Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;11(2):133–143. doi: 10.1111/j.1750-3639.2001.tb00386.x

Low Frequency of Chromosomal Imbalances in Anaplastic Ependymomas as Detected by Comparative Genomic Hybridization

Stefanie Scheil 1,, Silke Brüderlein 1, Monika Eicker 1, Jochen Herms 2, Christel Herold‐Mende 3, Hans‐Herbert Steiner 3, Thomas F E Barth 1, Peter Möller 1
PMCID: PMC8098350  PMID: 11303789

Abstract

We screened 26 ependymomas in 22 patients (7 WHO grade I, myxopapillary, myE; 6 WHO grade II, E; 13 WHO grade III, anaplastic, aE) using comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH). 25 out of 26 tumors showed chromosomal imbalances on CGH analysis. The chromosomal region most frequently affected by losses of genomic material clustered on 13q (9/26). 6/7 myE showed a loss on 13q14‐q31. Other chromosomes affected by genomic losses were 6q (5/26), 4q (5/26), 10 (5/26), and 2q (4/26). The most consistent chromosomal abnormality in ependymomas so far reported, is monosomy 22 or structural abnormality 22q, identified in approximately one third of Giemsabanded cases with abnormal karyotypes. Using FISH, loss or monosomy 22q was detected in small subpopulations of tumor cells in 36% of cases. The most frequent gains involved chromosome arms 17 (8/26), 9q (7/26), 20q (7/26), and 22q (6/26). Gains on 1q were found exclusively in pediatric ependymomas (5/10). Using FISH, MYCN proto‐oncogene DNA amplifications mapped to 2p23‐p24 were found in 2 spinal ependymomas of adults. On average, myE demonstrated 9.14, E 5.33, and aE 1.77 gains and/or losses on different chromosomes per tumor using CGH. Thus, and quite paradoxically, in ependymomas, a high frequency of imbalanced chromosomal regions as revealed by CGH does not indicate a high WHO grade of the tumor but is more frequent in grade I tumors.

Full Text

The Full Text of this article is available as a PDF (245.5 KB).

References

  • 1. Arnoldus EP, Wolters LB, Voormolen JH, Van Duinen SG, Raap AK, van der Ploeg M, Peters AC (1992). Interphase cytogenetics: a new tool for the study of genetic changes in brain tumors. J Neurosurg 76: 997–1003. [DOI] [PubMed] [Google Scholar]
  • 2. Barth TFE, Döhner H, Werner CA, Stilgenbauer S, Schlotter M, Pawlita M, Lichter P, Möller P, Bentz M (1998) Characteristic pattern of chromosomal gains and losses in primary large B‐cell lymphomas of the gastrointestinal tract. Blood 91: 4321–4330. [PubMed] [Google Scholar]
  • 3. Bhattacharijee MB, Armstrong DD, Vogel H, Cooley LD (1997) Cytogenetic analysis of 120 primary pediatric brain tumors and literature review. Cancer Genet Cytogenet 97: 39–53. [DOI] [PubMed] [Google Scholar]
  • 4. Bigner SH, McLendon RE, Fuchs H, McKeever PE, Friedman HS (1997) Chromosomal characteristics of childhood brain tumors. Cancer Genet Cytogenet 97: 125–134. [DOI] [PubMed] [Google Scholar]
  • 5. Blaeker H, Rasheed BKA, McLendon RE, Friedman HS, Batra SK, Fuchs HE, Bigner SH (1996) Microsatellite Analysis of childhood brain tumors. Genes Chromos Cancer 15: 54–63. [DOI] [PubMed] [Google Scholar]
  • 6. Blin N, Muller‐Brechlin R, Carstens C, Meese E, Zang KD (1987) Enhanced expression of four cellular oncogenes in a human glioblastoma cell line. Cancer Genet Cytogenet 25: 285–292. [DOI] [PubMed] [Google Scholar]
  • 7. Burger PC, Scheithauer BW (1994) Tumors of the central nervous system. Atlas of Tumor Pathology, Armed Forces Institute of Pathology, third series, fascicle 10.
  • 8. Chadduck WM, Boop FA, Sawyer JR (19911992) Cytogenetic studies of pediatric brain and spinal cord tumors. Pediatr Neurosurg 17: 57–65. [DOI] [PubMed] [Google Scholar]
  • 9. Collins VP, James CD (1993) Gene and chromosomal alterations associated with the development of human gliomas. FASEB J 7: 926–930. [DOI] [PubMed] [Google Scholar]
  • 10. Dal Cin P, Sandberg AA (1988) Cytogenetic findings in a supratentorial ependymoma. Cancer Genet Cytogenet 30: 289–293. [DOI] [PubMed] [Google Scholar]
  • 11. Debiec‐Rychter M, Lasota J, Alwasiak J, Liberski PP (1995) Recurrent anaplastic ependymoma with an abnormal karyotype and c‐myc proto‐oncogene overexpression. Acta Neuropath 89: 270–274. [DOI] [PubMed] [Google Scholar]
  • 12. Draper GJ, Sanders BM, Kingston JE (1986) Second primary neoplasms in patients with retinoblastoma. Br J Cancer 53: 661–671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Ebert C, von Haken M, Meyer‐Puttlitz B, Wiestler OD, Reifenberger G, Pietsch T, von Deimling A (1999) Molecular genetic analysis of ependymal tumors. Am J Pathol 155: 627–632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Fujimoto M, Sheridan PJ, Sharp ZD, Weaker FJ, Kagan‐Hallet KS, Story JL (1989) Proto‐oncogene analyses in brain tumors. J Neurosurg 70: 910–915. [DOI] [PubMed] [Google Scholar]
  • 15. Fults D, Brockmeyer D, Tullous MW, Pedone AC, Cawthon RM (1992) p53 mutations and loss of heterozygosity on chromosomes 17 and 10 during human astrocytoma progression. Cancer Res 52: 674–679. [PubMed] [Google Scholar]
  • 16. Griffin CA, Long PP, Carson BS, Brem H (1992) Chromosome abnormalities in low‐grade central nervous system tumors. Cancer Genet Cytogenet 60: 67–73. [DOI] [PubMed] [Google Scholar]
  • 17. Hamilton RL, Pollack IF (1997) The molecular biology of ependymomas. Brain Pathol 7: 807–822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. James CD, Carlbom E, Mikkelsen T, Ridderheim PA, Cavenee WK, Collins VP (1990) Loss of genetic information in central nervous system tumors common to children and young adults. Genes Chromos Cancer 2: 94–102. [DOI] [PubMed] [Google Scholar]
  • 19. Jenkins RB, Kimmel DW, Moertel CA, Schultz CG, Scheithauer BW, Kelly PJ, Dewald GW (1989) A cytogenetic study of 53 human gliomas. Cancer Genet Cytogenet 39: 253–279. [DOI] [PubMed] [Google Scholar]
  • 20. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258: 818–821. [DOI] [PubMed] [Google Scholar]
  • 21. Kallioniemi OP, Kallioniemi A, Piper J, Isola J, Waldman FM, Gray JW, Pinkel D (1994) Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Genes Chromos Cancer 10: 231–243. [DOI] [PubMed] [Google Scholar]
  • 22. Kleihues P, Cavenee WK (2000) Tumors of the nervous system. Pathology & Genetics, IARC Press: Lyon . [Google Scholar]
  • 23. Kim DH, Mohapatra G, Bollen A, Waldman FM, Feuerstein BG (1995) Chromosomal abnormalities in glioblastoma multiforme tumors and glioma cell lines detected by comparative genomic hybridization. Int J Cancer 60: 812–819. [DOI] [PubMed] [Google Scholar]
  • 24. Kindblom LG, Lodding P, Hagmar B, Stenman G (1986) Metastasizing myxopapillary ependymoma of the sacrococcygeal region. Acta Pathol Microbiol Immunol Scand A 94: 79–90. [PubMed] [Google Scholar]
  • 25. Kramer DL, Parmiter AH, Rorke AH, Sutton LN, Biegler JA (1998) Molecular cytogenetic studies of pediatric ependymomas. J Neurooncol 37: 25–33. [DOI] [PubMed] [Google Scholar]
  • 26. Lee SH, Kim JH, Rhee CH, Kang YS, Lee JH, Hong SI, Choi KS (1995) Loss of heterozygosity on chromosome 10, 13q (Rb), 17p, and p53 gene mutations in human brain gliomas. J Korean Med Sci 10: 442–448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Liehr T, Grehl H, Rautenstrauss B (1995) FISH analysis of interphase nuclei extracted from paraffin‐embedded tissue. Trends in Genetics 11: 377–378. [DOI] [PubMed] [Google Scholar]
  • 28. Mapstone TB, Galloway PG (19911992) Expression of glial fibrillary acidic protein, vimentin, fibronection, and N‐myc oncoprotein in primary human brain tumor cell explants. Pediatr Neurosurg 17: 169–174. [DOI] [PubMed] [Google Scholar]
  • 29. Mazewski C, Soukrup S, Ballard E, Gotwals B, Lampkin B (1999) Karyotype studies in 18 ependymomas with literature review of 107 cases. Cancer Genet Cytogenet 113: 1–8. [DOI] [PubMed] [Google Scholar]
  • 30. Neumann E, Kalousek DK, Norman MG, Steinbok P, Cochrane DD, Goddard K (1993) Cytogenetic analysis of 109 pediatric central nervous system tumors. Cancer Genet Cytogenet 71: 40–49. [DOI] [PubMed] [Google Scholar]
  • 31. Patt S, Cervos‐Navarro J (1992) Combined erbB gene overexpression and decreased H‐ras gene expression in human gliomas. Acta Histochem Suppl 42: 131–138. [PubMed] [Google Scholar]
  • 32. Patt S, Thiel G, Maas S, Lozanova T, Prosenc N, Cervos‐Navarro J, Witkowski R, Blumenstock M (1993) Chromosomal changes and correspondingly altered proto‐oncogene expression in human gliomas. Value of combined cytogenetic and molecular genetic analysis. Anticancer Res 13: 113–118. [PubMed] [Google Scholar]
  • 33. Piper J, Ruovitz D, Sudar D, Kallioniemi A, Kallioniemi OP, Waldman FM, Gray JW, Pinkel D: Computer image analyses of comparative genomic hybridzation. Cytometry 19: 10–26. [DOI] [PubMed] [Google Scholar]
  • 34. Ransom DT, Ritland SR, Kimmel DW, Moertel CA, Dahl RJ, Scheithauer BW, Kelly PJ, Jenkins RB (1992) Cytogenetic and loss of heterozygosity studies in ependymomas, pilocytic astrocytomas, and oligodendrogliomas. Genes Chromos Cancer 5: 348–356. [DOI] [PubMed] [Google Scholar]
  • 35. Reardon DA, Entrekin RE, Sublett J, Ragsdale S, Li H, Boyett J, Kepner JL, Look AT (1999) Chromosome arm 6q loss is the most common recurrent autosomal alteration detected in primary pediatric ependymoma. Genes Chromos Cancer 24: 230–237. [DOI] [PubMed] [Google Scholar]
  • 36. Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP (1993) Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res 53: 2736–2739. [PubMed] [Google Scholar]
  • 37. Rogatto SR, Casartelli C, Rainho CA, Barbieri‐Neto J (1993) Chromosomes in the genesis and progression of ependymomas. Cancer Genet Cytogenet 69: 146–152. [DOI] [PubMed] [Google Scholar]
  • 38. Sainati L, Montaldi A, Putti MC, Giangaspero F, Rigobello L, Stella M, Zanesco L, Basso G (1992) Cytogenetic t(11;17)(q13;q21) in a pediatric ependymoma. Cancer Genet Cytogenet 59: 213–216. [DOI] [PubMed] [Google Scholar]
  • 39. Sawyer JR, Crowson ML, Roloson GJ, Chadduck WM (1991) Involvement of the short arm of chromosome 1 in a myxopapillary ependymoma. Cancer Genet Cytogenet 54: 55–60. [DOI] [PubMed] [Google Scholar]
  • 40. Sawyer JR, Sammartino G, Husain M, Boop FA, Chadduck WM (1994) Chromosome alterations in four ependymomas. Cancer Genet Cytogenet 74: 132–138. [DOI] [PubMed] [Google Scholar]
  • 41. Schröck E, Thiel G, Lozanova T, du Manoir S, Meffert MC, Jauch A, Speicher MR, Nürnberg P, Vogel, S , Jänisch W, Donis‐Keller H, Ried T, Witkowski R, Cremer T (1994) Comparative genomic hybridization of human malignant gliomas reveals multiple amplification sites and nonrandom chromosomal gains and losses. Am J Pathol 144: 1203–1218. [PMC free article] [PubMed] [Google Scholar]
  • 42. Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY, Hammond D (1985) Association of multiple copies of the N‐myc oncogene with rapid progression of neuroblastomas. N Engl J Med 313: 1111–1116. [DOI] [PubMed] [Google Scholar]
  • 43. Stratton MR, Darling J, Lantos PL, Cooper CS, Reeves BR (1989) Cytogenetic abnormalities in human ependymomas. Int J Cancer 44: 579–581. [DOI] [PubMed] [Google Scholar]
  • 44. Suzuki SO, Iwaka T (2000) Amplification and overexpression of mdm2 gene in ependymomas. Mod Pathol 13: 548–553. [DOI] [PubMed] [Google Scholar]
  • 45. Thiel G, Losanowa T, Kintzel D, Nisch G, Martin H, Vorpahl K, Witkowski R (1992) Karyotypes in 90 human gliomas. Cancer Genet Cytogenet 58: 109–120. [DOI] [PubMed] [Google Scholar]
  • 46. Tong CYK, Ng H‐K, Pang JCS, Hui ABY, Ko HCW, Lee JCK (1999) Molecular genetic analysis of non‐astrocytic gliomas. Histopathol 34: 331–341. [DOI] [PubMed] [Google Scholar]
  • 47. Vagner‐Capodano AM, Gentet JC, Gamarelli D, Pellissier JF, Gouzien M, Lena G, Genitori L, Choux M, Raybaud C (1992) Cytogenetic studies in 45 pediatric brain tumors. Pediatr Hematol Oncol 9: 223–235. [DOI] [PubMed] [Google Scholar]
  • 48. Vagner‐Capodano AM, Zattara‐Cannoni H, Gambarelli D, Figarella‐Branger D, Lena G, Dufour H, Grisoli F, Choux M (1999) Cytogenetic study of 33 ependymomas. Cancer Genet Cytogenet 115: 96–99. [DOI] [PubMed] [Google Scholar]
  • 49. Wasson C, Saylors RL, Zeltzer P, Frieddman HS, Bigner SH, Burger PC, Bigner D, Look AT, Douglas EC, Brodeur GM (1990) Oncogene amplification in pediatric brain tumors. Cancer Res 50: 2987–2990. [PubMed] [Google Scholar]
  • 50. Weber RG, Sabel M, Reifenberger J, Sommer C, Oberstraß J, Reifenberger G, Kiessling M, Cremer T (1996) Characterization of genomic alterations associated with glioma progression by comparative genomic hybridization. Oncogene 13: 983–994. [PubMed] [Google Scholar]
  • 51. Weber RG, Boström J, Wolter M, Baudis M, Collins VP, Reifenberger G, Lichter P (1997) Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: Toward a genetic model of meningioma progression. Proc Natl Acad Sci USA 94: 14719–14724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Weber T, Weber RG, Kaulich K, Actor B, Meyer‐Puttlitz B, Lampel S, Büschges R, Weigel R, Deckert‐Schlüter M, Schmiedek P, Reifenberger G, Lichter P (2000) Characteristic chromosomal imbalances in primary central nervous system lymphomas of the diffuse large B‐cell type. Brain Pathol 10: 73–84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Weremowicz S, Kupsky WJ, Morton CC, Fletcher JA (1992) Cytogenetic evidence for a chromosome 22 tumor suppressor gene in ependymoma. Cancer Genet Cytogenet 61: 193–196. [DOI] [PubMed] [Google Scholar]
  • 54. Wernicke C, Thiel G, Lozanova T, Vogel S, Kintzel D, Jänisch W, Lehmann K, Witkowski R (1995) Involvement of chromosome 22 in ependymomas. Cancer Genet Cytogenet 79: 173–176. [DOI] [PubMed] [Google Scholar]
  • 55. Wunder J, Czitrom A, Kandel R, Andrulis I (1991) Analysis of alterations in the retinoblastoma gene and tumor grade in bone and soft‐tissue sarcomas. J Natl Cancer Inst 83: 194–200. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES