Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;11(3):282–295. doi: 10.1111/j.1750-3639.2001.tb00399.x

Transcriptional Regulation of Caspases in Experimental Pneumococcal Meningitis

Matthias von Mering 1, Andreas Wellmer 1, Uwe Michel 1, Stephanie Bunkowski 1, Anna Tłustochowska 2, Wolfgang Brück 3, Ulrich Kuhnt 2, Roland Nau 1,
PMCID: PMC8098411  PMID: 11414471

Abstract

Apoptosis and necrosis in brain account for neurological sequelae in survivors of bacterial meningitis. In meningitis, several mechanisms may trigger death pathways leading to activation of transcription factors regulating caspases mRNA synthesis. Therefore, we used a multiprobe RNA protection assay (RPA) to examine the expression of 9 caspase‐mRNA in the course of experimental Streptococcus pneumoniae meningitis in mouse brain. Caspase‐6, ‐7 and ‐11 mRNA were elevated 6 hours after infection. 12 hours after infection caspases‐1, ‐2, ‐8 and ‐12 mRNA rose. Caspase‐14 mRNA was elevated 18 h and caspase‐3 mRNA 24 h after infection. In situ hybridization detected caspases‐3, ‐8, ‐11 and ‐12 mRNA in neurons of the hippocampal formation and neocortex. Development of sepsis was paralleled by increased transcription of caspases mRNA in the spleen.

In TNFα‐deficient mice all caspases examined were less upregulated, in TNF‐receptor 1/2 knockout mice caspases‐1, ‐2, ‐7, ‐11 and ‐14 mRNA were increased compared to infected control animals. In caspase‐1 deficient mice, caspases‐11, and ‐12 mRNA levels did not rise in meningitis indicating the necessity of caspase‐1 activating these caspases. Hippocampal formations of newborn mice incubated with heat‐inactivated S. pneumoniae R6 showed upregulation of caspase‐1, ‐3, ‐11 and ‐12 mRNA.

These observations suggest a tightly regulated caspases network at the transcriptional level in addition to the known cascade at the protein level.

Full Text

The Full Text of this article is available as a PDF (725.7 KB).

References

  • 1. Baker SJ, Reddy EP (1998) Modulation of life and death by the TNF receptor superfamily. Oncogene 17: 3261–3270. [DOI] [PubMed] [Google Scholar]
  • 2. Becker AJ, Gillardon F, Blümcke I, Langendörfer D, Beck H, Wiestler OD (1999) Differential regulation of apoptosis‐related genes in resistant and vulnerable subfields of the rat epileptic hippocampus. Mol Brain Res 67: 172–176. [DOI] [PubMed] [Google Scholar]
  • 3. Bitsch A, Trostdorf F, Brück W, Schmidt H, Fischer FR, Nau R (1997) Central nervous system TNFα‐mRNA expression during rabbit experimental pneumococcal meningitis. Neurosci Lett 237: 105–108. [DOI] [PubMed] [Google Scholar]
  • 4. Bluethmann H (1998) Physiological, immunological, and pathological functions of Tumor Necrosis Factor (TNF) revealed by TNF receptor‐deficient mice In: Contemporary Immunology: Cytokine knockouts, Durum SK, Muegge K (eds.), pp. 69–87, Humana Press Inc, Totowa , NJ . [Google Scholar]
  • 5. Bogdan I, Leib SL, Bergeron M, Chow L, Täuber MG (1997) Tumor Necrosis Factor‐α contributes to apoptosis in hippocampal neurons during experimental group b streptococcal meningitis. J Inf Dis 176: 693–697. [DOI] [PubMed] [Google Scholar]
  • 6. Bohr V, Paulson OB, Rasmussen N (1984) Pneumococcal meningitis. Late neurologic sequelae and features of prognostic impact. Arch Neurol 41: 1045–1049. [DOI] [PubMed] [Google Scholar]
  • 7. Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N‐methyl‐D‐aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 92: 7162–7166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Braun JS, Novak R, Herzog KH, Bodner SM, Cleveland JL, Tuomanen EI (1999) Neuroprotection by a caspase inhibitor in acute bacterial meningitis. Nat Med 5: 298–302. [DOI] [PubMed] [Google Scholar]
  • 9. Durand ML, Calderwood SB, Weber DJ. Miller SL, South‐wick FS, Caviness VS Jr, Swartz MN (1993) Acute bacterial meningitis in adults. A review of 493 episodes. N Engl J Med 328: 21–28. [DOI] [PubMed] [Google Scholar]
  • 10. Edwards MS, Rench MA, Haffar AAM., Murphy MA, Desmond MM, Bader CJ (1985) Long‐term sequelae of group B streptococcal meningitis in infants. J Pediatr 106: 717–22. [DOI] [PubMed] [Google Scholar]
  • 11. Erickson SL, De Sauvage FJ, Kikly K, Carver Moore K, Pitts Meek S, Gillett N, Sheehan KC, Schreiber RD, Goeddel DV, Moore MW (1994) Decreased sensititvity to tumour‐necrosis‐factor but normal T‐cell development in TNF receptor‐2‐deficient mice. Nature 372, 560–563. [DOI] [PubMed] [Google Scholar]
  • 12. Felderhoff‐Mueser U, Taylor DL, Greenwood K, Kozma M, Stibenz D, Joashi UC, Edwards AD, Mehmet H (2000) Fas/CD95/APO‐1 can function as a death receptor for neuronal cells in vitro and in vivo and is upregulated following cerebral hypoxic‐ischemic injury to the developing rat brain. Brain Pathol 10: 17–29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Finiels F, Robert J‐J, Samolyk M‐L, Privat A, Mallet J, Revah F (1995) Induction of neuronal apoptosis by excitotoxins associated with long‐lasting increase of 12‐o‐tetradecanoylphorbol 13‐acetate‐responsive element‐binding activity. J Neurochem 65: 1027–1034. [DOI] [PubMed] [Google Scholar]
  • 14. Gähwiler BH (1981) Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 4: 329–342. [DOI] [PubMed] [Google Scholar]
  • 15. Hampton MB, Orrenius S (1997) Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett 414: 552–556. [DOI] [PubMed] [Google Scholar]
  • 16. Harrison DC, Medhurst AD, Bond BC, Campbell CS, Davis RP, Philpott KL (2000) The use of quantitative RT‐PCR to measure mRNA expression in a rat model of focal ischemia ‐ caspase‐3 as a case study. Mol Brain Res 75: 143–149. [DOI] [PubMed] [Google Scholar]
  • 17. Hornig M, Weissenböck H, Horscroft N, Lipkin WI (1999) An infection‐based model of neurodevelopmental damage. Proc Natl Acad Sci U S A 96: 12102–12107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Kang S‐J, Wang S, Hara H, Peterson EP, Namura S, Amin‐Hanjani S, Huang Z, Srinivasan A, Tomaselli KJ, Thornberry NA (2000) Dual role of caspase‐11 in mediating activation of caspase‐1 and caspase‐3 under pathological conditions. J Cell Biol 149: 613–622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Kim YS, Sheldon RA, Elliott BR, Liu Q, Ferriero DM, Täuber MG (1995) Brain injury in experimental neonatal meningitis due to group B streptococci. J Neuropathol. Exp Neurol 54: 531–9. [DOI] [PubMed] [Google Scholar]
  • 20. Kluck RM, Bossy‐Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl‐2 regulation of apoptosis. Science 275: 1129–1132. [DOI] [PubMed] [Google Scholar]
  • 21. Koedel U, Pfister H‐W (1999) Oxidative stress in bacterial meningitis. Brain Pathol 9: 57–67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Kondo T, Matsuda T, Kitano T, Takahashi A, Tashima M, Ishikura H, Umehara H, Domae N, Uchiyama T, Okazaki T (2000) Role of c‐jun Expression Increased by Heat Shock‐ and Ceramide‐acitvated Caspase‐3 in HL‐60 Cell Apoptosis. J Biol Chem 275: 7668–7676. [DOI] [PubMed] [Google Scholar]
  • 23. Lafton‐Cazal M, Pietri S, Culcasi M, Bockaert J (1993) NMDA‐dependent superoxide production and neurotoxicity. Nature 4: 525–537. [DOI] [PubMed] [Google Scholar]
  • 24. Leib SL, Kim YS, Chow LL, Sheldon RA, Täuber MG (1996) Reactive oxygen intermediates contribute to necrotic and apoptotic neuronal injury in an infant rat model of bacterial meningitis due to group B streptococci. J Clin Invest 98: 2632–2639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Leib SL, Kim YS, Ferriero DM, Täuber MG (1996) Neuro‐protective effect of excitatory amino acid antagonist kynurenic acid in experimental bacterial meningitis. J Infect Dis 173: 166–171. [DOI] [PubMed] [Google Scholar]
  • 26. Lemaire C, Andréau K, Souvannavong V, Adam A (1998) Inhibition of caspase activity induces a switch from apoptosis to necrosis. FEBS Lett 425: 266–270. [DOI] [PubMed] [Google Scholar]
  • 27. Li P, Allen H, Banerjee S, Franklin S, Herzog L, Johnston C, McDowell J, Paskind M, Rodman L, Salfeld J (1995) Mice deficient in IL‐1 beta‐converting enzyme are defective in production of mature IL‐1 beta and resistant to endotoxic shock. Cell 80: 401–411. [DOI] [PubMed] [Google Scholar]
  • 28. Männel DN, Echtenacher B (2000) TNF in the inflammatory response. Chem Immunol 74: 141–161. [PubMed] [Google Scholar]
  • 29. Marks N, Berg MJ (1999) Recent advances on neuronal caspase in development and neurodegeneration. Neurochem Int 35: 195–220. [DOI] [PubMed] [Google Scholar]
  • 30. Martin LJ, Al‐Abdulla NA, Brambrink AM, Kirsch JR, Sieber FE, Portera‐Cailliau C (1998) Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis. Brain Res Bull 46: 281–309. [DOI] [PubMed] [Google Scholar]
  • 31. Michelet C, Leib SL, Bentue‐Ferrer D, Täuber MG (1999) Comparative efficacies of antibiotics in a rat model of meningoencephalitis due to Listeria monocytogenes. Antimicrob Agents Chemother 43: 1651–1656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Miller TM, Johnson EM Jr (1996) Metabolic and genetic analyses of apoptosis in potassium/serum‐deprived rat cerbellar granule cells. J Neurosci 16: 7487–7495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Nau R, Smirnov A, Soto A, Brück W (1998) Mice deficient for tumor necrosis factor‐? show normal recruitment of granulocytes into the subarachnoid space, but are less able to clear S. pneumoniae from the peritoneum and blood than wild‐type littermates. 38 th ICAAC (Abstr.).
  • 34. Nau R, Soto A, Brück W (1999) Apoptosis of neurons in the dentate gyrus in humns dying from bacterial meningitis. J Neuropathol Exp Neurol 58: 265–274. [DOI] [PubMed] [Google Scholar]
  • 35. Ni B, Wu X, Su Y, Stephenson D, Smalstig EB, Clemens J, Paul SM (1998) Transient global forebrain ischemia induces a prolonged expression of the caspase‐3 mRNA in rat hippocampal CA1 pyramidal neurons. J Cereb Blood Flow Metab 18: 248–256. [DOI] [PubMed] [Google Scholar]
  • 36. Oo T, Henchcliffe C, James D, Burke RE (1999) Expression of c‐fos, c‐jun, and c‐jun N‐terminal kinase (JNK) in a developmental model of induced apoptotic death in neurons of the substantia nigra. J Neurochem 72: 557–564. [DOI] [PubMed] [Google Scholar]
  • 37. Pasparakis M, Alexopoulou L, Episkopou V, Kollias G (1996) Immune and Inflammatory responses in TNFα‐deficient mice. J Exp Med 184: 1397–1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Pellegrini‐Giampietro D, Cherici G, Alesiani M, Carla V, Moroni F (1990) Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia‐induced neuronal damage. J Neurosci 10: 1035–1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Quan N, Stern EL, Whiteside MB, Herkenham M (1999) Induction of pro‐inflammatory cytokine mRNAs in the brain after peripheral injection of subseptic doses of lipopolysaccharide in the rat. J Neuroimm 93: 72–80. [DOI] [PubMed] [Google Scholar]
  • 40. Reynolds IJ, Hastings TG (1995) Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosci 3318–3327. [DOI] [PMC free article] [PubMed]
  • 41. Roebuck KA, Carpenter LR, Lakshminarayanan V, Page SM, Moy JN, Thomas LL (1999) Stimulus‐specific regulation of chemokine expression involves differential activation of the redox‐responsive transcription factors AP‐1 and NF‐κB. J Leuk Biol 65: 291–298. [DOI] [PubMed] [Google Scholar]
  • 42. Rothe J, Lesslauer W, Lotscher H, Lang Y, Koebel P, Kontgen F, Althage A, Zinkernagel R, Steinmetz M, Bluethmann H (1993) Mice lacking the tumour necrosis factor receptor 1 are restistant to TNF‐mediated toxicity but hightly susceptible to infection by Listeria monocytogenes. Nature 364: 798–802. [DOI] [PubMed] [Google Scholar]
  • 43. Sanejima K, Toné S, Kottke TJ (1998) Transition from caspase‐dependent to caspase‐independent mechanisms at the onset of apoptotic execution. J Cell Biol 143: 225–239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Sastry PS, Rao KS (2000) Apoptosis and the nervous System. J Neurochem 74: 1–20. [DOI] [PubMed] [Google Scholar]
  • 45. Saukkonen K, Sande S, Cioffe C, Wolpe S, Sherry B, Cerami A, Tuomanen E (1990) The role of cytokines in the generation of inflammation and tissue damage in experimental gram‐positive meningitis. J Exp Med 171: 439–448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Schulz JB, Weller M, Klockgether T (1996) Potassium deprivation‐induced apoptosis of cerebellar granule neurons: a sequential requirement for new mRNA and protein synthesis, ICE‐like protease activity, and reactive oxygen species. J Neurosci 16: 4696–4706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Slee EA, Adrain C, Martin SJ (1999) Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ 6: 1067–1074. [DOI] [PubMed] [Google Scholar]
  • 48. Slee EA, Adrain C, Martin SJ (1999) Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ 6: 1067–1074. [DOI] [PubMed] [Google Scholar]
  • 49. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang H‐G, Reed JC, Nicholson DW, Alnemri ES (1999) Ordering the cytochrome c‐initiated caspase cascade: Hierarchical activation of caspases‐2, ‐3, ‐6, ‐7, ‐8, and ‐10 in a caspase‐9‐dependent manner. J Cell Biol 144: 281–292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Song Z, Steller H (1999) Death by design: mechanism and control of apoptosis. Trends Cell Biol 9: M49–52. [PubMed] [Google Scholar]
  • 51. Sun S‐M, MacFarlane M, Zhuang J, Wolf BB, Green DR, Cohen GM (1999) Distinct caspase cascades are initiated in receptor‐mediated and chemical‐induced apoptosis. J Biol Chem 274: 5053–5060. [DOI] [PubMed] [Google Scholar]
  • 52. Taylor HG, Michaels RH, Mazur PM, Bauer R, Liden CB (1984) Intellectual, neuropsychological and achievement outcomes in children six to eight years after recovery from Haemophilus influenzae meningitis. Pedatrics 74: 198–205. [PubMed] [Google Scholar]
  • 53. Thornberry NA (1998) Caspases: key mediators of apoptosis. Chem Biol 5: R97–R103. [DOI] [PubMed] [Google Scholar]
  • 54. Tumani H, Smirnov A, Barchfeld S, Olgemoller U, Maier K, Lange P, Brück W, Nau R (2000) Inhibition of glutamine synthetase in rabbit pneumococcal meningitis is associated with neuronal apoptosis in the dentate gyrus. Glia 30: 11–18. [DOI] [PubMed] [Google Scholar]
  • 55. Van de Craen M, Declercq W, van den Brande I, Fiers W, Vandenabeele P (1999) The proteolytic procaspase activation network: an in vitro analysis. Cell Death Differ 6: 1117–1124. [DOI] [PubMed] [Google Scholar]
  • 56. Volterra A, Trotti D, Tromba C, Floridi S, Racagni G (1994) Glutamate uptake inhibition by oxigen free radicals in rat cortical astrocytes. J Neurosci 14: 2924–32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Walton M, Sirimanne E, Reutelingsperger C, Williams C, Gluckman P, Dragunow M (1997) Annexin V labels apoptotic neurons following hypoxia‐ischemia. Neuroreport 8: 3871–3875. [DOI] [PubMed] [Google Scholar]
  • 58. Wang J, Lenardo MJ (2000) Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies. J Cell Sci 113: 753–757. [DOI] [PubMed] [Google Scholar]
  • 59. Wang S, Miura M, Jung Y‐K. Zhu H, Li E, Yuan J (1998) Murine caspase‐11, an ICE‐interacting protease, is essential for the activation of ICE. Cell 92: 501–509. [DOI] [PubMed] [Google Scholar]
  • 60. Wong WW (1998) ICE family proteases in inflammation and apoptosis. Agents Actions Suppl 49: 5–13. [DOI] [PubMed] [Google Scholar]
  • 61. Yang X, Khosrsravi‐Far R, Chang HY, Baltimore D (1997) Daxx, a novel Fas‐binding protein that activates JNK and apoptosis. Cell 89: 1067–1076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Yang X, Stennicke HR, Wang B, Green DR, Jannicke RU, Srinivasan A, Seth P, Salvesen GS, Froelich C (1998) Granzyme B mimics apical caspases. Description of a unified pathway for trans‐activation of executioner caspase‐3 and ‐7. J Biol Chem 273: 34278–34283. [DOI] [PubMed] [Google Scholar]
  • 63. Yao J, Johnson R W (1997) Induction of interleukin‐10‐converting enzyme (ICE) in murine microglia by lipopolysaccaride. Mol Brain Res 51: 170–178. [DOI] [PubMed] [Google Scholar]
  • 64. Zysk G, Brück W, Gerber J, Brück W, Prange HW, Nau R (1996) Anti‐inflammatory treatment influences neuronal apoptotic cell death in the dentate gyrus in experimental pneumococcal meningitis. J Neuropathol Exp Neurol 55: 722–728. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES