Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2008 Jan 28;7(3):1003–1016. doi: 10.1111/j.1750-3639.1997.tb00898.x

Huntington's Disease and Dentatorubral‐Pallidoluysian Atrophy: Proteins, Pathogenesis and Pathology

Christopher A Ross 1,, Mark W Becher 1, Veronica Colomer 1, Simone Engelender 1, Jon D Wood 1, Alan H Sham 1
PMCID: PMC8098431  PMID: 9217980

Abstract

Each of the glutamine repeat neurodegenerative diseases has a particular pattern of pathology largely restricted to the CNS. However, there is considerable overlap among the regions affected, suggesting that the diseases share pathogenic mechanisms, presumably involving the glutamine repeats. We focus on Huntington's disease (HD) and Dentatorubral‐pallidoluysian atrophy (DRPLA) as models for this family of diseases, since they have striking similarities and also notable differences in their clinical features and pathology. We review the pattern of pathology in adult and juvenile onset cases. Despite selective pathology, the disease genes and their protein products (huntingtin and atrophin‐1) are widely expressed. This presents a central problem for all the glutamine repeat diseases‐how do widely expressed gene products give rise to restricted pathology? The pathogenic effects are believed to occur via a “gain of function” mechanism at the protein level. Mechanisms of cell death may include excitotoxicity, metabolic toxicity, apop‐tosis, and free radical stress. Emerging data indicate that huntingtin and atrophin‐1 may have distinct protein interactions. The specific interaction partners may help explain the selective pathology of these diseases.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

References

  • 1. Adler AJ, Dan elsen M, Robins DM (1992) Androgen‐specific gene activation via a consensus glutocorticoid response element is determined by interactior with nonreceptor factors. Proc Natl Acad Sci USA 89: 11660–11663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Alam MR, Caldwell BD, Johnson RC, Darlington DN, Mains RE, Eipper BA (1996) Novel proteins that interact with the COOH‐terminal cytosolic routing determinants of an intergral membrane peptide‐processing enzyme. J Biological Chem 271: 28636–28640. [DOI] [PubMed] [Google Scholar]
  • 3. Albin RL, Greenamyre JT (1992) Alternative excitotoxic hypotheses. Neurology 42: 733–738. [DOI] [PubMed] [Google Scholar]
  • 4. Albin RL (1995) Selective neurodegeneration in Huntington's disease. Ann Neurol 38:835–836. [DOI] [PubMed] [Google Scholar]
  • 5. Ambrose CM, Duyao MP, Barnes G, Bates GP, Lin CS, Srinidhi J, Baxendale S, Hummerich H, Lehrach H, Altherr M, Wasmuth J, Buckler A, Church D, Housman D, Berks M, Micklem G, Durbin R, Dodge A, Read A, Gusella J, MacDonald ME (1994) Structure and expression of the Huntington's disease gene: Evidence against simple inactivation due to an expanded CAG repeat. Som Cell and Mol Genet 20: 27–38. [DOI] [PubMed] [Google Scholar]
  • 6. Andrade MA, Bork P (1995) HEAT repeats in the Huntington's disease protein. Nature Genet 11: 115–116. [DOI] [PubMed] [Google Scholar]
  • 7. Aronin N, Chase K, Young C, Sapp E, Schwartz C, Matta N, Kornreich R, Landwehrmeyer B, Bird E, Beal MF, Vonsattel J‐P, Smith T, Carraway R, Boyee FM, Young AB, Penney JB, DiFiglia M (1995) CAG expansion affects the expression of mutant huntingtin in the Huntington's disease brain. Neuron 15: 1193–1201. [DOI] [PubMed] [Google Scholar]
  • 8. Bao J, Sharp AH, Wagster MV, Becher M, Schilling G, Ross CA, Dawson VL, Dawson TM (1996) Expansion of poly‐glutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin. Proc Natl Acad Sci USA 93: 5037–5042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Bates G (1996) Expanded glutamines and neurodegeneration ‐ a gain of insight. Bio Essays 18: 175–178. [DOI] [PubMed] [Google Scholar]
  • 10. Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB (1986) Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature 321: 168–171. [DOI] [PubMed] [Google Scholar]
  • 11. Beal MF, Brouillet E, Jenkins B, Henshaw R, Rosen B, Hyman BT (1993) Age‐dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate. J Neurochem 61: 1147–1150. [DOI] [PubMed] [Google Scholar]
  • 12. Beal MF, Brouillet E, Jenkins B, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen BR, Hyman BT (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3‐nitropropionic acid. J Neurosci 13: 4181–4192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Beal MF, Hyman BT, Koroshetz W (1993) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases Trends Neurosci 16: 125–131. [DOI] [PubMed] [Google Scholar]
  • 14. Beal MF, Henshaw DR, Jenkins BG, Rosen BR, Schulz JB (1994) Coenzyme Q10 and nicotinamide block striatal lesions produced by the mitochondrial toxin malonate. Ann Neurol 36: 882–888. [DOI] [PubMed] [Google Scholar]
  • 15. Becher MW, Rubinsztein DC, Leggo J, Wagster MV, Stine OC, Ranen NG, Franz ML, Abbott MH, Sherr M, MacMillan JC, Barron L, Porteous M, Harper PS, Ross CA (1997) Dentatorubral and pallidoluysian atrophy (DRPLA): Clinical and neuropathological findings in genetically confirmed North American and European pedigrees. Mov Disord, in press. [DOI] [PubMed] [Google Scholar]
  • 16. Bhide PG, Day M, Sapp E, Schwarz C, Sheth A, Kim J, Young AB, Penney J, Golden J, Aronin N, DiFiglia M (1996) Expression of normal and mutant huntingtin in the developing brain. J Neurosci 16: 5523–5535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Bork P, Sudol M (1994) The WW domain: A signalling site in dystrophin Trends Biochem Sci 19: 531–533. [DOI] [PubMed] [Google Scholar]
  • 18. Bredt DS, Snyder SH (1992) Nitric oxide, a novel neuronal messenger. Neuron 8: 3–11. [DOI] [PubMed] [Google Scholar]
  • 19. Brouillet E, Jenkins BG, Hyman BT, Ferrante RJ, Kowall NW, Srivastaba R, Roy DS, Rosen BR, Beal MF (1993) Age‐dependent vulnerability of the striatum to the mitochondrial toxin 3‐nitropropionic acid. J Neurochem 60: 356–369. [DOI] [PubMed] [Google Scholar]
  • 20. Burke JR, Wingfield MS, Lewis KE, Roses AD, Lee JE, Hulette C, Pericak‐Vance MA, Vance JM (1994) The Haw River Syndrome: Dentato‐rubropallidoluysian atrophy (DRPLA) in an African‐American family. Nature Genet 7: 521–524. [DOI] [PubMed] [Google Scholar]
  • 21. Burke JR, Enghild JJ, Martin ME, Jou YS, Myers RM, Roses AD, Vance JM, Strittmatter WJ (1996) Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nature Med 2: 347–350. [DOI] [PubMed] [Google Scholar]
  • 22. Byers RK, Dodge JA (1967) Huntington's chorea in children. Report of four cases, Neurol 17: 587–596. [DOI] [PubMed] [Google Scholar]
  • 23. Byers RK, Gilles FH, Gung C (1973) Huntington's disease in children: Neuropathology study of four cases. Neurol 23: 561. [DOI] [PubMed] [Google Scholar]
  • 24. Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623–634. [DOI] [PubMed] [Google Scholar]
  • 25. Choi DW (1992) Bench to bedside: The glutamate connection. Science 258: 241–243. [DOI] [PubMed] [Google Scholar]
  • 26. Corral‐Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC (1992) Mitochondrial DNA deletions in human brain: Regional variability and increase with advanced age. Nature Genet 2: 324–329. [DOI] [PubMed] [Google Scholar]
  • 27. Cotman CW, Monaghan DT, Ottersen OP, Storm‐Mathisen J (1987) Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci 10: 273–280. [Google Scholar]
  • 28. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262: 689–695. [DOI] [PubMed] [Google Scholar]
  • 29. Coyle JT, Schwarcz R (1976) Lesion of striatal neurones with kainic acid provides a model for Huntington's chorea. Nature 263: 244–246. [DOI] [PubMed] [Google Scholar]
  • 30. Dawson VL, Dawson TM, Bartley DA, Ulh GR, Snyder SH (1993) Mechanisms of nitric oxide‐mediated neurotoxicity in primary brain cultures. J Neurosci 13: 2651–2661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Dawson VL, Kizushi VM, Huang PL, Snyder SH, Dawson TM (1996) Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase‐deficient mice. J Neurosci 16: 2479–2487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Debant A, Serra‐Pages C, Seipel K, O'Brien S, Tang M, Park S‐H, Streuli M (1996) The multi domain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac‐specific and rho‐specific guanine nucleotide exchange factor domains. Proc Natl Acad Sci USA 93: 5466–5471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. DiFiglia M, Sapp E, Chase K, Schwarz C, Meloni A, Young C, Martin E, Vonsattel J‐P, Carraway R, Reeves SA, Boyce FM, Aronin N (1995) Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14: 1075–1081. [DOI] [PubMed] [Google Scholar]
  • 34. Dugan LL, Sensi SL, Canzoniero LMT, Handran SD, Rothman SM, Lin TS, Goldberg MP, Choi DW (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N‐methyl‐D‐aspartate. J Neurosci 15: 6377–6388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Duyao M, Ambrose C, Myers R, Novelletto A, Persichetti F, Frontali M, Folstein S, Ross C, Franz M, Abbott M, Gray J, Conneally P, Young A, Penney J, Hollingsworth Z, Shoulson I, Bonilla E, Alvir J, Bickham‐Conde J, Cha J‐H, Dure L, Gomez F, Ramos M, Sanchez‐Ramos J, Snodgrass S, DeYoung M, Wexler N, Moscowitz C, Penchaszadeh G, MacFarlane H. Anderson M, Jenkins B, Srinidhi J, Barnes G, Gusella J, MacDonald M (1993) Trinucleotide repeat length instability and age of onset in Huntington's disease. Nat Genet 4: 387–392. [DOI] [PubMed] [Google Scholar]
  • 36. Farmer TW, Wingfield MS, Lynch SA, et al. (1989) Ataxia, chorea, seizures and dementia. Pathologic features of a newly defined familial disorder. Arch Neurol 46: 774–779. [DOI] [PubMed] [Google Scholar]
  • 37. Gerber H‐P, Seipel K, Georgiev O, Höfferer M, Hug M, Rusconi S, Schaffner W (1994) Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 263: 808–811. [DOI] [PubMed] [Google Scholar]
  • 38. Goldberg YP, Nicholson DW, Rasper DM, Kalchman MA, Koide HB, Graham RK, Bromm M, Kazemi‐Esfarjani P, Thornberry NA, Vaillancourt JP, Hayden MR (1996) Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nature Genet 13: 442–449. [DOI] [PubMed] [Google Scholar]
  • 39. Goto I, Tobimatsu S, Ohta M, Hosokawa S, Shibasaki H, Kuroiwa Y (1982) Dentatorubro‐pallidoluysian degeneration: Clinical, neuro‐ophthalmologic, biochemical, and pathologic studies on autosomal dominant form. Neurology 32:1395–99. [DOI] [PubMed] [Google Scholar]
  • 40. Graveland GA, Williams RS, DiFiglia M (1985) A Golgi study of the human neostriatum: Neurons and afferent fibers. J Comp Neurol 234: 317–333. [DOI] [PubMed] [Google Scholar]
  • 41. Graveland GA, Williams RS, DiFiglia M (1985) Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington's disease. Science 227: 770–773. [DOI] [PubMed] [Google Scholar]
  • 42. Green H (1993) Human genetic diseases due to codon reiteration: Relationship to an evolutionary mechanism. Cell 74: 955–956. [DOI] [PubMed] [Google Scholar]
  • 43. Greene JC, Greenamyre JT (1995) Manipulation of membrane potential modulates malonate‐induced striatal exci‐totoxicity in vivo. Soc Neurosci Abst 2V. 1039. [DOI] [PubMed] [Google Scholar]
  • 44. Gu M, Gash MT, Mann VM, Javoy‐Agid F, Cooper JM, Schapira AHV (1996) Mitochondrial defect in Huntington's disease caudate nucleus. Ann Neurol 39: 385–389. [DOI] [PubMed] [Google Scholar]
  • 45. Gutekunst C‐A, Levy AI, Heilman CJ, Whaley WL, Yi H, Nash NR, Rees HD, Madden JJ, Hersch SM (1995) Identification and localization of huntingtin in brain and human lymphoblastoid cell lines with anti‐fusion protein antibodies. Proc Natl Acad Sci USA 92: 8710–8714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Hedreen JC, Peyser CE, Folstein SE, Ross CA (1991) Neuronal loss in layers V and VI of cerebral cortex in Huntington's disease. Neurosci Lett 133:257–261. [DOI] [PubMed] [Google Scholar]
  • 47. Hein C, Springae J‐V, Volland C, Haguenauer‐Tsapis R, Andre B (1995) NPL1, an essential gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Fsp5 ubiquitin‐protein ligase. Mol Microbiol 18: 77–87. [DOI] [PubMed] [Google Scholar]
  • 48. Holtzman DA, Yang S, Drubin DG (1993) Synthetic‐lethal interactions identify two novel genes, SLA1 and SLA2, that control membrane cytoskeleton assembly in Saccharomyces cerevisiae. J Cell Biol 122: 635–644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Housman D (1995) Gain of glutamines, gain of function Nature Genet 10: 3–4. [DOI] [PubMed] [Google Scholar]
  • 50. Huang Q, Zhou D, Sapp E, Aizawa H, Ge P, Bird ED, Vonsattel J‐P, DiFiglia M (1995) Quinolinic acid‐induced increases in calbindin D28k immunoactivity in rat striatal neurons in vivo and in vitro mimic the pattern seen in Huntington's d sease. Neuroscience 65: 397–407. [DOI] [PubMed] [Google Scholar]
  • 51. Huibregste JM, Scheffner M, Beaudenon S, Howley PM (1995) A family of proteins structurally and functionally related to the E6‐AP ubiquitin‐protein ligase. Proc Natl Acad Sci USA 92: 2563–2567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Huntington's Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72: 971–983. [DOI] [PubMed] [Google Scholar]
  • 53. Ide K, Nukina N, Masuda N, Goto J, Kanazawa I (1995) Abnormal gene product identified in Huntington's disease lymphocytes and brain. Biochem Biophys Res Comm 209: 1119–1125. [DOI] [PubMed] [Google Scholar]
  • 54. Iizuka R, Hirayama K, Maehara K (1984) Dentato‐rubro‐pallido‐luysian atrophy: A clinico‐pathological study. J Neurol Neurosurg Psych 47: 1288–1298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Ikeda H, Yamaguchi M, Sugai S, Aze Y, Narumiya S, Kakizuka A (1996) Expanded polyglutamine in the Machado‐Joseph disease protein induces cell death in vitro and in vivo. Nature Genet 13: 196–202. [DOI] [PubMed] [Google Scholar]
  • 56. Ikeuchi T, Koide R, Tanaka H, et al. (1995) Dentatorubral‐Pallidoluysian Atrophy: Clinical features are closely related to unstable expansions of trinucleotide (CAG) repeat. Ann Neurol 37: 769–775. [DOI] [PubMed] [Google Scholar]
  • 57. Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, Sundaresan M, Finkel T, Goldschmidt‐Clermont PJ (1997) Mitogenic signaling mediated by oxidants in ras‐transformed fibroblasts. Science 275: 1649–1652. [DOI] [PubMed] [Google Scholar]
  • 58. Ishitani R, Sunaga K, Hirano A, Saunders P, Katsube N, Chuang D‐M (1996) Evidence that glyceraldehyde‐3‐phosphate dehydrogenase is involved in age‐induced apoptosis in mature cerebellar neurons in culture. J Neurochem 66: 928–935. [DOI] [PubMed] [Google Scholar]
  • 59. Jackson M, Gentleman S, Lennox G, Ward L, Gray T, Randall K, Morrell K, Lowe J (1995) The cortical neuritic pathology of Huntington's disease. Neuropathol Appl Neurobiol 21: 18–26. [DOI] [PubMed] [Google Scholar]
  • 60. Jenkins B, Ksroshetz W, Beal MF, Rosen B (1993) Evidence for an energy metabolism defect in Huntington's disease using localized proton spectroscopy. Neurology 43: 2689–2695. [DOI] [PubMed] [Google Scholar]
  • 61. Jenkins BG, Brouillet E, Chen Y‐C, Storey E, Schulz JB, Kirschner P, Beal MF, Rosen BR (1996) Non‐invasive neurochemical analysis of focal excitotoxic lesions in models of neurodegenerative illness using spectroscopic imaging. J Cereb Blood Flow Metab 16: 450–461. [DOI] [PubMed] [Google Scholar]
  • 62. Jervis GA (1963) Huntington's chorea in childhood. Arch Neurol 9: 244–257. [DOI] [PubMed] [Google Scholar]
  • 63. Jou Y‐S, Myers RM (1995) Evidence from antibody studies that the CAG repeat in the Huntington's disease gene is expressed in the protein. Hum Mol Genet 4: 465–469. [DOI] [PubMed] [Google Scholar]
  • 64. Kaichman MA, Graham RK, Xia G, Koide HB, Hodgson JG, Graham KC, Goldberg YP, Gietz RD, Pickart CM, Hayden MR (1996) Huntingtin is ubiquitinated and interacts with a specific ubiquitin‐conjugating enzyme. J Biol Chem 271: 19385–19394. [DOI] [PubMed] [Google Scholar]
  • 65. Kalchman MA, Koide HB, McCutcheon K, Graham RK, Nichol K, Nishiyama K, Kazemi‐Esfarjani P, Lynn FC, Wellington C, Metzler M, Goldberg YP, Kanazawa I, Gietz RD, Hayden MR (1997) HIP1, a human homolog of S. cerevisiae Sla2p, interacts with membrane‐associated huntingtin in the brain. Nature Genet, in press. [DOI] [PubMed] [Google Scholar]
  • 66. Khan FA, Margolis RL, Loev SL, Sharp AH, Li S‐H, Ross CA (1996) cDNA cloning and characterization of an atrophin‐1 (DRPLA disease gene)‐related protein. Neurobiol Dis 3: 121–128. [DOI] [PubMed] [Google Scholar]
  • 67. Komure O, Sano A, Nishino N, Yamauchi N, Ueno S, Kondoh K, Sano N, Takahashi M, Murayama N, Kondo I, Nagafuchi S, Yamada M, Kanazawa I (1995) DNA analysis in hereditary dentatorubral‐pallidoluysian atrophy: Correlation between CAG repeat length and phenotypic variation and the molecular basis of anticipation. Neurology 45: 143–149. [DOI] [PubMed] [Google Scholar]
  • 68. Koshy B, Matilla T, Burright EN, Merry DE, Fischbeck KH, Orr HT, Zoghbi HY (1996) Spinocerebellar ataxia type‐1 and spinobulbar muscular atrophy gene products interact with glyceraldehyde‐3‐phosphate dehydrogenase. Hum Mol Genet 5: 1311–1318. [DOI] [PubMed] [Google Scholar]
  • 69. Lamaze C, Chuang T‐H, Terlecky LJ, Bokoch GM, Schmid SL (1996) Regulation of receptor‐mediated endo‐cytosis by Rho and Rac. Nature 382: 177–179. [DOI] [PubMed] [Google Scholar]
  • 70. Landwehrmeyer GB, McNeil SM, Dure LS, Ge P, Aizawa H, Huang Q, Ambrose CM, Duyao MP, Bird ED, Bonilla E, de Young M, Avila‐Gonzales AJ, Wexler NS, DiFiglia M, Gusella JF, MacDonald MD, Penney JB, Young AB, Vonsattel J‐P (1995) Huntington's disease gene: Regional and cellular expression in brain of normal and affected individuals. Ann Neurol 37: 218–230. [DOI] [PubMed] [Google Scholar]
  • 71. LaSpada AR, Paulson HL, Fischbeck KH (1994) Trinucleotide repeat expansion in neurological disease. Ann Neurol 36: 814–822. [DOI] [PubMed] [Google Scholar]
  • 72. Li S‐H, Schilling G, Young WS III, Margolis RL, Stine OC, Wagster MV, Abbott MH, Franz ML, Ranen NG, Folstein SE, Hedreen JC, Ross CA (1993) Huntington's disease is widely expressed in human and rat tissues. Neuron 11: 985–993. [DOI] [PubMed] [Google Scholar]
  • 73. Li X‐J, Li S‐H, Sharp AH, Nucifora FC Jr, Schilling G, Lanahan A, Worley P, Snyder SH, Ross CA (1995) A Huntingtin‐associated protein enriched in brain with implications for pathology. Nature 378: 398–402. [DOI] [PubMed] [Google Scholar]
  • 74. Li X‐J, Sharp AH, Li S‐H, Dawson TM, Snyder SH. Ross CA (1996) Huntingtin associated protein (HAP1): Discrete neuronal localizations in the brain resemble neuronal nitric oxide synthase. Proc Natl Acad Sci USA 93: 4839–4844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Loev SJ, Margolis RL, Young WS, Li S‐H, Schilling G, Ashworth RG, Ross CA (1995) Cloning and expression cf the rat atrophin‐1 (DRPLA disease gene) homologue. Neurobiol Disease 2: 129–138. [DOI] [PubMed] [Google Scholar]
  • 76. Ludolph AC, He F, Spencer PS, Hammerstad J, Sabri M (1991) 3‐Nitropropionic acid‐exogenous animal neurotoxin and possible human striatal toxin. Can J Neurol Sci 18: 492–498. [DOI] [PubMed] [Google Scholar]
  • 77. MacDonald ME, Gusella JF (1997) Huntington's disease: Translating a CAG repeat into a pathogenic mechanism. Current Opin Neurobiol, in press. [DOI] [PubMed] [Google Scholar]
  • 78. Mackay DJG, Nobes CD, Hall A (1995) The Rho's progress: A potential role during neuritogenesis for the Rho family of GTPases. Trends Neurosci 18: 496–501. [DOI] [PubMed] [Google Scholar]
  • 79. Mangiarini L, Sathasivam K, Seller M, Cozens B. Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87: 493–506. [DOI] [PubMed] [Google Scholar]
  • 80. Margolis RL, Li S‐H, Young WS, Wagster MV, Stine OC, Kidwai AS, Ashworth RG, Ross CA (1996) DRPLA gene (Atrophin‐1) sequence and mRNA expression in human brain. Mol Brain Res 36: 219–226. [DOI] [PubMed] [Google Scholar]
  • 81. Matthews RT, Ferrante RJ, Jenkins BG, Browne SE, Goetz K, Berger S, Chen I Y‐C, Beal MF (1997) Iodacetate produces striatal excitotoxic lesions. J Neurochem, in press. [DOI] [PubMed] [Google Scholar]
  • 82. McGeer EG, McGeer PL, Singh K (1978) Kainate‐induced degeneration of neostriatal neurons: Dependency upon corticostriatal tract. Brain Res 139: 381–383. [DOI] [PubMed] [Google Scholar]
  • 83. Monaghan DT, Cotman CW (1985) Distribution cf N‐methyl‐D‐aspartate‐sensitive L‐[3H]glutamate‐binding sites in rat brain. J Neurosci 5: 2909–2919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84. Monaghan DT, Bridges RJ, Cotman CW (1989) The excitatory amino acid receptors: Their classes, pharmacology. and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 29: 365–402. [DOI] [PubMed] [Google Scholar]
  • 85. Nagafuchi S, Yanagisawa H, Ohsaki E, Shirayama T, Tadokoro K, Inoue T, Yamada M (1994) Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nature Genet 8: 177–182. [DOI] [PubMed] [Google Scholar]
  • 86. Nagafuchi S, Yanagisawa H, Sato K, Shirayama T, Ohsaki E, Bundo M, Takeda T, Tadokoro K, Kondo I, Murayama N, Tanaka Y, Kikushima H, Umino K, Kurosawa H, Furukawa T, Nihei K, Inoue T, Sano A, Komure O, Takahashi M, Yoshizawa T, Kanazawa I, Yamada M (1994) Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide en chromosome 12p. Nature Genet 6: 14–18. [DOI] [PubMed] [Google Scholar]
  • 87. Naito H, Oyanagi S (1982) Familial myoclonus epilepsy and choreoathetosis: Hereditary dentatorubral‐pallidoluysian atrophy. Neurology 32: 798–807. [DOI] [PubMed] [Google Scholar]
  • 88. Nasir J, Goldberg YP, Hayden MR (1996) Huntington's disease: New insights into the relationship between CAG expansion and disease. Hum Mol Genet 5: 1431–1435. [DOI] [PubMed] [Google Scholar]
  • 89. Nelson JS (1995) Diseases of the basal ganglia. In: Pediatric Neuropathology, Ducket S (ed), Chapter 9, pp 212–214. Williams & Wilkins: Baltimore . [Google Scholar]
  • 90. Onodera O, Oyake M, Takano H, Ikeuchi T, Igarashi S, Tsuji S (1995) Molecular cloning of a full‐length cDNA for dentatorubral‐pallidoluysian atrophy and regional expressions of the expanded alleles in the CNS: Am J Hum Genet 57: 1050–1060. [PMC free article] [PubMed] [Google Scholar]
  • 91. Oppenheimer DR, Esiri MM (1992) Diseases of the basal ganglia, cerebellum and motor neurons. In: Greenfield's Neuropathology, Adams JH, Duchen LW (eds.), pp 988–1045. Oxford University Press: New York . [Google Scholar]
  • 92. Palfi S, Ferrante RJ, Brouillet E, Beal MF, Dolan R, Guyot MC, Peschanski M, Hantraye P (1996) Chronic 3‐nitro‐propionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington's disease. J Neurosci 16:3019–3025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93. Persichetti F, Ambrose CM, Ge P, McNeil SM, Srinidhi J, Anderson MA, Jenkins B, Barnes GT, Duyao MP, Kanaley L, Wexler NS, Myers RH, Bird ED, Vonsattel J‐P, MacDonald ME, Gusella JF (1995) Normal and expanded Huntington's disease gene alleles produce distinguishable proteins due to translation across the CAG repeat. Mol Med 1: 374–383. [PMC free article] [PubMed] [Google Scholar]
  • 94. Perisichetti F, Srinidhi J, Kanaley L, Ge P, Myers RH, D'Arrigo K, Barnes GT, MacDonald ME, Vonsattel J‐P, Gusella JF, Bird ED (1996) Huntington's disease CAG trinucleotide repeats in pathologically confirmed postmortem brains. Neurobiol Dis 1: 159–166. [DOI] [PubMed] [Google Scholar]
  • 95. Perutz M (1994) Polar zippers: Their role in human disease. In: Protein Science 3: 1629–1637, Cambridge University Press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96. Perutz M, Johnson T, Suzuki M, Finch JT (1994) Glutamine repeats as polar zippers: Their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci USA 91: 5355–5358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97. Rees DJG, Ades SE, Singer SJ, Hynes RO (1990) Sequence and domain structure of talin. Nature 347: 685–689. [DOI] [PubMed] [Google Scholar]
  • 98. Rodda RA (1981) Cerebellar atrophy in Huntington's disease. J Neurolog Sci 50: 147–157. [DOI] [PubMed] [Google Scholar]
  • 99. Rosen A (1996) Huntingtin: New marker along the road to death Nature Genet 13: 380–382. [DOI] [PubMed] [Google Scholar]
  • 100. Rosenow F, Herholz K, Lanfermann H, Weuthen G, Ebner R, Kessler J, Ghaemi M, Heiss W‐D (1995) Neurological sequelae of cyanide intoxication‐the patterns of clinical, magnetic resonance imaging, and positron emission tomography findings. Ann Neurol 38: 825–828. [DOI] [PubMed] [Google Scholar]
  • 101. Roses AD (1996) From genes to mechanisms to therapies: Lessons to be learned from neurological disorders. Nature Med 2: 267–269. [DOI] [PubMed] [Google Scholar]
  • 102. Ross CA (1995) When more is less: Pathogenesis of glutamine repeat neurodegenerative diseases. Neuron 15: 493–496. [DOI] [PubMed] [Google Scholar]
  • 103. Sapp E, Schwarz C, Chase K, Bhide P, Young AB, Penney J, Vonsattel JP, Aronin N, DiFiglia M (1996) Altered neuronal expression and intracellular trafficking of huntingtin in the Huntington's disease brain. Soc Neurosci Abst 22: 226. [Google Scholar]
  • 104. Schilling G, Sharp AH, Loev SJ, Wagster MV, Li S‐H, Stine OC, Ross CA (1995) Expression of the Huntington's disease (IT15) protein product in HD patients. Hum Mol Genet 4: 1365–1371. [DOI] [PubMed] [Google Scholar]
  • 105. Schmitt I, Bachner D, Megow D, Henklein P, Hameister H, Epplen JT, Riess O (1995) Expression of the Huntington disease gene in rodents: Cloning of the rat homologue and evidence for downregulation of non‐neuronal tissues during development. Hum Mol Genet 4: 1173–1182. [DOI] [PubMed] [Google Scholar]
  • 106. Schulz JB, Henshaw DR, Siwek D, Jenkins BG, Ferrante RJ, Cipolloni PB, Kowall NW, Rosen BR, Beal MF (1995) Involvement of free radicals in excitotoxicity in vivo. J Neurochem 64: 2239–2247. [DOI] [PubMed] [Google Scholar]
  • 107. Schulz JB, Matthews RT, Jenkins BG, Ferrante RJ, Siwek D, Henshaw CR, Cipolloni PB, Mecocci P, Kowall NW, Rosen BR, Beal MF (1995) Blockade of neuronal nitric oxide synthase: protects against excitotoxicity in vivo. J Neurosci 15: 8419–8429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108. Schulz JB, Huang PL, Matthews RT, Passov D, Fishman MC, Beal MF (1996) Striatal malonate lesions are attenuated in neuronal nitric oxide synthase knockout mice. J Neurochem 67: 430–433. [DOI] [PubMed] [Google Scholar]
  • 109. Sharp AH, Loev SJ, Schilling G, Li S‐H, Li X‐J, Bao J, Wagster MV, Kotzuk JA, Steiner JP, Lo A, Hedreen J, Sisodia S, Snyder SH, Dawson TM, Ryugo DK, Ross CA (1995) Widespread expression of the Huntington's disease gene (IT‐15) protein product. Neuron 14: 1065–1074. [DOI] [PubMed] [Google Scholar]
  • 110. Sharp AH, Ross CA (1996) Neurobiology of Huntington's disease. Neurcbiol Dis 3: 3–15. [DOI] [PubMed] [Google Scholar]
  • 111. Shoffner JM, Erown MD, Stugard C, Jun AS, Pollock S, Haas RH, Kaufman A, Koontz D, Kim Y, Graham JR, Smith E, Dixon J, Wallace DC (1995) Leber's hereditary optic neuropathy plus dystonia is caused by a mitochondrial DNA point mutation. Ann Neurol 38: 163–169. [DOI] [PubMed] [Google Scholar]
  • 112. Sirover MA (1996) Emerging new functions of the glycolytic protein, glyceraldehyde‐3‐phosphate dehydrogenase, in mammalian cells. Life Sciences 58: 2271–2277. [DOI] [PubMed] [Google Scholar]
  • 113. Smith JK, Gonda VE, Malamud N (1958) Unusual form of cerebellar ataxia. Combined dentato‐rubral and pallidoluysian degeneration. Neurology 8: 205–209. [DOI] [PubMed] [Google Scholar]
  • 114. Snell RG, MacMillan JC, Cheadle JP, et al. (1993) Relationship between trinucleotide repeat exapansion and phenotypic variation in Huntington's disease. Nat Genet 4: 393–397. [DOI] [PubMed] [Google Scholar]
  • 115. Sotrel A, Willians RS, Kaufmann WE, Myers RH (1993) Evidence for neuronal degeneration and dencritic plasticity in cortical pyramidal neurons of Huntington's disease: A quantitative Golgi study. Neurology 43: 2088–2096. [DOI] [PubMed] [Google Scholar]
  • 116. Stine OC, Pleasant N, Franz ML, Abbott MH, Folstein SE, Ross CA (1993) Correlation between the onset age of Huntington's disease and length of trinucleotide repeat in IT‐15. Hum Mol Genet 2: 1547–1549. [DOI] [PubMed] [Google Scholar]
  • 117. Stott K, Blackburn JM, Butler PJG, Perutz M (1995) Incorporation of glutamine repeats makes protein oligomerize: Implications for neurodegenerative diseases. Proc Natl Acad Sci USA 92: 6509–6513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118. Strong TV, Tagle DA, Valdes JM, Elmer LW, Boehm K, Swaroop M, Kaatz KW, Collins FS, Albin RL (1993) Widespread expression of the human and rat Huntington's disease gene in brain and nonneuronal tissues. Nature Genet 5: 259–265. [DOI] [PubMed] [Google Scholar]
  • 119. Takahashi H, Ohama E, Naito H, Takeda S, Nakashima S, Makifuchi T, Ikuta F (1988) Hereditary dentatorubral‐pallidoluysian atrophy: Clinical and pathologic variants in a family. Neurology 38: 1065–1070. [DOI] [PubMed] [Google Scholar]
  • 120. Taylor‐Robinson SD, Weeks RA, Bryant DJ, Sargentoni J, Marcus CD, Harding AE and Brooks DJ (1996) Proton magnetic resonance spectroscopy in Huntington's disease: Evidence in favour of the glutamate excitotoxic theory Mov Disord 11:167–173. [DOI] [PubMed] [Google Scholar]
  • 121. Tomoda A, Ikezawa M, Ohtani Y, Miike T, Kumamoto T (1991) Progressive myoclonus epilepsy: Dentato‐rubro‐pallido‐luysian atrophy (DRPLA) in childhood. Brain Dev 13: 266–269. [DOI] [PubMed] [Google Scholar]
  • 122. Trottier Y, Devys D, Imbert G, Saudou F, An I, Lutz Y, Wever C, Agid Y, Hirsch EC, Mandel J‐L (1995) Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form. Nature Genet 10: 104–110. [DOI] [PubMed] [Google Scholar]
  • 123. Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G, Saudou F, Weber C, David G, Tora L, Agid Y, Brice A, Mondel J‐L (1995) Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature 378: 403–406. [DOI] [PubMed] [Google Scholar]
  • 124. Uitti RJ, Rajput AH, Ashenhurst EM, Rozdilsky B (1985) Cyanide‐induced parkinsonism: A clinicopathologic report. Neurology 35: 921–925. [DOI] [PubMed] [Google Scholar]
  • 125. Uyama E, Kondo I, Uchino M, et al. (1995) Dentatorubral‐pallidoluysian atrophy (DRPLA): Clinical, genetic, and neuroradiologic studies in a family. J Neurol Sci 130:146–153. [DOI] [PubMed] [Google Scholar]
  • 126. Velier J, Schwarz C, Young C, Fallon J, Hyman B, Martin EJ, Hughes S, Vallee R, Aronin N, DiFiglia M (1996) Wild‐type and mutant huntingtin localize to the golgi complex and to vesicles in the peripheral cytoplasm in fibroblasts of control and HD patients. Soc Neurosci Abst 22: 226. [Google Scholar]
  • 127. Vonsattel J‐P, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP, Jr. (1985) Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol 44: 559–577. [DOI] [PubMed] [Google Scholar]
  • 128. Wanker EE, Rovira C, Scherzinger E, Hasenbank R, Walter S, Tait D, Colicelli J, Lehrach H (1997) HIP‐1: A huntingtin interacting protein isolated by the yeast two‐hybrid system. Hum Mol Genet 6: 487–495. [DOI] [PubMed] [Google Scholar]
  • 129. Warner TT, Lennox GG, Janota I, Harding AE (1994) Autosomal‐dominant Dentatorubro‐pallidoluysian atrophy in the United Kingdom. Mov Disord 9: 289–296. [DOI] [PubMed] [Google Scholar]
  • 130. Warner TT, Williams LD, Walker RWH, et al. (1995) A clinical and molecular genetic study of dentatorubropallidoluysian atrophy in four European families. Ann Neurol 37: 452–459. [DOI] [PubMed] [Google Scholar]
  • 131. Warren ST, Nelson DL (1993) Trinucleotide repeat expansions in neurological disease Curr Opin Neurobiol 3: 752–759. [DOI] [PubMed] [Google Scholar]
  • 132. Wood JD, MacMillan JC, Harper PS, Lowenstein PR, Jones AL (1996) Partial characterisation of murine huntingtin and apparent variations in the subcellular localisation of huntingtin in human, mouse and rat brain. Hum Mol Genet 5: 481–487. [DOI] [PubMed] [Google Scholar]
  • 133. Yazawa I, Nukina N, Hashida H, Goto J, Yamada M, Kanazawa I (1995) Abnormal gene product identified in hereditary dentatorubral‐pallidoluysian atrophy (DRPLA) brain. Nature Genet 10: 99–103. [DOI] [PubMed] [Google Scholar]
  • 134. Young AB, Greenamyre JT, Hollingsworth Z, Aibin R. D'Amato C, Shoulson I, Penney JB (1988) NMDA receptor losses in putamen from patients with Huntington s disease. Science 241: 981–983. [DOI] [PubMed] [Google Scholar]
  • 135. Young AB, Fagg GE (1990) Excitatory amino acid receptors in the brain: Membrane binding and receptor autoradiographic approaches. Trends Pharmacol Sci 11: 126–133. [DOI] [PubMed] [Google Scholar]
  • 136. Colomer V, Engelender S, Sharp AH, Duan K, Cooper JK, Lanahan A, Lyford G, Woriey P, Ross CA (1997) Huntintin‐associated protein 1 (HAP1) binds to a trio‐like polypeptide with a RAC1 GEF domain. Hum Mol Genet (In press). [DOI] [PubMed] [Google Scholar]
  • 137. Alam MR, Johnson RC, Darlinton DN, Hand TA, Mains RE, Eipper BA (1997) Kalirin, a cytosolic protein with spectrum‐like and GDP/GTP exchange factor‐like domains that interacts with peptidylglycine α‐amidating monooxygenase, an integral membrane peptide‐process‐ing enzyme. Biol Chem 272: 12667–12675. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES