOI] [PubMed] [Google Scholar]
  • 76. Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meninger V, ALS/Riluzole study group II (1996) Dose‐ranging study of riluzole in amyotrophic lateral sclerosis. Lancet 347: 1425–1431. [DOI] [PubMed] [Google Scholar]
  • 77. Lee MK, Marszalek JR, Cleveland DW (1994) A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron 13: 975–988. [DOI] [PubMed] [Google Scholar]
  • 78. Lefebvre S, Mushynski WE (1987) Calcium binding to untreated and dephosphorylated porcine neurofilaments. Biochem Biophys Res Comms 145: 1006–1011. [DOI] [PubMed] [Google Scholar]
  • 79. Lefebvre S, Mushynski WE (1988) Characterization of the cation binding properties of porcine neurofilaments. Biochemistry 27: 8503–8508. [DOI] [PubMed] [Google Scholar]
  • 80. Linnane AW, Marzuki S, Ozawa T, Tanaka M (1989) Mitochondrial DNA mutations as an important contribution to ageing and degenerative diseases. Lancet 642–645. [DOI] [PubMed]
  • 81. Liochev SI, Chen LL, Hallewell RA, Fridovich I (1997) Superoxide‐dependent peroxidase activity of H48Q: a superoxide dismutase variant associated with familial amyotrophic lateral sclerosis. Arch Biochem Biophys 346: 263–268. [DOI] [PubMed] [Google Scholar]
  • 82. Louvel E, Hugon J, Doble A (1997) Therapeutic advances in amyotrophic lateral sclerosis. Trends Pharmacol Sci 18: 196–203. [DOI] [PubMed] [Google Scholar]
  • 83. Louwerse ES, Weverling GJ, Bossuyt PMM, Posthumus Meyjes FE, de Jong JMBV (1995) Randomized, double‐blind controlled trial of acetylcysteine in amyotrophic lateral sclerosis. Arch Neurol 52: 559–564. [DOI] [PubMed] [Google Scholar]
  • 84. Mena MA, Khan U, Togasaki DM, Sulzer D, Epstein CJ, Przedborski S (1997) Effects of wild‐type and mutated copper/zinc superoxide dismutase on neuronal survival and L‐DOPA‐induced toxicity in postnatal midbrain culture. J Neurochem 69: 21–33. [DOI] [PubMed] [Google Scholar]
  • 85. Migheli A, Attanasio A, Schiffer D (1994) Ubiquitin and neurofilament expression in anterior horn cells in amyotrophic lateral sclerosis: possible clues to the pathogenesis. Neuropathol Appl Neurobiol 20: 282–289. [DOI] [PubMed] [Google Scholar]
  • 86. Miller RJ (1998) Mitochondria ‐ the Kraken wakes Trends Neurosci 21: 95–97. [DOI] [PubMed] [Google Scholar]
  • 87. Morrison BM, Gordon JW, Ripps ME, Morrison JH (1996) Quantitative immunocytochemical analysis of the spinal cord in G86R superoxide dismutase transgenic mice ‐neurochemical correlates of selective vulnerability. J Comp Neurol 373: 619–631. [DOI] [PubMed] [Google Scholar]
  • 88. Mourelatos Z, Gonatas NK, Stieber A, Gurney ME, Dalcanto MC (1996) The golgi apparatus of spinal cord motor neurons in transgenic mice expressing mutant Cu, Zn superoxide dismutase becomes fragmented in early, preclinical stages of the disease. Proc Natl Acad Sci USA 93: 5472–5477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89. Mu XJ, He J, Anderson DW, Trojanowski JQ, Springer JE (1996) Altered expression of Bcl‐2 and Bax messenger RNA in amyotrophic lateral sclerosis spinal cord motor neurons. Ann Neurol 40: 379–386. [DOI] [PubMed] [Google Scholar]
  • 90. Munoz DG, Greene C, Perl DP, Selkoe DJ (1988) Accumulation of phosphorylated neurofilaments in anterior horn motorneurons of amyotrophic lateral sclerosis patients. J Neuropath Exp Neurol 47: 9–18. [DOI] [PubMed] [Google Scholar]
  • 91. Murayama S, Ookawa Y, Mori H, Nakano I, Ihara Y, Kuzuhara S, Tomonaga M (1989) Immunocytochemical and ultrasructural study of Lewy‐body‐like hyaline inclusions in familial amyotrophic lateral sclerosis. Acta Neuropath 78: 143–152. [DOI] [PubMed] [Google Scholar]
  • 92. Olkowski ZL (1998) Mutant AP endonuclease in patients with amyotrophic lateral sclerosis. Neuroreport 9: 239–242. [DOI] [PubMed] [Google Scholar]
  • 93. Oorschot DE, McLennan IS (1998) The trophic requirements of mature motorneurons. Brain Res 789: 315–321. [DOI] [PubMed] [Google Scholar]
  • 94. Orrell RW, King AW, Hilton DA, Campbell MJ, Lane RJM, DeBelleroche JS (1995) Familial amyotrophic lateral sclerosis with a point mutation of SOD‐1 ‐ intrafamilial heterogeneity of disease duration associated with neurofibrillary tangles. J Neurol Neurosurg Psychiat 59: 266–270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95. Packer MA, Scarlett JL, Martin SW, Murphy MP (1997) Induction of the mitochondrial permeability transition pore by peroxynitrite. Biochem Soc Trans 25. [DOI] [PubMed] [Google Scholar]
  • 96. Pardo CA, Xu ZS, Borchelt DR, Price DL, Sisodia SS, Cleveland DW (1995) Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor‐neurons and in a subset of other neurons. Proc Natl Acad Sci USA 92: 954–958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97. Phillips JP, Tainer JA, Getzoff ED, Boulianne GL, Kirby K, Hilliker AJ (1995) Subunit‐destabilising mutations in Drosophila copper/zinc superoxide dismutase: neuropathology and a model of dimer dysequilibrium. Proc Natl Acad Sci USA 92: 8533–8534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98. Pramatarova A, Goto J, Nanba E, Nakashima K, Takahashi K, Takagi A, Kanazawa I, Figlewicz DA, Rouleau GA (1994) A 2 basepair deletion in the SOD‐1 gene causes familial amyotrophic lateral sclerosis. Hum Mol Gen 3: 2061–2062. [PubMed] [Google Scholar]
  • 99. Przedborski S, Donaldson DM, Jakowec M, Kish SJ, Guttman M, Rosoklija G, Hays AP (1996) Brain superoxide dismutase, catalase and glutathione peroxidase in amyotrophic lateral sclerosis. Ann Neurol 39: 158–165. [DOI] [PubMed] [Google Scholar]
  • 100. Rabizadeh S, Gralla EB, Borchelt DR, Gwinn R, Valentine JS, Sisodia S, Wong P, Lee M, Hahn H, Bredesen DE (1995) Mutations associated with amyotrophic lateral sclerosis convert superoxide dismutase from an anti‐apoptotic gene to a proapoptotic gene ‐ studies in yeast and neural cells. Proc Natl Acad Sci USA 92: 3024–3028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101. Radunovic A, Leigh PN (1996) Cu/Zn superoxide dismutase gene mutations in amyotrophic lateral sclerosis: Correlation between genotype and clinical features. J Neurol Neurosurg Psychiat 61: 565–572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102. Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF, Wilcox HM, Flood DG, Beal MF, Brown RH, Scott RW, Snider WD (1996) Motor neurons in Cu/Zn superoxide dismutase‐deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Gen 13: 43–47. [DOI] [PubMed] [Google Scholar]
  • 103. Reed JC (1997) Double identitiy for proteins of the Bcl‐2 family. Nature 387: 773–776. [DOI] [PubMed] [Google Scholar]
  • 104. Regan RF (1996) The vulnerability of spinal cord neurons to excitotoxic injury: comparisons with cortical neurons. Neurosci Lett 213: 9–12. [DOI] [PubMed] [Google Scholar]
  • 105. Richter C (1995) Oxidative damage to mitochondrial DNA and its relationship to ageing. Intl J Biochem Cell Biol 27: 647–753. [DOI] [PubMed] [Google Scholar]
  • 106. Ripps ME, Huntley GW, Hof PR, Morrison JH, Gordon JW (1995) Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 92: 689–693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, Oregan JP, Deng HX, Rahmani Z, Krizus A, McKennayasek D, Cayabyab A, Gaston SM, Berger R, Tanzi RE, Halperin JJ, Herzfeldt B, Vandenbergh R, Hung WY, Bird T, Deng G, Mulder DW, Smyth C, Laing NG, Soriano E, Pericakvance MA, Haines J, Rouleau GA, Gusella JS, Horvitz HR, Brown RH (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362: 59–62. [DOI] [PubMed] [Google Scholar]
  • 108. Rothstein JD (1995) Excitotoxic mechanisms in the pathogenesis of amyotrophic lateral sclerosis. Adv Neurol 68: 7–20. [PubMed] [Google Scholar]
  • 109. Rothstein JD, Bristol LA, Hosler B, Brown RH, Kuncl RW (1994) Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons. Proc Natl Acad Sci USA 91: 4155–4159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110. Rothstein JD, Kammen MV, Levy AI, Martin LJ, Kuncl RW (1995) Selective loss of glial glutamate transporter GLT‐1 in amyotrophic lateral sclerosis. Ann Neurol 38: 73–84. [DOI] [PubMed] [Google Scholar]
  • 111. Rouleau GA, Clark AW, Rooke K, Pramatarova A, Krizus A, Suchowersky O, Julien JP, Figlewicz D (1996) Sod1 mutation is associated with accumulation of neurofilaments in amyotrophic lateral sclerosis. Ann Neurol 39: 128–131. [DOI] [PubMed] [Google Scholar]
  • 112. Sasaki S, Iwata M (1996) Ultrastructural study of synapses in the anterior horn of patients with amyotrophic lateral sclerosis. Neurosci Lett 204: 53–56. [DOI] [PubMed] [Google Scholar]
  • 113. Shaw CE, Enayat ZE, Chioza BA, AlChalabi A, Radunovic A, Powell JF, Leigh P (1998) Mutations in all five exons of SOD‐1 may cause ALS. Ann Neurol 43: 390–393. 9506558 [Google Scholar]
  • 114. Shaw CE, Enayat ZE, Powell JF, Anderson VER, Radunovic A, AlSarraj S, Leigh PN (1997) Familial amyotrophic lateral sclerosis ‐ Molecular pathology of a patient with a SOD1 mutation. Neurology 49: 1612–1616. [DOI] [PubMed] [Google Scholar]
  • 115. Shaw PJ (1994) Excitotoxicity and motor neurone disease: a review of the evidence. J Neurol Sci 124(suppl.): 6–13. [DOI] [PubMed] [Google Scholar]
  • 116. Shaw PJ, Chinnery RM, Thagesen H, Borthwick GM, Ince PG (1997) Immunocytochemical study of the distribution of the free radical scavenging enzymes Cu/Zn superoxide dismutase (SOD1); Mn superoxide dismutase (Mn SOD) and catalase in the normal human spinal cord and in motor neuron disease. J Neurol Sci 147: 115–125. [DOI] [PubMed] [Google Scholar]
  • 117. Shaw PJ, Ince PG, Falkous G, Mantle D (1995) Oxidative damage to protein in sporadic motor neuron disease. Ann Neurol 38: 691–695. [DOI] [PubMed] [Google Scholar]
  • 118. Shaw PJ, Tomkins J, Slade JY, Usher P, Curtis A, Bushby K, Ince PG (1997) CNS tissue Cu/Zn superoxide dismutase (SOD1) mutations in motor neurone disease (MND). Neuroreport 8: 3923–3928. [DOI] [PubMed] [Google Scholar]
  • 119. Shibata N, Hirano A, Kobayashi M, DalCanto MC, Gurney ME, Ikeda K, Horiuchi S (1997) Advanced glycosylation end products (AGE) deposition in intraneuronal hyaline inclusions (IHIs) of spinal cords from familial amyotrophic lateral sclerosis (ALS) patients with superoxide dismutase‐1 (SOD1) mutation and from transgenic mice expressing mutant human SOD1. Brain Path 7: 1073–1073. [Google Scholar]
  • 120. Shibata N, Hirano A, Kobayashi M, Siddique T, Deng HX, Hung WY, Kato T, Asayama K (1996) Intense superoxide dismutase‐1 immunoreactivity in intracytoplasmic hyaline inclusions of familial amyotrophic lateral sclerosis with posterior column involvement. J Neuropath Exp Neurol 55: 481–490. [DOI] [PubMed] [Google Scholar]
  • 121. Shwartz LM, Milligan CE (1996) Cold thoughts of death: the role of ICE proteases in neuronal cell death. Trends Neurosci 19: 555–562. [DOI] [PubMed] [Google Scholar]
  • 122. Siddique T, Nijhawan D, Hentat A (1996) Molecular genetic basis of familial ALS. Neurology 47 (suppl 2): S27–S35. [DOI] [PubMed] [Google Scholar]
  • 123. Siklos L, Engelhardt J, Harati Y, Smith RG, Joo F, Appel SH (1996) Ultrastructural evidence for altered calcium in the motor nerve terminals in amyotrophic lateral sclerosis. Ann Neurol 39: 203–219. [DOI] [PubMed] [Google Scholar]
  • 124. Siklos L, Engelhardt JI, Alexianu ME, Gurney ME, Siddique T, Appel SH (1998) Intracellular calcium parallels motorneuron degeneration in SOD‐1 mutant mice. J Neuropath Exp Neurol 57: 571–587. [DOI] [PubMed] [Google Scholar]
  • 125. Sillevis Smitt PAE, Mulder TPJ, Verspaget HW, Blaauwgeers HGT, Troost D, de Jong JMBV (1994) Metallothionein in amyotrophic lateral sclerosis. Biol Signals 3: 193–197. [DOI] [PubMed] [Google Scholar]
  • 126. Singh RJ, Karoui H, Gunther MR, Beckman JS, Mason RP, Kalyanaraman B (1998) Reexamination of the mechanism of hydroxyl radical adducts formed from the reaction between familial amyotrophic lateral sclerosis‐associated Cu, Zn superoxide dismutase mutants and H2O2. Proc Natl Acad Sci USA 95: 6675–6680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127. Strong MJ, Stopper MM, Crow JP, Strong WL, Beckman JS (1998) Nitration of the low molecular weight neurofilament is equivalent in sporadic amyotrophic lateral sclerosis and control cervical spinal cord. Biochem Biophys Res Comms 248: 157–164. [DOI] [PubMed] [Google Scholar]
  • 128. Szabó C, Dawson VL (1998) Role of poly(ADP‐ribose) synthetase in inflammation and ischemia‐reperfusion. Trends Pharmacol Sci 19: 287–297. [DOI] [PubMed] [Google Scholar]
  • 129. Takahashi H, Makifuchi T, Nakano R, Sato S, Inuzuka T, Sakimura K, Mishina M, Honma Y, Tsuji S, Ikuta F (1994) Familial amyotrophic lateral sclerosis with a mutation in the Cu/Zn superoxide dismutase gene. Acta Neuropath 88: 185–188. [DOI] [PubMed] [Google Scholar]
  • 130. Tomkins J, Usher P, Slade JY, Ince PG, Curtis A, Bushby K, Shaw PJ (1998) Novel insertion in the KSP region of the neurofilament heavy gene in amyotrophic lateral sclerosis. Neuroreport 9: In Press. [DOI] [PubMed] [Google Scholar]
  • 131. Troost D, Aten J, Morsink F, de Jong J (1995) Apoptosis in amyotrophic lateral sclerosis is not restricted to motor neurons ‐ Bcl‐2 expression is increased in unaffected post‐ central gyrus. Neuropathol Appl Neurobiol 21: 498–504. [DOI] [PubMed] [Google Scholar]
  • 132. Troy CM, Shelanski M (1994) Down regulation of copper/zinc superoxide dismutase causes apoptotic death in PC12 neuronal cells. Proc Natl Acad Sci USA 91: 6384–6387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133. Tu PH, Raju P, Robinson KA, Gurney ME, Trojanowski JQ, Lee VMY (1996) Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. Proc Natl Acad Sci USA 93: 3155–3160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134. Vyth A, Timmer JG, Bossuyt PMM, Louwerse ES, de Jong JMBV (1996) Survival in patients with amyotrophic lateral sclerosis, treated with an array of antioxidants. J Neurol Sci 139: 99–103. [DOI] [PubMed] [Google Scholar]
  • 135. Wang XT, Culotta VC, Klee CB (1996) Superoxide dismutase protects calcineurin from inactivation. Nature 383: 434–437. [DOI] [PubMed] [Google Scholar]
  • 136. Wiedau‐Pazos M, Goto JJ, Rabizadeh S, Gralla EB, Roe JA, Lee MK, Valentine JS, Bredesen DE (1996) Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271: 515–518. [DOI] [PubMed] [Google Scholar]
  • 137. Wiedemann FR, Winkler K, Kuznetsov AV, Bartels C, Vielhaber S, Feistner H, Kunz WS (1998) Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J Neurol Sci 156: 65–72. [DOI] [PubMed] [Google Scholar]
  • 138. Williams TL, Day NC, Ince PG, Kamboj RK, Shaw PJ (1997) Calcium‐permeable a‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazole propionic acid receptors: a molecular determinant of selective vulnerability in amyotrophic lateral sclerosis. Ann Neurol 42: 200–207. [DOI] [PubMed] [Google Scholar]
  • 139. Williams TL, Ince PG, Oakley AE, Shaw PJ (1996) An immunocytochemical study of the distribution of AMPA selective glutamate receptor subunits in the normal human motor system. Neuroscience 74: 185–198. [DOI] [PubMed] [Google Scholar]
  • 140. Williamson T, Bruijn LI, Zhu Q, Anderson KL, Anderson SD, Julian J‐P, Cleveland DW (1998) Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis‐linked superoxide dismutase 1 mutant. Proc Natl Acad Sci USA 95: 9631–9636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141. Wong PC, Borchelt DR, Lee MK, Pardo CA, Sisodia SS, Cleveland DW, Koliatsos VE, Price DL (1996) Transgenic and gene‐targeting approaches to model disorders of motor neurons. Seminars Neurosci 8: 163–169. [Google Scholar]
  • 142. Wong PC, Marszalek J, Crawford TO, Xu ZS, Hsieh ST, Griffin JW, Cleveland DW (1995) Increasing neurofilament subunit NF‐M expression reduces axonal NF‐H, inhibits radial growth, and results in neurofilamentous accumulation in motor‐neurons. J Cell Biol 130: 1413–1422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143. Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL (1995) An adverse property of a familial ALS‐linked SOD1 mutation causes motor‐neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14: 1105–1116. [DOI] [PubMed] [Google Scholar]
  • 144. Xu ZS, Cork LC, Griffin JW, Cleveland DW (1993) Increased expression of neurofilament subunit‐NF‐L produces morphological alterations that resemble the pathology of human motor‐ neuron disease. Cell 73: 23–33. [DOI] [PubMed] [Google Scholar]
  • 145. Yim HS, Kang JH, Chock PB, Stadtman ER, Yim MB (1997) A familial amyotrophic lateral sclerosis associated A4V Cu/Zn superoxide dismutase mutant has a lower Km for hydrogen peroxide. J Biol Chem 272: 8861–8863. [DOI] [PubMed] [Google Scholar]
  • 146. Yim HS, Kang JH, Yim MB, Kwak HS, Chock PB, Stadtman ER (1996) A gain‐of‐function of an amyotrophic lateral sclerosis‐ associated Cu, Zn‐superoxide dismutase mutant: An enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc Natl Acad Sci USA 93: 5709–5714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147. Yoshiyama Y, Yamada T, Asanuma K, Asahi T (1994) Apoptosis related antigen, LeY and nick‐end labelling are positive in spinal motor neurons in amyotrophic lateral sclerosis. Acta Neuropath 88: 207–211. [DOI] [PubMed] [Google Scholar]
  • 148. Zhang B, Tu PH, Abtahian F, Trojanowski JQ, Lee VMY (1997) Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J Cell Biol 139: 1307–1315. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES