Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;11(2):159–168. doi: 10.1111/j.1750-3639.2001.tb00388.x

p14 ARF Deletion and Methylation in Genetic Pathways to Glioblastomas

Mitsutoshi Nakamura 1, Takao Watanabe 1, Ulf Klangby 2, Charlotte Asker 3, Klas Wiman 3, Yasuhiro Yonekawa 4, Paul Kleihues 1, Hiroko Ohgaki 1,
PMCID: PMC8098332  PMID: 11303791

Abstract

The CDKN2A locus on chromosome 9p21 contains the p14 ARF and p16 INK4a genes, and is frequently deleted in human neoplasms, including brain tumors. In this study, we screened 34 primary (de novo) glioblastomas and 16 secondary glioblastomas that had progressed from low‐grade diffuse astrocytomas for alterations of the p14 ARF and p16 INK4a genes, including homozygous deletion by differential PCR, promoter hypermethylation by methylation‐specific PCR, and protein expression by immunohistochemistry. A total of 29 glioblastomas (58%) had a p14 ARF homozygous deletion or methylation, and 17 (34%) showed p16 INK4a homozygous deletion or methylation. Thirteen glioblastomas showed both p14 ARF and p16 INK4a homozygous deletion, while nine showed only a p14 ARF deletion. Immunohistochemistry revealed loss of p14 ARF expression in the majority of glioblastomas (38/50, 76%), and this correlated with the gene status, i.e. homozygous deletion or promoter hypermethylation. There was no significant difference in the overall frequency of p14 ARF and p16 INK4a alterations between primary and secondary glioblastomas. The analysis of multiple biopsies from the same patients revealed hypermethylation of p14 ARF (5/15 cases) and p16 INK4a (1/15 cases) already at the stage of low‐grade diffuse astrocytoma but consistent absence of homozygous deletions. These results suggest that aberrant p14 ARF expression due to homozygous deletion or promoter hypermethylation is associated with the evolution of both primary and secondary glioblastomas, and that p14 ARF promoter methylation is an early event in subset of astrocytomas that undergo malignant progression to secondary glioblastoma.

Full Text

The Full Text of this article is available as a PDF (267.3 KB).

References

  • 1. Biernat W, Kleihues P, Yonekawa Y, Ohgaki H (1997) Amplification and overexpression of MDM2 in primary (de novo) glioblastomas. J Neuropathol Exp Neurol 56: 180–185. [DOI] [PubMed] [Google Scholar]
  • 2. Biernat W, Tohma Y, Yonekawa Y, Kleihues P, Ohgaki H (1997) Alterations of cell cycle regulatory genes in primary (de novo) and secondary glioblastomas. Acta Neuropathol 94: 303–309. [DOI] [PubMed] [Google Scholar]
  • 3. Brüstle O, Ohgaki H, Schmitt HP, Walter GF, Ostertag H, Kleihues P (1992) Primitive neuroectodermal tumors after prophylactic central nervous system irradiation in children. Association with an activated K‐ras gene. Cancer 69: 2385–2392. [DOI] [PubMed] [Google Scholar]
  • 4. Burns KL, Ueki K, Jhung SL, Koh J, Louis DN (1998) Molecular genetic correlates of p16, cdk4, and pRb immunohistochemistry in glioblastomas. J Neuropathol Exp Neurol 57: 122–130. [DOI] [PubMed] [Google Scholar]
  • 5. Costello JF, Berger MS, Huang HJ, Cavenee WK (1996) Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. Cancer Res 56: 2405–2410. [PubMed] [Google Scholar]
  • 6. Della Valle V, Duro D, Bernard O, Larsen C.J. (1997) The human protein p19ARF is not detected in hemopoietic human cell lines that abundantly express the alterative beta trasncript of the p16INK4a/MTS1 gene. Oncogene 15: 2475–2481. [DOI] [PubMed] [Google Scholar]
  • 7. Esteller M, Tortola S, Toyota M, Capella G, Peinado MA, Baylin SB, Herman JG (2000) Hypermethylation‐associated inactivation of p14ARF is independent of p16INK4a methylation and p53 mutational status. Cancer Res 60: 129–133. [PubMed] [Google Scholar]
  • 8. Fueyo J, Gomez‐Manzano C, Bruner JM, Saito Y, Zhang B, Zhang W, Levin VA, Yung WK, Kyritsis AP (1996) Hypermethylation of the CpG island of p16/CDKN2 correlates with gene inactivation in gliomas. Oncogene 13: 1615–1619. [PubMed] [Google Scholar]
  • 9. Fujisawa H, Reis RM, Nakamura M, Colella S, Yonekawa Y, Kleihues P, Ohgaki H (2000) Loss of heterozygosity on chromosome 10 is more extensive in primary (de novo) than in secondary glioblastomas. Lab Invest 80: 65–72. [DOI] [PubMed] [Google Scholar]
  • 10. Gardie B, Cayuela JM, Martini S, Sigaux F (1998) Genomic alterations of the p19ARF encoding exons in T‐cell acute lymphoblastic leukemia. Blood 91: 1016–1020. [PubMed] [Google Scholar]
  • 11. Gazzeri S, Della Valle V, Chaussade L, Brambilla C, Larsen CJ, Brambilla E (1998) The human p19ARF protein encoded by the β transcript of the p16INK4a gene is frequently lost in small cell lung cancer. Cancer Res 58: 3926–3931. [PubMed] [Google Scholar]
  • 12. Haber DA (1997) Splicing into senescence: the curious case of p16 and p19ARF. Cell 91: 555–558. [DOI] [PubMed] [Google Scholar]
  • 13. Hegi ME, Zur Hausen A, Ruedi D, Malin G, Kleihues P (1997) Hemizygous or homozygous deletion of the chromosomal region containing the p16INK4a gene is associated with amplification of the EGF receptor gene in glioblastomas. Int J Cancer 73: 57–63. [DOI] [PubMed] [Google Scholar]
  • 14. Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB (1996) Methylation‐specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93: 9821–9826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Huschtscha LI, Reddel RR (1999) p16INK4a and the control of cellular proliferative life span. Carcinogenesis 20: 921–926. [DOI] [PubMed] [Google Scholar]
  • 16. Hussussian CJ, Struewing JP, Goldstein AM, Higgins PA, Ally DS, Sheahan MD, Clark WH, Jr. , Tucker MA, Dracopoli NC (1994) Germline p16 mutations in familial melanoma. Nat Genet 8: 15–21. [DOI] [PubMed] [Google Scholar]
  • 17. Ichimura K, Bolin MB, Goike HM, Schmidt EE, Moshref A, Collins VP (2000) Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G 1‐S transition control gene abnormalities. Cancer Res 60: 417–424. [PubMed] [Google Scholar]
  • 18. Ichimura K, Schmidt EE, Yamaguchi N, James CD, Collins VP (1994) A common region of homozygous deletion in malignant human gliomas lies between the IFN alpha/omega gene cluster and the D9S 17 1 locus. Cancer Res 54: 3127–3130. [PubMed] [Google Scholar]
  • 19. Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC, Van Meir EG (1999) Frequent co‐alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 9: 469–479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Jones PA, Rideout WM, Shen JC, Spruck CH, Tsai YC (1992) Methylation, mutation and cancer. Bioessays 14: 33–36. [DOI] [PubMed] [Google Scholar]
  • 21. Kamb A, Shattuck Eidens D, Eeles R, Liu Q, Gruis NA, Ding W, Hussey C, Tran T, Miki Y, Weaver Feldhaus J et al (1994) Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet 8: 23–26. [DOI] [PubMed] [Google Scholar]
  • 22. Kamijo T, Bodner S, van de KE , Randle DH, Sherr CJ (1999) Tumor spectrum in ARF‐deficient mice. Cancer Res 59: 2217–2222. [PubMed] [Google Scholar]
  • 23. Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ (1998) Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 95: 8292–8297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Kanai Y, Ushijima S, Tsuda H, Sakamoto M, Hirohashi S (2000) Aberrant DNA methylation precedes loss of heterozygosity on chromosome 16 in chronic hepatitis and liver cirrhosis. Cancer Lett 148: 73–80. [DOI] [PubMed] [Google Scholar]
  • 25. Kleihues P, Cavenee WK eds (2000) Pathology and Genetics of Tumours of the Nervous System, International Agency for Research on Cancer, Lyon . [Google Scholar]
  • 26. Kleihues P, Ohgaki H (1999) Primary and secondary glioblastomas: From concept to clinical diagnosis. Neuro-Oncology 1: 44–51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Kumar R, Sauroja I, Punnonen K, Jansen C, Hemminki K (1998) Selective deletion of exon 1β of the p19ARF gene in metastatic melanoma cell lines. Genes Chromosomes Cancer 23: 273–277. [DOI] [PubMed] [Google Scholar]
  • 28. Lang FF, Miller DC, Koslow M, Newcomb EW (1994) Pathways leading to glioblastoma multiforme: a molecular analysis of genetic alterations in 65 astrocytic tumors. J Neurosurg 81: 427–436. [DOI] [PubMed] [Google Scholar]
  • 29. Lindström MS, Klangby U, Inoue R, Pisa P, Wiman KG, Asker CE (2000) Immunolocalization of Human p14(ARF) to the Granular Component of the Interphase Nucleolus. Exp Cell Res 256: 400–410. [DOI] [PubMed] [Google Scholar]
  • 30. Makos M, Nelkin BD, Reiter RE, Gnarra JR, Brooks J, Isaacs W, Linehan M, Baylin SB (1993) Regional DNA hypermethylation at D17S5 precedes 17p structural changes in the progression of renal tumors. Cancer Res 53: 2719–2722. [PubMed] [Google Scholar]
  • 31. Markl ID, Jones PA (1998) Presence and location of TP53 mutation determines pattern of CDKN2A/ARF pathway inactivation in bladder cancer. Cancer Res 58: 5348–5353. [PubMed] [Google Scholar]
  • 32. Nakamura M, Konishi N, Hiasa Y, Tsunoda S, Nakase H, Tsuzuki T, Aoki H, Sakitani H, Inui T, Sakaki T (1998) Frequent alterations of cell‐cycle regulators in astrocytic tumors as detected by molecular genetic and immunohistochemical analyses. Brain Tumor Pathol 15: 83–88. [DOI] [PubMed] [Google Scholar]
  • 33. Nakamura M, Yang F, Fujisawa H, Yonekawa Y, Kleihues P, Ohgaki H (2000) Loss of heterozygosity on chromosome 19 in secondary glioblastomas. J Neuropathol Exp Neurol 59: 539–543. [DOI] [PubMed] [Google Scholar]
  • 34. Newcomb EW, Alonso M, Sung T, Miller DC (2000) Incidence of p14ARF gene deletion in high‐grade adult and pediatric astrocytomas. Hum Pathol 31: 115–119. [DOI] [PubMed] [Google Scholar]
  • 35. Orlow I, LaRue H, Osman I, Lacombe L, Moore L, Rabbani F, Meyer F, Fradet Y, Cordon‐Cardo C (1999) Deletions of the INK4A gene in superficial bladder tumors. Association with recurrence. Am J Pathol 155: 105–113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Pomerantz J, Schreiber‐Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon‐Cardo C, DePinho RA (1998) The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2′s inhibition of p53. Cell 92: 713–723. [DOI] [PubMed] [Google Scholar]
  • 37. Robertson KD, Jones PA (1998) The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down‐regulated by wild‐type p53. Mol Cell Biol 18: 6457–6473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Sanchez‐Cespedes M, Reed AL, Buta M, Wu L, Westra WH, Herman JG, Yang SC, Jen J, Sidransky D (1999) Inactivation of the INK4A/ARF locus frequently coexists with TP53 mutations in non‐small cell lung cancer. Oncogene 18: 5843–5849. [DOI] [PubMed] [Google Scholar]
  • 39. Schmidt EE, Ichimura K, Messerle KR, Goike HM, Collins VP (1997) Infrequent methylation of CDKN2A(MTS1/p16) and rare mutation of both CDKN2A and CDKN2B(MTS2/p15) in primary astrocytic tumours. Br J Cancer 75: 2–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Serrano M, Lee HW, Chin L, Cordon‐Cardo C, Beach D, De Phino RA (1996) Role of the INK4a locus in tumor suppression and cell mortality. Cell 85: 27–37. [DOI] [PubMed] [Google Scholar]
  • 41. Sherr CJ (1996) Cancer cell cycles. Science 274: 1672–1677. [DOI] [PubMed] [Google Scholar]
  • 42. Simon M, Köster G, Menon AG, Schramm J (1999) Functional evidence for a role of combined CDKN2A (p16‐p14ARF)/CDKN2B (p15) gene inactivation in malignant gliomas. Acta Neuropathol 98: 444–452. [DOI] [PubMed] [Google Scholar]
  • 43. Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, Peters G (1998) The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J 17: 5001–5014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Sung T, Miller DC, Hayes RL, Alonso M, Yee H, Newcomb EW (2000) Preferential inactivation of the p53 tumor suppressor pathway and lack of EGFR amplification distinguish de novo high grade pediatric astrocytomas from de novo adult astrocytomas. Brain Pathol 10: 249–259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Tohma Y, Gratas C, Biernat W, Peraud A, Fukuda M, Yonekawa Y, Kleihues P, Ohgaki H (1998) PTEN (MMAC1) mutations are frequent in primary glioblastomas (de novo) but not in secondary glioblastomas. J Neuropathol Exp Neurol 57: 684–689. [DOI] [PubMed] [Google Scholar]
  • 46. Ueki K, Ono Y, Henson JW, Efird JT, von Deimling A, Louis DN (1996) CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res 56: 150–153. [PubMed] [Google Scholar]
  • 47. Ueki K, Rubio MP, Ramesh V, Correa KM, Rutter JL, von Deimling A, Buckler AJ, Gusella JF, Louis DN (1994) MTS1/CDKN2 gene mutations are rare in primary human astrocytomas with allelic loss of chromosome 9p. Hum Mol Genet 3: 1841–1845. [DOI] [PubMed] [Google Scholar]
  • 48. von Deimling A, von Ammon K, Schoenfeld D, Wiestler OD, Seizinger BR, Louis DN (1993) Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol 3: 19–26. [DOI] [PubMed] [Google Scholar]
  • 49. Vonlanthen S, Heighway J, Tschan MP, Borner MM, Altermatt HJ, Kappeler A, Tobler A, Fey MF, Thatcher N, Yarbrough WG, Betticher DC (1998) Expression of p16INK4a/p16α and p19ARF/p16 β is frequently altered in non‐small cell lung cancer and correlates with p53 overexpression. Oncogene 17: 2779–2785. [DOI] [PubMed] [Google Scholar]
  • 50. Watanabe K, Sato K, Biernat W, Tachibana O, von Ammon K, Ogata N, Yonekawa Y, Kleihues P, Ohgaki H (1997) Incidence and timing of p53 mutations during astrocytoma progression in patients with multiple biopsies. Clin Cancer Res 3: 523–530. [PubMed] [Google Scholar]
  • 51. Watanabe K, Tachibana O, Sato K, Yonekawa Y, Kleihues P, Ohgaki H (1996) Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6: 217–224. [DOI] [PubMed] [Google Scholar]
  • 52. Watanabe T, Nakamura M, Yonekawa Y, Kleihues P, Ohgaki H (2001) Promoter hypermethylation and homozygous deletion of the p14A RF and p16 INK4a genes in oligodendrogliomas. Acta Neuropathol., in press. [DOI] [PubMed] [Google Scholar]
  • 53. Xing EP, Nie Y, Song Y, Yang GY, Cai YC, Wang LD, Yang CS (1999) Mechanisms of inactivation of p14 ARF, p15 INK4b and p16 INK4a genes in human esophageal squamous cell carcinoma. Clin Cancer Res 5: 2704–2713. [PubMed] [Google Scholar]
  • 54. Zhang Y, Xiong Y, Yarbrough WG (1998) ARF promotes MDM2 degradation and stabilizes p53: ARF‐INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92: 725–734. [DOI] [PubMed] [Google Scholar]
  • 55. Zingg JM, Jones PA (1997) Genetic and epigenetic aspects of DNA methylation on genome expression, evolution, mutation and carcinogenesis. Carcinogenesis 18: 869–882. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES